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Lienard-Wiechert Formula 
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v Space charge is suppressed by 
1/γ2 

v  Identify radiated field with 
synchrotron radiation 

v Subject to retarded condition: 
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Space Charge                  Radiated Field 

t ' = t − R(t ')
c
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Spectral Distribution 
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d 2I
dωdΩ

=
remcω

2

4π 2 n̂×[n̂×
!
β(t ')]exp[iω(t '− n̂ ⋅ !r (t ') / c)]dt '

−∞

∞

∫
2

In the far-field approximation, the intensity distribution is given by, 

O 

n 

β(t’)r(t’) x 

observation 
point 

t ' = t − R(t ') / c
Retarded time: 

R(t’) 



Computing Radiation Spectrum 

5/30/17 Yunhai Cai, SLAC 4 

x 
y 

z 

θ

n 

v 
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Radiation direction: 

r(t) 

Electron position: 
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Phase approximation: 

Vector integrand: 
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Radiation Spectrum by Bending Magnet 
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Intensity distribution is given by, 

where K1/3 and K2/3 are modified Bessel functions and their argument 

dI
dω

= 3remcγ
ω
ωc

K5/3ω /ωc
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∫ (x)dx

Angle integrated intensity distribution is 

ωc =
3
2
γ 3( c

ρ
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where the critical frequency is 

σ mode            π mode 



Intensity Distribution  
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   σ mode                                                   π mode 



Radiation Spectrum 
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Beam Dynamics in Undulator 
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dx
dt
= −βc K

γ
sin(kpz)

dz
dt
= βc[1− K

2

2γ 2
sin2(kpz)]

Electron velocity: 

where the undulator parameter K and averaged velocity: 

K =
eB0λp

2πmc2

β = β(1− K
2

4γ 2
)

Its position: 

x(t) = K
γkp

cos(kpβct)

z(t) = βct + K 2

8γ 2kp
sin(2kpβct)



Computing Spectrum of Undulator Radiation  
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Radiation direction: 

Electron position: 
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Number of Photons within Δω/ω  
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dNph (ω)
dΩ

=αγ 2β 2Np
2 Δω
ω

k2
k=1

∞

∑ [
sin(πNpΔωk /ω1)
πNpΔωk /ω1

]2[Iσ ,k + Iπ ,k ]

Total emitted photons after an electron passing through undulator is given by, 

where,  

Iσ ,k =
(2γθΣ1 cosφ −KΣ2 )

2

(1+ K
2

2
+γ 2θ 2 )2

Iπ ,k =
(2γθΣ1 sinφ)
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(1+ K
2

2
+γ 2θ 2 )2

and 

Σ1 = J−m (µ)Jk−2m (ν )
m=−∞

∞

∑

Σ2 = J−m (µ)[Jk−2m−1(ν )
m=−∞

∞

∑ + Jk−2m+1(ν )]

and Jn are Bessel functions. 



Interference Spectrum  
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N=10 

N=100 

Δωk

ωk

= ±
1
kNp

first zeros near the origin define the width of the peak. 



Radiation Distribution  
of σ and π Modes (K=1) 
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Forward Radiation 
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dNph (ω)
dΩ

=αγ 2Np
2 Δω
ω

Ak (K )
k=1

∞

∑ [
sin(πNpΔωk /ω1)
πNpΔωk /ω1

]2

Total emitted photons after an electron passing through undulator is given by, 

Ak (K ) =
k2K 2

(1+ K
2

2
)2
JJ 2

JJ = [J(k+1)/2 (
kK 2

4+ 2K 2 )− J(k−1)/2 (
kK 2

4+ 2K 2 )]

where 

Only odd σ modes contribute 

k=1 

k=11 

Undulator parameter K should be between 1 to 4 



Photon Flux 
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dNph (ωk )
dt θ=0 =

π
2
αNp

I
e
Δω
ωk

Qk (K )
k=1 

where  

Flux at kth harmonics: 

Qk (K ) =
1+ K

2

2
k

Ak (K )

Undulator parameter: K  
has to be large enough 

k=11 
The rms opening angle: 

σ r ' ≈
1
2γ

1+ K
2

2
kNp

=
λk
2L

The forward cone:  dΩ = 2πσ r '
2



Photon Flux of PEP-X 
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Gaussian Mode 
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E(x, y, z) = E0
w0
w(z)

exp[− r2

w(z)
]exp[−i(kz+ k r2

2R(z)
−φ(z))]

The fundamental Gaussian mode can be written as  

w(z) = w0 1+ (z / zR )
2

R(z) = z[1+ (z / zR )
2 ]

φ(z) = tan−1(z / zR )

zR =
πw0

2

λ

where 

spot size: 

radius of curvature: 

Guoy phase: 

Rayleigh length: 

(∇⊥
2 − 2ik ∂

∂z
)ψ(x, y, z) = 0

It is a solution of the paraxial wave equation: 



Visualization of a Gaussian Mode 
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θ=λ/πw0 w0 

zR 

λ=1 nm 
zR=1 m 

w0θ = λ /πinvariance: 



Brightness of Gaussian Mode 

5/30/17 Yunhai Cai, SLAC 18 

σ r = w0 / 2
σ r ' =σ r / zR

For a Gaussian mode, its brightness distribution function is given by, 

Then, we have  

B0 =
F

(2πσ rσ r ' )
2 =

F
(λ / 2)2

B(!r, !ϕ;0) = B0 exp[−
!r 2

2σ r
2 −
!
ϕ 2

2σ r '
2 ]

σ rσ r ' = λ / 4π
σ r /σ r ' = zR

emittance 

beta function 

coherence volume 



Single Electron Brightness  
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σ r ' =
λk
2L

σ r =
2λkL
4π

Using the Gaussian mode as an approximation for the undulator source, 
we choice zR=L/2π, so that, 

F = π
2
αNp

I
e
Δω
ωk

Qk (K )

and the photon flux is  

B(!r, !ϕ;0) = B0 exp[−
!r 2

2σ r
2 −
!
ϕ 2

2σ r '
2 ]

Its brightness function is given by, 



Spectral Brightness of Electron Beam 
Brightness of electron beam radiating  
at nth (odd) harmonics in a undulator  
is given by 

Bk = Fk / (4π
2ΣxΣx

' ΣyΣy
' )

Bk =
Fk

4π 2 (εx +λk / 4π )(εy +λk / 4π )

If the electron beam phase 
space is matched to those of photon’s,   
the brightness becomes optimized 

Finally, even for zero emittances, there 
is an ultimate limit for the brightness 

Bk =
4Fk
λk
2

Spectral brightness of PEP-X 

A diffraction limited ring at 1 angstrom 
or 8 pm-rad emittance 
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Coherent X-Ray Diffraction Imaging   
with nanofocused Illumination 

C.G. Schroer et al. PRL 101, 090801 (2008) 
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Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching

spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the

available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial

resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution

can be improved for radiation-hard specimens. A small gold particle (size<100 nm) was illuminated with

a hard x-ray nanobeam (E ¼ 15:25 keV, beam dimensions " 100# 100 nm2) and is reconstructed from

its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.

DOI: 10.1103/PhysRevLett.101.090801 PACS numbers: 07.85.Tt, 42.30.Rx, 78.70.Ck

Determining the structure of nanoscale objects, such as,
for example, biomolecules in their cellular environment,
small particles for industrial catalysis, and nanoelectronic
devices, is crucial to understand their function and to push
structural biology, chemistry, and nanotechnology to new
frontiers. X-ray microscopy is well suited to investigate
such systems [1], as it allows one to image them with high
spatial resolution, with minimal sample preparation (e.g.,
shock-freezing), and inside environments for in situ stud-
ies, e.g., catalytic reactors or high magnetic fields. Cur-
rently, all direct x-ray microscopy techniques are limited in
spatial resolution to a few 10 nm, due to aberrations and the
limited numerical aperture of today’s x-ray optics [2].
Coherent x-ray diffraction imaging (CXDI) does not rely
on x-ray optics and, therefore, has the potential to push the
spatial resolution limit to well beyond that of direct imag-
ing techniques. In addition, x-ray free-electron lasers
(XFELs) will provide ultra short and highly brilliant
x-ray pulses, potentially making time resolved CXDI stud-
ies of molecular dynamics possible [3–7].

In CXDI, the object is illuminated with coherent x rays
and its far-field diffraction pattern is recorded without any
optic [3,8–10]. From this diffraction pattern, the wave field
behind the object is reconstructed by iteratively solving the
phase problem [8,11–14]. Three-dimensional imaging is
possible by recording a (tomographic) series of diffraction
patterns [9,15–18]. Coherent illumination of the object is
crucial to this technique, and the coherent dose on the
sample determines the spatial resolution. As the coherent
flux at modern synchrotron radiation sources is limited,
CXDI experiments require long exposure times, and the
spatial resolutions obtained so far have been similar to
those of direct imaging techniques, lying in the range of
a few 10 nm.

In this Letter, we report on a CXDI experiment with
nanofocused illumination, from which the small gold par-

ticle under investigation was reconstructed with 5 nm
spatial resolution. As a result of the nanofocusing, the
coherent flux on the sample was efficiently increased,
reducing considerably the exposure time at high spatial
resolution. This opens the way to combine scanning mi-
croscopy and CXDI to obtain a spatial resolution well
beyond that of each technique taken by itself [19–22] and

1µm

(b) (c)

focused hardx-ray beam
beam stop

sample on
Si3N4 membrane

(a)

diffraction
camera

FIG. 1 (color online). (a) Schematic sketch of the coherent
diffraction imaging setup with nanofocused illumination.
(b) Scanning electron micrograph of gold particles (diameter
"100 nm) deposited on a Si3N4 membrane. (c) Diffraction
pattern (logarithmic scale) recorded of the single gold particle
pointed to by the arrow in (b) and illuminated by a hard x-ray
beam with lateral dimensions of about 100# 100 nm2. The
maximal momentum transfer, both in horizontal and vertical
direction, is q ¼ 1:65 nm$1.
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is crucial to single particle diffraction experiments at future
free-electron laser sources [4].

The nano-CXDI experiment was realized with our hard
x-ray microscope set up at beam line ID13 of the European
Synchrotron Radiation Facility (ESRF). A schematic
sketch of the experimental setup is shown in Fig. 1(a):
The sample is fully illuminated by a diffraction limited,
nanofocused hard x-ray beam. The directly transmitted
beam is blocked by a beam stop, and the diffraction pattern
of the object is recorded in forward scattering geometry on
a diffraction camera [cf. Fig. 1(a)]. This diffraction pattern
is then used to reconstruct the projected electron density of
the object by iterative schemes.

The x rays from an in-vacuum undulator source were
monochromatized with a channel-cut Si (111) monochro-

mator at an energy of E ¼ 15:25 keV (wavelength ! ¼
0:813 !A). Two crossed refractive nanofocusing lenses
(NFLs) [23,24] were used in the scanning microscope
that was set up at a distance of L1 ¼ 44 m from the source.
In the focus, a beam size slightly larger than 100"
100 nm2 was measured using a knife-edge technique.
The flux in this beam exceeded 108 ph=s yielding a gain
in intensity of g ¼ 104.

The sample, a single gold nanoparticle supported by a
Si3N4 membrane, was placed in the nanofocus. Figure 1(b)
shows a cluster of such particles on a Si3N4 membrane of
50 nm thickness. The white arrow in Fig. 1(b) points to the
gold particle investigated here. It was located by fluores-
cence mapping. In this first proof-of-principle nano-CXDI
experiment, we chose a gold particle because of its com-
parably large scattering cross section and its relative radia-
tion hardness.

A diffraction pattern of the sample was recorded with 10
one-minute exposures on a diffraction camera (FReLoN
4M, 50 "m pixel size) located at a distance of 1250 mm
behind the sample. As the beam stop was too large to cover
the central diffraction maximum, alone, it was moved up
and down to record the inner parts of the diffraction pattern
in several steps. In Fig. 1(c), the combined diffraction
pattern is shown. It is oversampled by about a factor of
20 in both directions and has inversion symmetry except
for a reduction in intensity in the upper right quadrant due
to the support of the beam stop.

The diffraction pattern in Fig. 1(c) was used to recon-
struct the gold particle using the hybrid input-output (HIO)
method [11,25] together with the so-called shrink-wrap
algorithm [26]. We performed 200 independent reconstruc-
tions out of which 191 converged to similar enantiomorphs
[27] of the gold particle [cf. Fig. 2(a)]. These were com-
bined to an average reconstruction shown in Fig. 2(b).
From the root mean square variation of the reconstructions,
the relative error of the electron density can be estimated.
A horizontal section through the center of the particle is
shown in Fig. 2(c). The reconstruction error is nearly
constant over the whole object, and its border has a fuzzi-
ness of one to two pixels, corresponding to a spatial

resolution of 3.8 to 7.6 nm, respectively. Evaluating the
phase retrieval transfer function [9,10] by determining the
highest momentum transfer for which the phase correlation
in the reconstruction is above 10%, a corresponding half
period of 4.3 nm is obtained, in agreement with the real
space estimate for the spatial resolution given above.
The spatial resolution of CXDI is effectively limited by

the strong decay of the diffraction intensity with increasing
scattering vector ~q. For a generic object, the diffraction
intensity decays with a power law q## (# $ 4) [28]. Thus,
an increase in resolution by 1 order of magnitude for a
given experimental setup requires an increase in dose by
about 4 orders of magnitude.
The total number of photonsDc in the coherence volume

available at a given source, however, is bounded from
above by

Dc ¼ FcT ¼ Br!2 "E

E
T;

where Fc is the coherent flux, Br is the brilliance of the
x-ray source, ! is the wavelength of the x rays, "E=E the
degree of monochromaticity, and T the exposure time. For
storage ring based x-ray sources, the brilliance Br can not
be significantly increased much further. In addition, to
approach nanometer resolution and below, the require-
ments on the wavelength ! and the monochromaticity
"E=E become more and more stringent, reducing the
maximal coherent flux. One way to increase the dose on
the sample and thus the spatial resolution is to increase the
exposure time T. This scheme has been followed in most
high resolution experiments, so far. However, the gain in

FIG. 2. (a) Two individual reconstructions of the gold particle
using the HIO algorithm, a left- and a right-handed one. To
obtain the average particle shape from a series of reconstructions
with random initial phases, the right-handed reconstructions
were inverted and averaged together with the left-handed ones.
(b) Reconstructed projected electron density of the gold nano-
particle shown in Fig. 1(b) after averaging the series of recon-
structions. (c) Horizontal section through the center of the
particle shown in (b). The error bars indicate rms variations in
the density for the series of independent reconstructions.

PRL 101, 090801 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

29 AUGUST 2008

090801-2

•  Phone energy: 15.25 keV 
•  Coherent flux: 108 ph/s 
•  Exposure time: 60x10 s 
•  Resolution: 5 nm 
•  ΔE/E: 1.4x10-4 

Improvement of resolution scaled 
as Dc

1/4. 



ESRF Lecture Series on Coherent X-rays and their Applications, Lecture 1, Malcolm Howells

THE DEGREE OF TEMPORAL COHERENCE IS DETERMINED BY
THE LENGTH OF THE WAVE TRAIN (MONOCHROMATICITY)

  

For a wave train of N  periods
!"

"
=
!#

#
=
!E

E
$

1

N

l
c

= N" =
"

2

!"

wavefronts

  a

finite-width
aperture

finite-length
wave train

 
Coherence length = l

c

• The main point is to make sure that the coherence length is long
compared to all path differences between interfering rays in the
experiment

• If this is done then the illumination is called quasimonochromatic
and temporal coherence effects are removed from consideration



ESRF Lecture Series on Coherent X-rays and their Applications, Lecture 2, Malcolm Howells

THE DEGREE OF SPATIAL COHERENCE IS
DETERMINED BY THE DEGREE OF COLLIMATION

P2

P1

a
z

θθ

aθ

x

O

Q

Second wave tilted
by ε=λ/(4a) giving
an additional path
lag of λ/4 of the
signal from P2
relative to that
from P1

I0

• The fringe blurring caused by  ±λ/4 path change is considered
tolerable so we say that P1 and P2 are "coherently" illuminated

• If the beam spread FULL angle is A (equals ±ε) then the
coherence width a is given by the aA≈λ/2

• The equation aA≈λ/2 is important and defines a spatially
coherent beam

Young’s slit experiment
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YOUNG'S SLITS EXPERIMENT IN COHERENT
ILLUMINATION

P2

P1

a
z

θθ

Δ = ax/z

x

O

Q

I x( ) = u x( )
2

= u x( )u! x( )

= I1 + I2 eik"
( ) I1 + I2 e#ik"

( )

X-ray plane wave of wavelength λ  -  k = 2π/λ

I2

I1

The fringe visibility V is given by

V =
Imax ! Imin

Imax + Imin
=

4 I1I2

2 I1 + I2( )
= 1 when I1 = I2

The amplitude at Q is u x( ) = I1 + I2 eik!

In this case
P1 and P2 are
coherently
iluminated

I x( ) = I1 + I2 + 2 I1I2 cos k!( )

= I1 + I2 + 2 I1I2 cos 2"ax
#z

$
%&

'
()
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INTRODUCE A TILTED WAVE TO REPRESENT
IMPERFECT COLLIMATION

P2

P1

a
z

θθ

Δ = aθ = ax/z

x

O

Q

I2

I1

Second wave tilted so
that the path difference
Δ at P2 becomes Δ+δ

I x( ) = I1 + I2 + 2 I1I2 cos 2!
"

ax
z

+#$
%&

'
()

*

+,
-

./

• The visibility remains = 1

•  The fringes shift down

• A point illumination by an extended source receives a finite angular
spread and a range of values of δ

•  The fringe systems due to all the values of δ are then averaged together

• Resulting in a blurring of the fringes and reduced visibility (contrast)
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• The graphs show the loss of
fringe contrast when the fringe
patterns with all δ values in the
given δ range were averaged
from  –δ /2 to +δ /2

• δ range equals zero is the
coherent case

• Note that there is no change in
the phase of the fringes because
the angular spread was
symmetrical

• The zero and maximum of the
intensity for each plotted fringe
pattern are the axes immediately
above and below the plot

• When δ equals one wavelength
for example the total beam
angular spread is 1λ/P1P2

FRINGE CONTRAST WHEN THE ILLUMINATING BEAM HAS
ANGULAR SPREAD

δ range in
wavelengths



• The on-axis monochromatic one-electron pattern emitted by an undulator is a
spatially-coherent beam - also known as a diffraction-limited beam or a wave mode

• We will model it as a Gaussian laser mode with RMS intensity width and angular
width equal to                     - so that the width-angle product or emittance is given
by

ESRF Lecture Series on Coherent X-rays and their Applications, Lecture 4, Malcolm Howells

THE UNDULATOR ONE-ELECTRON PATTERN

• We will rearrange this using the fact that a rectangle of width               and height
1 has equal area to a Gaussian of RMS width σ and height 1 - thus we get

! r  and !
"r

! r! "r =
#

4$

2!"

2!" r( ) 2!" #r( ) =
$

2

%c #%c =
$

2

• Where                                               - this is the relation you use to choose beam-line
slit widths to get a coherent beam

• This is now the same as our earlier representation of a spatially coherent beam

!c = 2"# r  and $!c = 2"#
$r

aA =
!

2

Worth
remembering
this

2!"
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