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Cryopumping Basics . . . Cryocondensation 

• A cryogenic surface will trap any 
  molecule that contacts the surface  
  if it is cold enough. 

Cooling gases to the extent that gas  
molecules lose sufficient energy to  

form condensation layers. 
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Ref  ©2000 Helix Technology Corporation 

Cryopumping Basics . . .  
Equilibrium Vapor Pressure 

    
Equilibrium occurs when the rate of 

gas molecules returning  to the 
liquid/solid (condensing) is equal to 
the rate of energetic molecules 
becoming gaseous (vaporizing). 

Equilibrium vapor pressure is 
the state where as many 

molecules are  
condensing as are vaporizing. 
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Cryopumping Basics . . .  
Pressure within a Cryopump 

What determines the Pressure inside a 
Cryopump? 

Surface Temp.       at 16K      at 25K      at 31K 

•Nitrogen   > 10-12 Torr  > 10-7 Torr  > 10-4 Torr 

•Argon          > 10-12 Torr > 10-9 Torr  > 10-4 Torr 

•Oxygen         > 10-12 Torr > 10-10Torr  > 10-4 Torr 

•Hydrogen > 10+2 Torr  

•Helium  > Atm.  
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Cryopumping Basics . . . Cryocondensation 

60-80 K 10-20 K 4.2 K 
H2O 
N2 
Ar 

Ne 
H2 

He 
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Cryopumping Basics . . . Cryosorption 

 Cooling gas molecules to the 
extent that gas molecules, upon 
contacting a sufficiently cooled 
surface, lose enough energy to 
accumulate on the surface.  

• A flat cryoadsorbing plate retains 
some molecules. 
 

• Flat surface allows molecules to 
continue moving. 

Cryosorbing Plate 

Ejected 
Molecules 

Cryopumping Surface 

Free 
Molecules 

Adsorbed 
Molecules 

Surface Collisions 
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Cryopumping Basics . . . Cryosorption 

• Sieve material, such as Zeolite, 
charcoal, provides greater 
surface area and limited 
apertures. 
 

• Large surface area capacity; 
1150-1250 m2/gm 

Activated Charcoal 
Sieve Material 

Internal Cavities 
Limited 

Apertures 
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Cryopumping Basics . . . Cryosorption 

• Increased surface area provides 
greater capacity. 
 

• Released molecules remain 
confined. 
 

• Irregular surface constricts 
motion. 
 

• Cryosorption of hydrogen, neon, 
and helium accomplished. 

Activated Charcoal 
Free 

Molecules 

Adsorbed Molecules 
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Cryopumping Basics . . . Surface Equilibrium 

 When the number of molecules 
arriving on the chamber surface 
(adsorbing) equals the number 
leaving the surface (desorbing), 
then the system is in “Surface 
Equilibrium”.  
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Equilibrium 

Equilibrium Vapor Pressure: 
- CONDENSATION 
- VAPORIZATION 

 
     Surface Equilibrium: 

    - ADSORPTION 
    - DESORPTION 
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Cryopumping Basics . . . Cryosorption and 
Cryocondensation 

Air gases and water vapor are condensed, 
noncondensible gases are captured. 

60-80 K 10-20 K 
H2O 
N2 
Ar 

Ne 
H2 

He 
1st Stage 2nd Stage 
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Saturation curves of common gases 
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Cryopump Concept 

• Cryopumps are designed to 
create  these condensing 
and adsorbing surfaces. 
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Cryopumping Basics . . . Adsorption Isotherm 

An adsorption isotherm is a measure of  
the surface population density of a gas 

at a constant temperature.  

σ = f(P, T) 
 
 where σ = density of molecules of gas  
  on a surface per cm2 

 P = equilibrium pressure of 
  system 
 T = system temperature 

Ejected 
Molecules 

Free 
Molecules 

Adsorbed 
Molecules 
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Cryopumping Basics . . . Adsorption Isotherm 

Ejected 
Molecules 

Free 
Molecules 

Adsorbed 
Molecules 

Adsorption isotherms can be expressed several ways: 
  
    % Coverage 
     
    σ = 0.20  surface 20% covered 
    σ = 1    One monolayer (σm) 
    σ = 2     Two monolayers (2σm) 
 
    Molecules/cm2 
     
    σ = 1015 molecules/cm2 
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Cryopumping Basics . . . Adsorption Isotherm 

• Usually an adsorption isotherm represents  pressure 
vs. coverage data at a specific temperature. 
 

• As the temperature increases, the equilibrium 
pressure increases for a specific surface coverage. 

• Each gas has its own unique adsorption isotherm for  
  the same temperature. 

•  For all gases, the equilibrium pressure of an 
 adsorption isotherm is less than the vapor 
 pressure at that temperature. 

•  As surface coverage goes up (to several 
 monolayers), the equilibrium pressure will approach 
 the vapor pressure. 
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Cryopumping Basics . . . Example Isotherms 

H2 at 4.2 K  He at 4.2 K  

E. Wallen: “Adsorption Isotherms of He and H2 at Liquid Helium Temperature”,  
JVST A15, p.265 
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Cryopumping Basics . . . Pumping Speed 

• A cold surface has a finite pumping 
speed for a gas as long as the 
pressure of the adsorption isotherm 
is less than the pressure of the gas 
(Pe). 

• As the surface coverage increases, 
the equilibrium pressure increases. 
 

 
 
• Smax is set by the surface 

conductance limitations of the 
cryopump. 
 

In cryosorption pumping, speed is dependent on the 
quantity of gas already adsorbed and the pressure.  
That is, a cryopump has a finite capacity. 







=

P
P - 1S  S e

max

σ1 < σ2 < σ3  
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Cryopumping Basics . . . Sticking Coefficients 

CryoSurface  
Temperature 

(K) 

Gas and Temperature  
N2 CO O2 Ar CO2 

77 K 300 
K 

77 K 300 
K 

77 K 300 
K 

77 K 300 
K 

77 K 300 
K 

10 1.0 0.65 1.0 0.90 1.0 0.68  1.0 0.75 
12.5 0.99 0.63 1.0 0.85 1.0 0.68 0.98 0.70 
15 0.96 0.62 1.0 0.85 0.90  0.67 0.96 0.67 

17.5 0.90 0.61 1.0 0.85 1.0 0.86 0.81 0.66 0.92 0.65 
20 0.84 0.60 1.0 0.85 0.80 0.66 0.90 0.63 

22.5 0.80 0.60 1.0 0.85 0.79 0.66 0.87 0.63 
25 0.79 0.60 1.0 0.85 0.79 0.66 0.85 0.63 

77 0.85 0.63 

Ref. “Cryopumping”, Dawson and Haygood, Cryogenics 5 (2), 57, (1965) 



USPAS January 2017 
Cryopumps 
Page 20  

Cryopump 

Characteristics: 
• No fluids, lubricants, or  

(in-vacuum) moving parts 
• High crossover capability 

minimizes back-streaming 
• High water pumping speed 
• Tailorable pumping speeds 
• Operate in all orientations 
• Continuous backing not required 

Flange 

Central 
Processor 

Vacuum 
Vessel 

1st Stage 
Array 

2nd Stage 
Array 

Radiation 
Shield 

Capture Type Pump 
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• A cryopump is built around the 
cold-head. 
– Creates the cold 

temperatures needed to 
condense and adsorb gases 

– Two stages, each at a 
different temperature 
 

• Achieves these temperatures by 
the expansion of helium. 

Cryopump Components . . .The Cold- Head 

1st Stage: 
65 K 

2nd Stage: 
12 K 
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Cryopump Components . . .  
shield,  vacuum vessel,  and flange 

• A radiation shield is attached to 
the 1st stage of the cold-head. 
– Copper for conductivity 
– Nickel plating for protection 

 
• The vacuum vessel isolates the 

cryopump. 
 

• The inlet flange attaches  to the 
chamber. 

Radiation 
Shield 

Vacuum 
Vessel 

Flange 
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Cryopump Components . . . 
1 st and 2nd Stage Arrays 

• The 1st stage (65 K) array 
is attached to the radiation 
shield. 

– Condenses water vapor 
 

• A series of arrays with 
charcoal are attached  to 
the 2nd stage (12 K) of the 
cold-head. 

– Condenses O2, N2, Ar 
– Adsorbs H2, He, Ne 12 K Arrays 

w/ Charcoal 

65 K Array 
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Cryopump System Overview 

Cold-Head 
Power Cable 

Input Power Cable 

Cold Head 
Cryopump 

Mounting Flange 
(Interface to Vacuum Chamber) 

To 
Roughing 
System 

Supply Line 
Return Line Helium 

Compressor 
Unit 

Control 
Module 
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Cryopump Operation - Cryocondensation 

• Water molecules collide with the 
cooled surfaces of the 65 K  
first stage array. 
 

• Condensation layers form as more 
of these molecules collect. 
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Cryopump Operation - Cryocondensation 

• Other molecules such as oxygen, 
nitrogen, and argon pass between 
the first stage arrays.  
 

• By colliding with the 12 K second 
stage arrays, these molecules 
also form condensation layers. 



USPAS January 2017 
Cryopumps 
Page 27  

Cryopump Operation - Cryoadsorption 

• The noncondensible H2, He, and 
Ne molecules pass between the 
first stage arrays. 
 

• Collide with walls and second 
stage arrays. 
 

• Become adsorbed upon contacting 
the charcoal surfaces. 
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Cryopump Operation - Cryoadsorption 

• Affixing activated charcoal sieve 
material to the underside of the 
12 K second stage arrays, allows 
H2, He, and Ne to be 
cryoadsorbed. 

Array 

Charcoal 
Sieve Material 
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During normal operation, water 
vapor is condensed on the 65 K 
first stage array while oxygen, 

nitrogen, and argon are condensed 
on the 12 K second stage array. 

Cryopump Operation – Argon Hang- Up 

12 K 
Array 

65 K 
Array 
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Cryopump Operation – Argon Hang- Up 

• Argon Hang-Up can occur if the 
first stage gets too cold. 
 

• Results in argon being condensed 
(pumped) on the first stage. 
 

• Where it stays until lower partial 
pressures are reached. 

<65 K 
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     10-10         10-7           10-4           10-3  
Water   130K     153K     185K     198.5K 
Argon   23.7K    28.6K    35.9K    39.2K 

EQUILIBRIUM VAPOR PRESSURE 

Cryopump Operation – Argon Hang- Up 

• When the equilibrium pressure is 
reached. 

– Argon liberates 
– Pumpdown slows 
– Causes “False Full” condition 

65 K 
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Cryopump Operation – Argon Hang- Up 

• Argon liberates until it  is 
repumped onto the second stage 
where it should have been 
pumped. 

65 K 
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Cryopump Operation – Argon Hang- Up 

• Argon Hang-Up can be avoided 
with modern controllers 
interfaced to the first stage 
sensor and heater.  
- Monitors and controls 

temperature 
- Prevents a “Too Cold” 

condition 

H 
e 
a 
t 
e 
r 

Control Module 

T 
e 
m 
p 
e 
r 
a 
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u 
r 
e 

S 
e 
n 
s 
o 
r 

Constant 
65 K 
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Cryopump Example Parameters 

Listed performance 
data (averaging from the 

catalogue of different 
manufacturers) for a 

typical 3000 l/s class 
two-stage cryopump  
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Cryopump Operation . . . Crossover 

During chamber evacuation,when should the 
high-vacuum valve be opened? 

 
 

For cryopumps, the maximum crossover 
capability is specified as the impulsive 

mass input that causes the second stage 
to rise no higher than 20 K. 
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Cryopump Operation . . . Crossover 

Example: Crossover Pressure Calculation 

Crossover value for a CTI On-Board 8 = 150 Torr-liters 
Crossover formula:  Crossover value = P in Torr 

 
 

Chamber volume 

150 Torr-liters = .5 Torr or 500 milliTorr 
 
 Understanding crossover can produce faster  

pumpdown times and cleaner vacuum too. 

300 liters 



USPAS January 2017 
Cryopumps 
Page 37  

Cryopump Operation . . . Regeneration 

The objective of regenerating a cryopump is to remove the 
captured gases from the pump and restore its pumping 

capacity. 

Whenever your system is down is a good opportunity to 
regenerate your cryopump without affecting your up-

time. 

So . .. when should cryopumps be regenerated? 
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Cryopump Operation . . . Regeneration 

• Regeneration 
– Warm-Up and Purge 

Regeneration 

TIME (hrs) 

TEMP 
(K) Warm-Up 

and Purge 

High Vacuum 
Valve Closed 

Pump Off 
Purge Tube 
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Cryopump Operation . . . Regeneration 

• Regeneration 
– Warm-Up and Purge 
– Extended Purge 
– Rough Out 
– Rate-of-Rise (ROR) Test 

Roughing Line 

Regeneration 

TIME (hrs) 

TEMP 
(K) Warm-Up 

and Purge 

Extended Purge, Rough, 
          & Rate-of-Rise Test 
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Cryopump Operation . . . Regeneration 

• Regeneration 
– Warm-Up and Purge 
– Extended Purge 
– Rough Out 
– Rate-of-Rise (ROR) Test 
– Cool Down 

Regeneration 

TIME (hrs) 

TEMP 
(K) Warm-Up 

and Purge 

Extended Purge, Rough, 
          & Rate-of-Rise Test 

Cool Down 
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Cryopump Operation . . . Regeneration 

• Regeneration 

Typically 5-6 hours cold-to-
cold. 

Regeneration 

TIME (hrs) 

TEMP 
(K) Warm-Up 

and Purge 

Extended Purge, Rough, 
          & Rate-of-Rise Test 

Cool Down 

5 
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Example of Cryo-pumped Accelerator – DARHT II 
(the Dual Axis Radiographic Hydro-Test) 
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Example of Cryopumped Accelerator – APT RFQ 

• Cryogenic Pumping System for Cavity 
system, with H2 Pumping Speed of 
12,000 L/s  
 

• This assembly was completed and 
successfully tested at LLNL Vacuum 
Lab. The whole system was then 
delivered and installed at the 
APT/LEDA facility. 
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