January 28,2017

To the participants of the January 2017 USPAS class on LLRF Systems, Technology and
Applications to Particle Accelerators:

Greetings, and I thought that some of you would want to see the solutions to the class
problems. I hope this set of handwritten solutions is helpful. In general I think that most of
you who turned in the problems had the general idea of each problem, but here’s my brief
thinking.

We also have a short individual note for you on your final paper topic and presentation.

We want to thank everybody who participated, shared your experience and made this such
an interesting class for us.

Notes from Assignment #1

Problem #1, spectrum of a bunched beam - generally the issue is that the revolution of the
beam creates a sequence of lines 1.52 MHz apart - the finite bunch length has the line
spectrum falling off at roughly 1/bunch length, for 50 ps about 20 GHz. For the fully
populated ring, the line spacing is the RF frequency (500 MHz). The bunch length is the
same so the fall-off is at the same 20 GHz frequency.

For part (c) - the easy way to do this is graphically - the square wave modulation is a
product in the time domain, so convolve the spectrum from (b) with the square wave
components at the revolution frequency, 3X, 5X, 7X, etc. So sidebands at each RF harmonic
are created falling off with the harmonics. Jon Daniels also did this as a numeric problem in
matlab (attached) - but here you need a lot of data points because of the big ratio in time
intervals between the revolution period, the bunch spacing, and the short bunches. So
sometimes doing things analytically with a pencil isn’t such a bad thing.

for part d - while in principle you could deconvolve the beam current structure from the
observed spectrum, and exact knowledge of the fill pattern, it would be hard to figure out a
bucket number dependence ( the N dependence) if the fill had rotational symmatery. Even
if it had a defined gap, and you could say bucket 0 is alinged with the gap, it is a messy
inverse problem. using the time domain instrument ( like a scope) really helps. Note you
don’t need to have the full frequency response in the scope to cover all the beam spectrum.
If you can resolve the individual bunches, the relative amplitudes of the band-limited
signals still tells you the relative current population of each bunch.

Problem #2



The situation with modulations on a cavity, or both cavities, is best thought of by drawing a
vector diagram of the two cavity fields. ] made my own crude drawings for you.

for part a) - the two vectors just add up in a line, so the accelerating voltage is just twice the
voltage in each cavity. The beam has to find the voltage just equal to the energy loss/turn,
so if Vcav(t)= V_RFsin( omega_RF * t) you can find the beam phase with respect to the RF
with the inverse sin. set the voltage equal to the energy loss/turn. For the ALS, above
transition, this has to be the falling slope of the waveform. Don’t forget the 2*pi in
converting angular frequncy to Hz.

part b) If the voltage in 1 cavity is amplitude modulated, this raises and lowers the RF
votage at the modulation frquency. As sketched, the beam still needs to ride at the exact
voltage to make up the energy loss. This means the synchronous phase is modulated at the
modulation frequency, the beam just moves forward and back relative to the nominal
phase position. As long as the modulation frequency is well below the synchrotron
frequency, the beam just follws the modulation. But as the modulation gets close to the
synchrotron frequency, you wiull excite very large amplitude motion as you get near the
resonant frequency.

Noise on a klystron HV power supply can often excite this synchrotron motion at some
multiple of the line frequency, if it is a three phase supply at 360 Hz, the ripple on the
supply is at 720 Hz.

Looking at the beam signal off a BPM, you would see the phase modulation spectrum of the
beam, so sidebands at +/- n*omega_synchrotron. For small modulations, practically hard to
see many orders of n.

If one cavity had a phase modulation on it, the beam would also be moving to keep at the
synchronous voltage, so the BPM spectrum would also have the phase modulation on it.
Again, the effective RF voltage ( the vector sum) would change in amplitude as the two
cavities moved in phase against each other. So the synchronous phase of the beam moves,
too.

Part c) if you move one cavity in phase with respect to the other as a DC offset, the vector
sum is as sketched, so the total cavity voltage is now reduced. The beam still needs to make
up exactly the same voltage/ energy as case a). So it finds the position with respect to the
vector sum, and this gives a phase in each cavity with is unique relative to the RF waveform
phase. This means the two slopes in the beam crossings are different, so the synchrotron
frequency will be lower when the net vector sum cavity voltage is lower as is in this case c).
So by measuring the beam synchrotron frequency as you move a cavity phase relative to
another, maximizing the synchrotron frequency will bring the RF cavities into phase
alignment.



If you look at the cavity power delivered to the beam, by looking at the cavity regulated
voltage and the forward power, you could also align the cavity phases by finding the
relative phase where the two cavities had the same RF voltage magnitude and had the same
forward power ( assuming they were detuned the same amount).

Problem #3, P attenuator

Pozar did the “T”, (Example 4.4), so [ thought we should do a “PI”. To have the same input
and output impedance the PI section has symmetry. In general you can make either section,
though the values may be easier to implement in one or the other, or parasitics may be an
issue for very big resistor values, etc.

Problem #4, TDR responses

These are good to think through - the notes from Agilent are also attached to emphasize the
time constants for the capacitors in shunt. Note that the problem with an RC parallel
termination, and the C shunting another transmission line, are the same sort of problem.
That’s because a properly terminated transmission line looks resistive.

Problem #5 Pozar 6.16

This is illustrating a different sort of planar resonator. The essential issue is that when the
resonator circumference is some multiple of a wavelength, it is resonant. As we discussed
in class, you can couple to this inductively with a loop, or capacitively from an adjacent
transmission line. Picking the coupling strength is significant because it defines the
external Q.

The propagation velocity in this line depends on the effective dieletric constant, so once
you know the substrate thickness, and dielectric constant, you can calculate using the
transmission line dimensions to get the “effective” dielectric constant for the transmission
line. It is a little different than just the board, as some field leaks out into the free space
above the board. This is in Pozar if you want to look at the equations for estimating this.
Once you have the effective dielectric contrant, you have the velocity and the wavelength,
and knowing the circumference of a circle you have the resonant frequencies.

If you couple with a structure like a directional coupler, you could choose to excite modes
in either clockwise or counterclockwise propagation.. They would have identical
properties, same frequency, etc. If you had excitation of both modes, in some superposition,
I think you would create a standing wave pattern on the transmission line of the resonator,
just like for a 1/4 resonator with the forward and backward waves in it.

Problem #6) Pozar 6.1 (with second edition values)
Again, a straightforward illustration of the section on lumped element resonators. This is
really almost the same problem as Claudio assigned, his is specific to an accelerating cavity



with a beam - this simpler example helps to see how the internal losses in the resonator (
the internal Q) and the external losses from the resonator ( the external Q) together set the
system Q.

If anyone wants to discuss the class, offer ideas, etc. please do contact me by email
(jdfox@stanford.edu) or phone (650-926-2789). Thanks again for your participation and
humor. I also thank Ozhan Turgut for his help throughout the class, and Claudio Rivetta and
Themis Mastoridis for their lectures about stability, beams and various RF control system
approaches.

Sincerely,

John D. Fox
SLAC/Stanford Applied Physics

Figues and Notes for Problem #2 HW #1
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Jon Daniels (Jjon.daniels@stanford.edu)
solves the 1lst HW problem on HW #2 for USPAS June 2005
John Fox's class on RF engineering and signal processing

o0 de oe

close all;
clear all;

basic problem: have 500 MHz RF ring with 328 buckets

oe

% part a %%%%%%%%%%%% 5%%%%%5%%%%%%%%5%5%%5%%% 5%5%5%%%%%%5%%%%
% want to calculate spectrum of single bucket

timestep = 10e-12; % 10 ps timestep

freq = 500e6/328;

totaltime = 1/freq;

time = timestep:timestep:totaltime;

sigma = 50e-12; % sigma of gaussian pulse

center = 300e-12; % arbitrary choice for center time of pusle
centerarray = [center];

% create signal with gaussian
signal = exp(-(time-center).”2/2/sigma"2);

make 10 copies of the signal

by making more copies we increase the frequency resolution

with only one copy then FFT looks like Gaussian

with 10 copies, the Gaussian envelope will be every 10th point,
and other points between will be zero, and so forth

signal?2 = repmat{signal, 1, 10);

dC e I d° e

% compute the FFT based on my helpful function to clean things up
[freqgs, f] = myfft(timestep, signall);

% now plot results

figure(l);

subplot(2,1,1);plot(fregs, £f);

title ('frequency spectrum of single pulse');

xlabel ('Frequency');

ylabel ('Magnitude (arbitrary units)');
subplot(2,1,2);plot(fregs(1:50), £(1:50));

title('spectrum of single pulse, zoomed in on first part');
xlabel ('Frequency');

ylabel ("Magnitude (arbitrary units)');

o3

want to calculate spectrum of all buckets filled

basically just like part a except frequency of period changes
timestep = 10e-12; % 10 ps timestep
freq = 500e6; % note that this time don't divide by # buckets
totaltime = 1/freq;
time = timestep:timestep:totaltime;

e d° e
=
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sigma = 50e-12; % sigma of gaussian pulse
center = 300e-12; % arbitrary choice for center time of pusle
centerarray = [center];

signal = exp(-(time-center).”2/2/sigma"2);

signal2 = repmat(signal, 1, 10);

[fregs, f] = myfft(timestep, signal2);

figure(2);

subplot(2,1,1);plot(freqgs, f);

title('frequency spectrum of all buckets filled');
xlabel ('Frequency');

ylabel ('Magnitude (arbitrary units)');
subplot(2,1,2);plot (freqgs(1:100), £(1:100));
title('spectrum of all buckets filled, zoomed in on first part');
xlabel ('Frequency');

ylabel ('Magnitude (arbitrary units)');

part C 3333355353355 %%3%53066600005080680700

want to calculate spectrum of ha buckets filled to 0.9,
second half filled to 1.1

timestep = 10e-12; % 10 ps timestep

freq = 500e6;

totaltime = 1/freq;

time = timestep:timestep:totaltime;

sigma = 50e-12; % sigma of gaussian pulse

center = 300e-12; % arbitrary choice for center time of pusle

centerarray = [center];

—
h

o0 de ode

signal = exp(-(time-center).”2/2/sigma"2);

make signal now by réplicating 164 times scaled by 0.9,
then replicating 164 times scaled by 1.1
signal2 = [repmat(0.9*signal, 1, 164), repmat(l.l*signal, 1, 164)];
signal? repmat (signal2, 1, 10);
[fregs, f] = myfft(timestep, signall);

oe  ae

% now plot results

figure(3);

subplot(2,1,1) ;plot(fregs, f);

title('frequency spectrum of all buckets filled');

xlabel ('Frequency');

ylabel ('Magnitude (arbitrary units)');
subplot(2,1,2);plot(freqs(1:100), £(1:100));

title('spectrum of all buckets filled, zoomed in on first part');
xlabel ('Frequency');

yvlabel ('Magnitude (arbitrary units)');
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Jon Daniels {(jon.daniels@stanford.edu)
returns a "nice" FFT of a real-valued input signal along with the
the corresponding frequency scale
since the input data is real (assumed), the FFT is conjuate symmetric

0 e o° oP

function [fregs, result] = myfft(timestep, array)
% compute the FFT, shifted and normalized
a = fftshift(fft(array))/length(array);
% now DC component is in center
cen = floor(length(a)/2)+1;
neg = a(cen-1:-1:1);
pos a(centl:1:end);
$ if even number of terms, pad the positive matrix
% I'm not sure if correct to pad with 0 or conj of negative value
if length(pos) < length(neg)
pos = [pos, conj(neg(end))];

i

end

result = abs([a(cen)*2, pos+conj(neg)]);

% now compute the freqg vector

spacing = 1/ (timestep*length(array));

fregs = 0:spacing:spacing* (length(result)-1);
end
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Fraunes
Figues and Notes for Problem #2 HW #1
USPAS 2017

J. Fox

Case a) Two cavities in phase

Consider the effective cavity voltage
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Part b) If the RF Cavity has amplitude modulation ( say 5% at 720 Hz) - one vector gets
longer and shorter with time. The resulting vector sum of cavity voltage is an amplitude

- ’ 7 v R & o/ ”};i
"D 2 @ .«—,f ) £ e

o by AT

The beam still needs to be at the right synchronous voltage, 92 keV, so the beam
undergoes a phase modulation at the 720 Hz modulation frequency. The bigger the
amplitude modulation, the bigger the phase modulation and shift of synchronous phase at
the modulation frequency.




If a cavity is Phase Modulated, think of the vector sum and note the total RF voltage is
now also modulated in amplitude and phase.
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Case c)

Two cavities, but phased differently, so the RF vector sum of the two cavity fields is like
this:

Note that / v/ / e /Viy{ e /L/Z j

L

So the effective voltage in the RF system is now less than the perfectly phased cavities.
The beam still needs the same EO, 92 keV, so it moves to find a new phase position higher
up on the accelerating waveform ( the total voltage is now lower)
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-t R-Zo
0 ez, B
Shunt
R-C
E

[(HR Zo t/'c:]

Shunt { JE;
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Figure 8. Oscilloscope displays for complex Zy,.
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Going to an equivalent circuit (Figure 13) valid at t = 0™,

> O

=Gt
Yin=G'+ ol

_ Figure 13. A simple model valid at t = 0" for a line with shunt losses

A qualitative interpretation of why e;,(t) behaves as it does is quite
simple in both these cases. For series losses, the line looks more
and more like an open circuit as time goes on because the voltage
wave traveling down the line accumulates more and more series
resistance to force current through. In the case of shunt losses, the
input eventually looks like a short circuit because the current
traveling down the line sees more and more accumulated shunt
conductance to develop voltage across.

Multiple One of the advantages of TDR is its ability to handle cases involving
Discontinuities  more than one discontinuity. An example of this is Figure 14.

P
— 92
o O — O
Z Zo
o— ——o0—| 0
-
Lot lo#Z) Py Lo-Zy
172012, 1
_ZL—Z'Q
Py 21+ 2

Figure 14. Cables with multiple discontinuities

The oscilloscope’s display for this situation would be similar to the
diagram in Figure 15 (drawn for the case where <2y Xy

v :
L3 ] R

Ej ? ?
_L Zo>Zo<Zi

Figure 15. Accuracy decreases as you look further down a line with multiple
discontinuities
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It is seen that the two mismatches produce reflections that can be
analyzed separately. The mismatch at the junction of the two
transmission lines generates a reflected wave, E, 1, where

Zo—17
Ef =p; Bj=(Z2—2)Ej
Lo+Zy
Similarly, the mismatch at the load also creates a reflection due to
its reflection coefficient

,-7Z,
P2= ——1—
L+ 7,
Two things must be considered before the apparent reflection from
Z;, as shown on the oscilloscope, is used to determine p2. First,
the voltage step incident on Z, is (1 + p}) Ej, not merely E;. Second,
the reflection from the load is

[p2(1+pDEj]=Ep

but this is not equal to Erz since a re-reflection occurs at the

mismatched junction of the two transmission lines. The wave that
returns to the monitoring point is

Ep,=(Q+p10Ep =@ +p) P2+ Ej]
Since py’ = -pyq, Ey, may be re-written as:
Er, Ery=lp, (1-p,2) IEi
The part of ErL reflected from the junction of

ErL Zyand Z, (e, py’ ErL)

is again reflected off the load and heads back to the monitoring
point only to be partially reflected at the junction of Zy and Z,.

This continues indefinitely, but after some time the magnitude of the

reflections approaches zero.

In conclusion, this application note has described the fundamental
theory behind time domain reflectometry. Also covered were some
more practical aspects of TDR, such as reflection analysis and
oscilloscope displays of basic loads. This content should provide a
strong foundation for the TDR neophyte, as well as a good brush-up
tutorial for the more experienced TDR user.
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