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Lienard-Wiechert Formula

Space Charge Radiated Field
l l |
. ji — e iix(i-B)xp
E=€[ > — /j—’> 3 z]ret+(_)[ ( — [3)3 ﬁ]ret’
y"(I-n-p)y R c (d-n-p)R
B=7ixE

¢ Space charge is suppressed by
1/y?

“* |ldentify radiated field with
synchrotron radiation A

¢ Subject to retarded condition:

R(2')

C
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Spectral Distribution

In the far-field approximation, the intensity distribution is given by,

d*1 o, mew”
dwdQ

‘ [ Axtix B)explio(t'—a-F(t')/ c)]di r

observation
7 point

Retarded time:
t'=t-—R(t")/c
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Computing Radiation Spectrum

y Radiation direction:
X N A A .
' y: n=(0,s16b,cosh)
N FE
Eo‘r\ Electron position:
~ vt . Vvt
£ S , F (1) = (=p(1 - cos(—)),0,psin(-)))
SO : Its velocity:
N
o, P . vt \%4
\\J' [J’(t) = (—BSIH(;),O,/’)’COS(;))
Phase approximation:
A = 2
ot~y o1t~ Lsin()cos0] ~ L1(L + 6%+ ]
c c Jo, 2y 30
Vector integrand:
fix(fix f) = Blsin(H)é, +cos(Xysindé 1~ Lé +0z
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Radiation Spectrum by Bending Magnhet

o mode m mode
Intensity distribution is given by, l' l'

d’I _3rmc 5 y202
1+y°0°)’[K +
o0 an ! ( Y 1+7°0°)[K;,(8) 470

C

1/3 (5)]

where K, ;; and K,,; are modified Bessel functions and their argument

E _ %2(14_)/292)3/2

C

Angle integrated intensity distribution is

I W

— = \/gremcy— f K, (x)dx
da) wc wl/w,

where the critical frequency is

3 5.
—2V(p)
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Intensity Distribution

o mode T mode
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Beam Dynamics in Undulator

Electron velocity: Its position:
B pe X ink 2) x(1) =——cos(k, Ber)
dt y i vk,
d K2 _ 2
= = Bl - —sin® (k)] z2(t) = Bt + K sin(2k,, Bct)
dt 2)/ 8y kp

where the undulator parameter K and averaged velocity:

eByA,

2ame?

_ K?
/3 = /3)(1—4—)/2)
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Computing Spectrum of Undulator Radiation

Radiation direction:
X n = (cos¢sinf,sin@sinf,cosd)

Electron position:
2

K _
N F(t)=(—cos(w,1),0,Bct + ——sin(Rw, 1))
k,y i 8y'k, i
> z
] lts velocity: ,
eam A7) = (—Esin(a)pt),o, Bl + K—zcos(2a)pt)])
Phase approximation: Y 4y
- _ =
w(t - " r(t)) -2 (w1 - K—/ﬂg&cosgbcos(a)pt) _K {5 &Sin(Za)pt)]
C a)l y a)p 4

Vector integrand: ©
Ax(Aix )= PB{[Ocosp+ —sin(w 1)]x +Osin ¢y}
Y
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Number of Photons within Aw/w

Total emitted photons after an electron passing through undulator is given by,

Flyp+1,,]

dN . (w) Iy N2 Aw Ekz sm(anAa)k [ w,)

d<2 xN Aw, |,

where, and

;o (2rez, cos¢-KZ,)’ > = i J_ (WJ,_,, (V)

ok D)
(1 + K7 + ,)/282 )2 m=o;oo
(2)/621 Sin ¢)2 22 = E J—m (‘u)[‘]k—2m—1 (V) + ‘]k—2m+l (V)]
I”’k = 2 m=—0

(1+ LS y’0°)
2 and J,, are Bessel functions.
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Interference Spectrum
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o N first zeros near the origin define the width of the peak.
k
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Radiation Distribution
of o and m Modes (K=1)

5/30/17 Yunhai Cai, SLAC 12



Forward Radiation

Total emitted photons after an electron passing through undulator is given by,

e e}

sin(zN Aw, /o),

dN (o) Aw
h 2A72
= ay Np—zAk(K)[
40 w “ yszAa)k/ w,
1
where 0.500 | 7
. k=1 — /7
_ 2
A(K)=——7 2“ 0.100}
(1+-—)
> ~ 0.050]
kK> LS
J =[J(k+l)/2(m)_‘, (k—n/z(m)] <
0.010}
0.005}
Only odd o modes contribute o001l L L] .
0.1 05 1 5 10 50 100

K
Undulator parameter K should be between 1 to 4
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Photon Flux

Flux at ki harmonics:

dN
ph(wk)|9_o aN iA_ka(K)

dt 27 e w,

Qk (K)

where K?
I+—

2 A(K)

Qk(K) =

The rms opening angle:

2
S 2
O, ~ 2 _ |2 Undulator parameter: K

2y \ kN, V2L has to be large enough

The forward cone:  JQ = 2 70>
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Photon Flux of PEP-X
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o Analytical
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nt™ harmonic wavelength:
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Gaussian Mode

The fundamental Gaussian mode can be written as

w 7”2 7’2
E(x,y,2)=E,—exp[- lexp[—i(kz +k
(x,,2) OW(Z) p w(z) p 2R(2)
where
2
spot size: w(z)=w, \/1 +(z/zg)
radius of curvature: R(z)=z[1+(z/z, )]
Guoy phase: ¢(z)=tan"'(z/z,)
Tw,

Rayleigh length: g = 1

It is a solution of the paraxial wave equation:
. 0
(V2 =20k (x,7,2) = 0
Z
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Visualization of a Gaussian Mode
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Brightness of Gaussian Mode

For a Gaussian mode, its brightness distribution function is given by,

=2 -2

- r Q
B(r,p;0)= B, exp[—- —
O, =w,/2
O,.=0,/2,

Then, we have

00.=Al4n emittance

0./0. =2z beta function

F F

B, = ~ = -
(2o .0 .) (A /2)*<«—— coherence volume
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Single Electron Brightness

Using the Gaussian mode as an approximation for the undulator source,
we choice zz=L/2m, so that,

Ak
o, =,|—
2L
2AL
o, =
47
Its brightness function is given by,
=2 —7
- r Q@
B(r,p;0) = B, exp[- — ]
0=7P 207 207
and the photon flux is
T I Aw
F==aN,——Q.(K)
2 e w,
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Spectral Brightness of Electron Beam

Brightness of electron beam radiating
at nt" (odd) harmonics in a undulator

is given by 107

B =F /4r’2 X3 3) )

Spectral brightness of PEP-X

—SPECTRA
© Analytical

X X 'y Yy

-_—
o
N
o
0

If the electron beam phase
space is matched to those of photon’s,

the brightness becomes optimized
_ "
C AR (e + A 1 Am)(e, + A [ Am)

1021 | t

B(ph/s/mm? mr* 0.1% BW)

B

-
o
N
o
T
—
E——

||

Finally, even for zero emittances, there % > o
is an ultimate limit for the brightness Photon Energy (keV)
4F, A diffraction limited ring at 1 angstrom

B, = ;L_kz or 8 pm-rad emittance
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Coherent X-Ray Diffraction Imaging
with nanofocused Illumination
C.G. Schroer et al. PRL 101, 090801 (2008)

* Phone energy: 15.25 keV
« Coherent flux: 108 ph/s

« Exposure time: 60x10 s

* Resolution: 5 nm

« AE/E: 1.4x10+4

The total number of photons D, in the coherence volume
available at a given source, however, is bounded from
above by

AE
Dc = FCT == BI'AZFT,

where F. is the coherent flux, Br is the brilliance of the
x-ray source, A is the wavelength of the x rays, AE/E the
degree of monochromaticity, and 7 the exposure time. For

Improvement of resolution scaled
as D4

()

sample on
Si3N, membrane

FIG. 1 (color online). (a) Schematic sketch of the coherent
diffraction imaging setup with nanofocused illumination.
(b) Scanning electron micrograph of gold particles (diameter
~100 nm) deposited on a SizN,; membrane. (c¢) Diffraction
pattern (logarithmic scale) recorded of the single gold particle
pointed to by the arrow in (b) and illuminated by a hard x-ray
beam with lateral dimensions of about 100 X 100 nm”. The
maximal momentum transfer, both in horizontal and vertical

direction, is ¢ = 1.65 nm™!.
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THE DEGREE OF TEMPORAL COHERENCE |SDETERMINED BY
THE LENGTH OF THE WAVE TRAIN (MONOCHROMATICITY) ESRf

finite-length wavefronts
I wave train / ¢
A For awavetrain of N periods
AL _Av _ AE _ 1
A 1% E N
» d /\ 2
YRYAVAVAVAVAVRYAYRY RNV
v
I < >
finite-width Coherence length = /_

aperture

* The main point isto make sure that the coherence length islong
compared to all path differences between interfering raysin the
experiment

 |f thisisdone then theillumination is called quasimonochromatic
and temporal coherence effects are removed from consideration
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THE DEGREE OF SPATIAL COHERENCE IS
DETERMINED BY THE DEGREE OF COLLIMATION  ESRF

Young's dlit experiment

o

Second wave tilted
by e=A/(4a) giving
an additional path
lag of A/4 of the
signal from P,
relative to that

from P, * The equation aA=A/2 isimportant and defines a spatially

» Thefringe blurring caused by +A/4 path change is considered
tolerable so we say that P, and P, are "coherently" illuminated

 |If the beam spread FULL angleis A (equals £¢) then the
coherence width ais given by the aA=A/2

coherent beam

ESRF Lecture Series on Coherent X-rays and their Applications, Lecture 2, Malcolm Howells




YOUNG'S SLITS EXPERIMENT IN COHERENT
ILLUMINATION

X-ray plane wave of wavelength A - k=27/1

—
il
> L
He 0
\\‘\ \ Z
i
| |
P, I The amplitude at Qisu(x) = \/E . \/Ee,kA
A= axiz—" 1) =[u(x) = u(x)u" (x)
= (\/E + \/EeikA)(\/E . \/Ee_ikA)
In this case
e |(x) =1, +1, + 21,1, cos(ka)
coherently =1, +1,+21.1, Cos(zﬂax)
luminated Az

The fringe vigibility V isgiven by

Vzlmax_lmin: 4\/|1|2 =1
+|min 2(|1+|2)

ESRF Lecture Series on Coherent X-rays and their Applications, Lecture 2, Malcolm Howells
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INTRODUCE A TILTED WAVE TO REPRESENT
IMPERFECT COLLIMATION

\
\
\
\
\
\
==\
\
\ V4
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\

} 2
PZI‘\ 1(x)=1,+1,+21,1, 005{7”(%+6H

\ V4
\A/

A=af=axz—™"

Thevisibility remains=1

Second wave tilted so
that the path difference
A at P, becomes A+ 6

The fringes shift down

A point illumination by an extended source receives afinite angular

spread and arange of values of 6

The fringe systems due to all the values of ¢ are then averaged together
* Resulting in ablurring of the fringes and reduced visibility (contrast)

ESRF Lecture Series on Coherent X-rays and their Applications, Lecture 2, Malcolm Howells




FRINGE CONTRAST WHEN THE ILLUMINATING BEAM HAS

ANGULAR SPREAD

AVAVAVAVAVAVAVAVAVAVI Y NN

0.25

orangein
wavelengths

The graphs show the loss of
fringe contrast when the fringe
patterns with all ¢ valuesin the
given o range were averaged
from —6/2t0+5/2

0 range equals zero isthe
coherent case

Note that there is no changein
the phase of the fringes because
the angular spread was
symmetrical

The zero and maximum of the
intensity for each plotted fringe
pattern are the axes immediately
above and below the plot

When ¢ equals one wavelength
for example the total beam
angular spread is 1A/P,P,

ESRF Lecture Series on Coherent X-rays and their Applications, Lecture 2, Malcolm Howells




THE UNDULATOR ONE-ELECTRON PATTERN ESRE

» The on-axis monochromatic one-electron pattern emitted by an undulator isa
gpatially-coherent beam - also known as a diffraction-limited beam or a wave mode

 Wewill model it as a Gaussian laser mode with RM S intensity width and angular
width equal to o, and o,. - so that the width-angle product or emittance is given

by 1
0,0, =—
A

« We will rearrange this using the fact that arectangle of width v27c and height
1 has equal areato a Gaussian of RMS width ¢ and height 1 - thus we get

( 277:Gr)( 277:0}»):% —>/\<—\/ZO'

Worth
<€—— remembering / \
this

* Where A.=v2ro, and A, =+/2rt0,. - thisisthe relation you use to choose beam-line
dit widths to get a coherent beam

AcAc =

N | >

» Thisisnow the same as our earlier representation of a spatially coherent beam

an=2
2

ESRF Lecture Series on Coherent X-rays and their Applications, Lecture 4, Malcolm Howells




References

1) J.D. Jackson, Classical Electrodynamics, Third
Edition, John Wiley & Son, Inc. 1999

2) H. Wiedemann, Synchrotron Radiation,
Springer-Verlag Berlin Heidelberg 2003

3) Kwang-Je Kim, “Characteristics of Synchrotron
Radiation,” AIP Proc. No. 184 (AIP, New York,

1989), pp. 565-632

4) Malcolm Howells, ESRF lecture series of
coherent X-ray and their applications

5/30/17 Yunhai Cai SLAC 22



