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This report/tutorial is the result of a course on electrostatic storage rings at the January 2017 U.S.
Particle Accelerator School (USPAS) hosted by the University of California, Davis. The goal of this lattice
investigation is to determine how much deflection caused by the Stern-Gerlach effect we would be able to
induce using quadrupoles and a solenoid in an electrostatic storage ring. We would like to acknowledge
the instructors, Dr. Richard Talman at Cornell University and Dr. Jayakar C.T. Thangaraj at Fermilab,
for all of their expertise and instruction.

1 How to run elegant

If elegant is fully installed, only two files are needed to run a simulation: a lattice file (.lte) and a command
file (.ele). The lattice file is the description of the elements in the beamline, and the command file describes
the actions of the simulation. To run the simulation, execute:

1 e l e gan t <mycommandfile>. e l e

in a bash session.

1.1 Lattice file

The configuration of each lattice element is defined in the lattice file. The provided “SG example.lte”
example file describes the quadrupole layout from section 11.4.1 in the class text before a solenoid was
added. Here we briefly describe the elements in the example lattice file.
Quadrupoles:

5 % 8 sto q s l i c e s ! number o f quad s l i c e s
6
7 dB1 : quad , l =”0.004 q s l i c e s /” , k1=”−362.0 0 .004 /”
8 dB2 : quad , l =”0.004 q s l i c e s /” , k1=”225.0 0 .004 /”
9 dB3 : quad , l =”0.004 q s l i c e s /” , k1=”−59.0 0 .004 /”
10
11 B1 : LINE=(8∗dB1)
12 B2 : LINE=(8∗dB2)
13 B3 : LINE=(8∗dB3)

Quadrupoles are defined by their “geometric strength”, k1, and length, l. In the example we define a small
segment of the quadrupole and repeat it. The variable “qslices” is the number of segments we slice the
quads into. The segmentation allows us to changes in the beam parameters on a finer scale. The elements
dB1-dB3 are the quad segments, and the elements B1-B3 are the full quads.
Drift spaces:

17 l s e g : d r i f t , l =0.0005
18
19 L0 : LINE=(16∗ l s e g ) ! L0 d r i f t l =0.008
20 L1 : LINE=(26∗ l s e g ) ! L1 d r i f t l =0.013
21 L2 : LINE=(160∗ l s e g ) ! L2 d r i f t l =0.08
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Drift spaces are defined by their length, l. In the example we slice the drifts into 5 mm segments (lseg).
The three lengths of drift that we use here are 0.8 cm, 13 cm, and 8 cm.
Beamline:

26 SG: LINE=(q ,START, L0 ,B1 ,B2 , L1 ,B3 , L2 ,B3 , L1 ,B2 ,B1 , L0 ,END)
27 USE,SG

The lattice is defined as a LINE element with each sub-element listed in order.

1.2 Command file

The command file is used to run the simulation. In the example, it is “SG example.ele”. The total length
of our beamline is 15 cm.

1 &run setup
2 l a t t i c e=”SG example . l t e ” ,
3 use beaml ine=”SG”
4
5 d e f a u l t o r d e r = 3
6 sigma=”%s . s ” ,
7 f i n a l=”%s . f i n ” ,
8 output=”%s . out ” ,
9 magnets=”%s .mag”
10 c en t r o id=”%s . cen”
11 p c en t r a l= 1.732
12 &end

The “run setup” section defines which lattice file to use, what the beamline is called, the central momentum,
and some of the output files to create. Other sections can be added to define more parameters.

1.3 Example script

To run the example, execute the “SG-example” bash script.

1 . / SG example

The script runs the simulation and plots the β-function and phase advance along the beamline. Three
plots should pop up:

SDDS Toolkit was used to access, process, and plot the data that is saved from the elegant simulation. In
the elegant command (.ele) file, there is a section to define which twiss parameters to output and where.
In this example, the output file containing the twiss parameters is “SG example.twi”.

28 &twi s s output
29 matched=0
30 conca t o rde r = 1 , ! f o r speed
31 alpha x= 0
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32 alpha y= 0
33 beta x= 16 .0
34 beta y= 16 .0
35 f i l ename=”%s . twi ”
36 &end

1.3.1 Plotting simulation variables

We can read the .twi and plot the values that we are interested in using sddsplot in the bash script:

13 exec sddsp lo t −column=s , ps iy SG example 1 . twi −l egend −graph=l i n e , vary −unsuppress=y −
column=s , P r o f i l e SG example .mag −over l ay=xmode=normal , y f a c t o r =0.04 &

14 exec sddsp lo t −column=s , ps ix SG example 1 . twi −l egend −graph=l i n e , vary −unsuppress=y −
column=s , P r o f i l e SG example .mag −over l ay=xmode=normal , y f a c t o r =0.04 &

We also want to plot the square root of the β-functions, which isn’t directly saved by elegant. We use
sddsprocess to create and save new variables from the existing ones.

7 exec sddsproce s s SG example . twi SG example 1 . twi ”−de f i n e=column , sqbx , betax sq r t ” \
8 ”−de f i n e=column , sqby , betay sq r t ” \

Note that SDDS uses “reverse polish notation” like elegant. These new variables are written back into the
.twi output file and can be accessed by sddsplot:

12 exec sddsp lo t −column=s , sqb? SG example 1 . twi −l egend −graph=l i n e , vary −unsuppress=y −
column=s , P r o f i l e SG example .mag −over l ay=xmode=normal , y f a c t o r =0.04 &

2 Stern-Gerlach elegant simulation

We start with an existing six-quadrupole beamline design. This original design assumes zero-length
quadrupoles and no solenoid focusing. Our goals for this investigation are:

1. Replicate the quadrupole beamline design using actual quadrupole lengths.

2. Introduce a solenoid that will flip the spins of transversely polarized electrons.

3. Retune the optics to account for the solenoid focusing.

2.1 Replacing the zero-length quadrupoles

The six zero-length quadrupoles in the existing design are placed to “magnify the Stern-Gerlach displace-
ment without excessively increasing the transverse beam dimensions.” Our goal is to place actual-length
quadrupoles into the design and tune the strength and positions to keep similar S-G displacement magni-
fication and the transverse beam dimensions.

The existing design parameters are:

quad center quad inv. focal
label pos. length length

cm mm m−1

B1 1.0 4 -362.73
B2 1.4 4 195.648
B3 2.4 4 -90.9039
C1 24.4 4 -90.9039
C2 25.4 4 195.648
C3 25.8 4 -362.73
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We first entere the design parameters exactly as given and plot the square root of the x and y β-
functions. While βy looks reasonable, βx blows up after the long drift in the center of the beamline.

To get the β-functions to look like the original design, we tune the focal lengths of the quadrupoles and
the drift distance between quads B2 and B3 (also C1 and C2 to retain symmetry). The tuned parameters
are shown below. The bold items in the table are tuned values.

quad center quad inv. focal
label pos. length length

cm mm m−1

B1 1.0 4 -362.0
B2 1.4 4 225.0
B3 3.1 4 -59.0
C1 11.5 4 -59.0
C2 13.2 4 225.0
C3 13.6 4 -362.0

The resulting β-functions look more symmetric and not excessively large.
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2.2 Adding the solenoid

In the original design of the beamline, the focusing of the solenoid was assumed to be small. Without
changing the strength or positions of the quads, we add an 8 cm long solenoid in the central drift space.
The magnetic field of the solenoid was calculated to exactly flip the spin of the electrons,

Bπ = γπ
1

e/me

v

Ls

= 2π
1

1.759820 · 1011

0.863 · 2.99 · 108

0.08
= 0.1158 T .

To add the solenoid to the elegant simulation, we just add a SOLE object to the lattice file and place in
the lattice sequence:

24 dS0 : so l e , l =0.01 , B=0.115870513
25 S0 : LINE=(8∗dS0 )

30 SG: LINE=(q ,START, L0 ,B1 ,B2 , L1 ,B3 , S0 ,B3 , L1 ,B2 ,B1 , L0 ,END)

The focusing from the solenoid destroyed the β-functions.

One solution that we try is to try to match βx and βy at the point right before the solenoid, so that they
would be focused the same amount and we could keep the quads symmetric. We match the β-functions by
adjusting the strength of the quads and the position of the third quad (B3). We then adjust the magnetic
field of the solenoid so that the magnitude of β at would be the same at the beginning and end of the
solenoid. The new parameters are shown here (the solenoid magnetic field is given in place of focal length):

quad center quad inv. focal
label pos. length length

cm mm m−1

B1 1.0 4 -362.0
B2 1.4 4 205.0
B3 2.1 4 -75.5

SOL 4.8 50.0 (0.2280 T)
C1 7.5 4 -75.5
C2 8.2 4 205.0
C3 8.6 4 -362.0
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The new parameters give us symmetric and reasonably-sized β-functions.

The transverse spin precession caused by the solenoid is

θs =
1

γ

e

me

B
Ls
v

=
1

2
1.759820 · 1011 · 0.2280

0.08

0.863 · 2.99 · 108

= 3.8 rad (1.2π)

2.2.1 Compare solenoid transfer matrices

To make sure that we understand how elegant was handling the solenoid, we calculate the elements of the
transfer matrix for a solenoid segment. The transfer matrix for a solenoid is:

Rsole =


C2 SC

K
SC S2

K

−KSC C2 −KS2 SC

−SC −S2

K
C2 SC

K

KS2 −SC −KSC C2

 ,

where S is sin(KL), C is cos(KL), and K = − B0

2Bρ
. We use B0 = 0.2280 T for the magnetic field of

the solenoid, L = 5 mm for the length of the solenoid segment (the total solenoid length is 5 cm), and
Bρ = 2.918 · 10−3 Tm for our beam. We get

K = −39.068

C = 0.9810

S = 0.1941

which makes the transfer matrix

Rsole =


0.9624 0.0049 −0.1904 −0.0010
−7.4390 0.9624 1.4719 −0.1904

0.1904 0.0010 0.9624 0.0049
−1.4719 0.1904 −7.4390 0.9624

 .

The “matrix output” section in the command (.ele) file contains the settings for what matrix information
to save.
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20 &matr ix output
21 pr in tout =”%s .mpr”
22 p r i n t ou t o rd e r = 1
23 i nd i v i dua l ma t r i c e s = 1
24 SDDS output=”%s .mat”
25 f u l l ma t r i x o n l y=0
26 &end

Setting “individual matrices” to 1 on line 23 tells elegant to save the transfer matrix for every single lattice
element instead of the full matrix only. The matrices are saved to “SG example.mpr” which is a text file
that can be opened and read without any special processing.

The solenoid transfer matrix given by elegant is

Relegant =


0.9632 0.0049 −0.1883 −0.0010
−7.2738 0.9632 1.4223 −0.1883

0.1883 0.0010 0.9632 0.0049
−1.4223 0.1883 −7.2738 0.9632

 ,

which closely agrees with Rsole — each element in Relegant is within 4% of the corresponding element in
Rsole.

We also investigated changing the strength of the solenoid magnetic field to get specific spin rotations.
This is detailed in appendix A.

3 Determine Stern-Gerlach deflection

The equation for the Stern-Gerlach displacement at a point j due to the displacement at a point i is

∆y,j = qy,i(1.93 · 10−13m)
√
βy,jβy,isin(ψy,j − ψy,i) .

The values of βy and ψy can be output for each of the longitudinal positions in the elegant simulation, so
we can calculate ∆y,j at any j. We evaluate the displacement at each quad and at the midpoint and end
of the beamline

∆y =

0.0 −1.3695 −5.1148 −7.6812 −2.3291 0.8013 2.7370 0.1530
0.0 0.0 1.5093 3.4493 1.8367 0.2551 −0.4538 −0.8952
0.0 0.0 0.0 −1.6267 −1.5810 −0.6762 −0.4867 1.1693
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 −0.5556 −1.0677 0.4852
0.0 0.0 0.0 0.0 0.0 0.0 0.7754 0.5523
0.0 0.0 0.0 0.0 0.0 0.0 0.0 −3.0699
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0


.

If we sum down the columns of the matrix, we get the total S-G displacement at each point j along the
line.
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A few things are noticeable in this plot. First, there isn’t much more that a pico-meter displacement at
any point along the beamline. Second, most of the displacement due to the first three quads is canceled
from solenoid and the last three quads. The fact that there is very little displacement is due to the fact
that there is very little phase advance along the line. The values for the sin(ψy,j − ψy,i) factor are very
small.
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The sine of the phase advance is very small even though the magnitude of the phase jumps by 2π radians
at the two points in the beamline where βy is at a minimum.
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The length that the phase advance is large is very short, but there are two regions where a larger sin(ψy)
exists.

The maximum magnitude of sin(ψy) in this plot is almost 10−2, which is about one order of magnitude
larger than the values we used to find the S-G displacement in the earlier plot.

To verify that the change in spin procession due to the solenoid contributes to the total displacement,
we calculate and plot ∆y,j for the beamline without any solenoid from section 2.1 and see that without a
solenoid, the last three quads do cancel the S-G displacement from the first three:
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A Solenoid matching investigation

Adding a solenoid to the drift space in the center of the beam line has a large focusing effect on the
β-functions in both x and y. We keep the solenoid the same length as the original design, 6 cm, and vary
the magnetic field strength to compare the effect on β.

The original design was to rotate the spin by π/2 to maximize the Stern-Gerlach total deflection. We
see in section 2.2 that the β-function isn’t symmetric without changing the strength and position of the
quads.

Next, we look at solenoid strengths that would rotate the spin by even-integer multiples of π. Using
the solenoid strength equation from section 2.2, for Ls = 6 cm, we get

B2π = 0.3090 T

B6π = 0.9270 T .

10



θ = 2π and Ls = 6 cm (B = 0.3090 T):

θ = 6π and Ls = 6 cm (B = 0.9270 T):

From the simulation, you can see β oscillate with the number of spin rotations. If we want to avoid β
going to zero in the solenoid, we need the spin rotation to be between zero and π. For θ = π/2, we want
a solenoid magnetic field of

Bπ/2 = 0.0772 T .

θ = π/2 and Ls = 6 cm (B = 0.0772 T):
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With θ < π, β doesn’t pass through zero, but it’s no longer symmetric. The quads can be adjusted to
make the β-functions symmetric as in section 2.2.

The solenoid-off transfer matrix through the central drift section is quite close to an identity matrix
(because the drift length is short compared to the beta functions). For special values of the solenoid
magnetic field there are values for which a cyclotron orbit completes exactly an integer number of turns.
For these field values the solenoid transfer matrix is approximately equal to an identity matrix also. So the
drift can be replaced by the solenoid and the discrepancies between their transfer matrices compensated
by minor retuning of the other lattice parameters.
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