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Kurzfassung

Das Deutsche Elektronen Synchrotron wird durch den Bau desp&ischen Rontgenlasers
XFEL eine Rontgenquelle besitzen, die intensive, ultrakumonochromatische und koharente
Pulse fur die Materialforschung bereitstellt. Zur Erzeng der Rontgenblitze werden Elektro-
nenpakete mittels eines Hochfrequenzfeldes in supratiete Hohlraumresonatoren auf Ener-
gien bis zu 15 GeV beschleunigt. Die digitale Regelung dieser Feldemidesehr hoher
Qualitat, um die physikalischen Prozesse der Photon@mngeon zu ermoglichen. Mit FLASH
verfugt das DESY uber eine Pilotanlage, welche es bereitsertigstellung des XFEL erlaubt,
den Grol3teil der benotigten Komponenten zu entwickelnauniésten. Die gegenwartige Feld-
regelung, basierend auf einer proportionalen Ruckiiigpin Kombination mit einer konstanten
Vorsteuerung, kann die hohen Anforderungen fur den XFEhterreichen.

Im Rahmen dieser Arbeit wird gezeigt, dass mit einem moedsi#sten Reglerentwurf die not-
wendigen Anforderungen an die Feldregelung erfullt werddierfur wird zunachst ein linea-
res zeitinvariantes "Black Box Modell’des Systems erstalelches die wesentlichen dynami-
schen Vorgange charakterisiert. Dieses Modell basietitrauf physikalischen Annahmen, es
charakterisiert ausschlieRlich d&pertragungsverhalten des Systems. Die Beschleunigungs-
module werden in einem gepulsten Modus betrieben, indeneifuifinites Zeitintervall das
Hochfrequenzfeld konstant gehalten wird. Weiterhin sadl \dariation der Felder Gber viele
Pulse moglichst klein sein. Der Charakter der auftretan8trgroRen und die Eigenschaf-
ten des Systems erfordern die Kombination aus geregeltestadeerung und Ruckkopplung.
In der Regel nicht vorhersehbare, niederfrequente Variati von Puls zu Puls werden mittels
einer Ausgangsruckfihrung unterdriickt. Die Struktes émplementierten, komplexen Mehr-
grol3enreglers ist dabei vorgegeben, sodass der modetigaBntwurf sich auf die Bestim-
mung der einzelnen Reglerparameter beschrankt. Die inmdelernen Regelungstechnik oft
angewandte Methode dek, loop shapingermoglicht es, die Menge an nicht mehr manuell zu
bestimmenden Parametern zu ermitteln. Storungen inlieeeli@es Pulses hingegen sind auf-
grund der kurzen Pulsdauer als hochfrequent anzuseheko@men durch die geringe Band-
breite des Systems mit einer Ruickkopplung allein nichte&iasend minimiert werden. Hierbei
handelt es sich Uiberwiegend um repetitive Einflisse, wresirahlinduzierten Feldabfall. Ite-
rativ lernende Algorithmen erlauben es, die Vorsteuerwatgrdyehend zu adaptieren, dass auch
wiederkehrende Storeinflisse kompensiert werden. Dralioation beider Konzepte und die
damit erreichten Grenzen der Regelgute bilden die wasbatl Ergebnisse dieser Arbeit.

Die gezeigten Ergebnisse stammen aus Messungen an FLASKHamaonstrieren damit die
Moglichkeit der permanenten Verwendung dieses Reglaty@id des laufenden Beschleuni-
gerbetriebes als auch des spateren Einsatzes am XFEL. &ilakibilitat und die Vorteile
eines modellbasierten Entwurfs zu zeigen, sind zustiessergebnisse von weiteren Be-
schleunigersystemen ausgewertet wordiserlegungen bezuglich der Integration strahlbasier-
ter Informationen zeigen, dass auf dem Weg zu einer optimfedédregelung mit dieser Arbeit
die Grundlagen geschaffen sind.



Abstract

The European XFEL is being constructed at Beutsche Elektronen Synchrotr@ESY to
generate intense, ultrashort pulses of highly coherentnambchromatic X-Rays for material
science research. X-ray flashes are generated by acasdpedgctron bunches within supercon-
ducting cavities with radio frequency (RF) fields to enesgip to 175 GeV. The digital control
of these fields requires extremely high quality in order toi@ee the physical processes of pho-
ton generation. DESY offers with FLASH a pilot test facijigflowing to test and develop most
necessary components, even before the XFEL is conducteder@dield control is based on a
proportional feedback controller in addition to a constertforward drive, which do not meet
the high requirements of the XFEL.

This thesis shows that a model based controller design ¢aenvecthe necessary field regulation
requirements. A linear, time invariant "black box modelestimated, which characterizes the
essential dynamic behavior. This model is not based on palyassumptions, but describes ex-
clusively the transfer behavior of the plant. The accelenatnodules are operated in a pulsed
mode, in which the RF field must be kept constant for a finitegoer The character of the
disturbances and variations from pulse-to-pulse, togetita the properties of the system, re-
quire a combination of controlled feedforward drive anddfegck. Generally unpredictable,
low frequency pulse-to-pulse variations are suppresseatidyeedback controller. The struc-
tural design of the complex multivariable feedback cotgrois given, which constrains the
model based design approach to assign the controller pteesyanly. Estimation of the pa-
rameters, which can not be tuned manually, is done by theadeifH., loop shapingvhich is
often applied in modern control theory. However, distudsswithin a pulse are in a high fre-
guency range concerning the short pulse duration. Theyarsufficiently suppressed by the
feedback controller alone, due to the small bandwidth ofstfgtem. These are mainly repet-
itive effects like the beam induced field transient decagralive learning control techniques
allow adaptation of the feedforward drive such that repetitlisturbances are compensated.
The combination of both controllers and the achieved limiteegulation represent the central
results of this work.

The results presented are from measurements done at FLASlddemonstrate the possibility
of permanent implementation of these controllers for theelsrator operation as well as for
later application at XFEL. To show the flexibility and advages of the model based controller
design, additional measurement results are given fronr atteelerator systems. Considera-
tions for integrating beam based information show that wosk forms the basis for optimal
field control.
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Chapter 1

Introduction

A current field of research in particle accelerator physies-aeeElectronL asers (FEL), which
produce laser radiation with tunable wavelength. In cattt@ FELs, conventional laser light
sources have a fixed frequency spectrum due to the specifigydiegels within the atom struc-
ture. The FEL process demands very dense electron bundtines,lengitudinal or transversal.
The transverse dimensions of the electron bunches haveitothe order of the desired FEL
wavelength, while peak current after bunch compressior hmexceed 50 A (infrared) or even
5 KA (X-ray), which determines the longitudinal dimensidrhe typical charge of an electron
bunch is in the range of 1 nC.

For many research activities a light source that is able $olve objects on an atomic level
would be favorable, e.g., in molecular biology. WavelesgihX-ray radiation are in the range
of the diameter of an atom (16° m) such that X-ray radiation is suitable for the desired expe
iments. However, conventional X-ray sources cannot pe¥eray pulses with a sufficiently
short pulse length. This has the effect that e.g., singlmblecules are destroyed by the high
energy of the radiation. Moreover, the resolution of comnerally produced X-ray radiation is
limited by the broadness of its spectrum. Therefore, lagét Is used for a variety of exper-
iments because it can be better focused compared to othesbgrces, it is monochromatic,
and very short pulses can be produced, [1], [2]. At the GerElantron Synchrotron (DESY)
in Hamburg the X-ray Free Electron Laser research projedLXis conducted. The goal of
the project is to build a Free Electron Laser operating inXhay wavelength range by the
year 2014, [3]. A prototype test facility for the XFEL has bes#eveloped over the last years
with theFreeElectronLaser Hamburg FLASH. This accelerator was basically a project ef th
TESLA collaboration which developed the superconducticgeeration technology at DESY.
Within the years the accelerator was consistently extebgedeans of additional modules, and
finally with the undulator development expanded to a usért kgurce. With a higher number
of modules the increased energy of the particles leads ttestvaavelengths down to 6 nm. The
generation of light from the accelerated particles is a wenyplex physical process which is
very simplified introduced . The electrons are forced toowlh slalom course in so-calleoh-
dulators e.g., an arrangement of dipole magnets, leading to the gime of laser light through
Self Amplified Spontaneougmission (SASE) with extremely high intensity and qualitynA
plification of the radiation is exponential, since concated bunches of N electrons do not emit
N times the radiation of an electron, N, [2]. This process is driven by an electron beam
demanding an extremely constant energy provided by theclgaaiccelerator. The acceleration
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CHAPTER 1. INTRODUCTION

is based on electromagnetic radio frequency (RF) fieldschvimust be stabilized to a high de-
gree of precision. Achieving high amplitude and phase precito ensure small variations on
the RF field is important in order to accelerate electronttsistent energy. There is partic-
ularly for the so-called injector linac, which is the aceater subsystem in front of the bunch
compressing section. Beam energy variation here leadsitalatime jitter of the bunch, which
has to be avoided. The requirements on the RF field regulatederived from the necessary
compression properties, [2].

e The field amplitude must be within@1% (rms) of the reference value.

e The field phase must not differ from the reference value byenttoain 001° (rms).

Future experimental conditions may require even more ddingrtontrol objectives. A digital
RF field control system is used to provide reference trackimgy disturbance rejection. Due
to limitations regarding the cryogenic system, respomesibf maintain superconductivity, the
accelerator is operated in a pulsed mode. The RF fields argghrdo the requested level,
before the electron bunches arrive and subsequently tuhadain.

Prior to this project, RF fields where controlled by a decdied proportional controller aided
by a pre-determined feedforward drive only. This work déss controller enhancements that
complement on-going hardware development. To find a sufficgentrol concept the knowl-
edge about the underlying plant is essential, gained bgsystentification. Therefore the basic
task of this work is defined as:

e Application of a model-based controller design methodrégulation of RF accelerating
fields in superconducting cavities.

To achieve this, the system information must be generatethcel estimated, and the required
controllers have to be designed. This work can be consideredtwo perspectives: the control
theory objectives, and real plant implementation. The r@abtieory objectives can be summa-
rized as follows:

1. Develop an appropriate model of the system applying stahdubspace identification
methods for linear time invariant systems, using inpugatidata only, i.e. black box
model.

2. Estimate the feedback controller parameters which irgotlee closed-loop field regula-
tion compared to the proportional controller used so far.

3. Apply an iterative learning controller that operatessptio-pulse on the feedforward
drive.

4. Run both controller types together to combine the adggstaf individual controllers to
achieve improvements on the field regulation and supprestitiee disturbances.

Black box models, which are widely used in engineering aezlue describe the system dy-

namics, rather than white box models with physical paramadteat are standard in particle
physics. A sufficiently accurate estimated open-loop motigie system is necessary to design

2



CHAPTER 1. INTRODUCTION

a controller that meets the required closed-loop objestivihe disturbance characteristics in
this system demand a combined controller concept compdsitigfeedback and feedforward
controllers.

As an upgrade of the current feedback controller a mulide higher-order controller is de-
signed usingH. loop shaping methods, [40], [41]. The narrow bandwidth & $ystem and
the limited available power leads to constraints on the maxn disturbance rejection. Fast
transients, which are introduced by the particle beam dammoonsequently suppressed by the
feedback controller alone.

Fortunately they are predictable and repeatable from ofsea the next, such that an iter-
ative learning controller can be used to optimize the femddod signal. This pulse-to-pulse
adaptation concept is widely used in repetitive controlsk, e.g., robots and automation
lines, [49], [63].

As has been introduced previously, the plant is a user fiasithich has various objectives
beside the control theory. The machine operators perspeaati the controller implementation
can be summarized by the following questions.

1. How can the estimated controllers be implemented on ttehima?
2. Do these concepts influence the reliability and opetstwfi this machine?

3. What are the time costs to have this model-based apprdgehthe improvements on the
field regulation sufficient to justify the higher complexaf/this controller?

4. Does an improvement of the field regulation show furthegoromements on the beam
performance?

The controller needs to be "aware” of this objectives esglcsince the cavities need to be
operated close to physical limits in order to fulfill the regments of the machine. Both,
control theory and implementation perspective are constlen the following whereas the
machine operation demands higher priority due to the agiptioc character of this work.

The contribution of this work is a tested and reliable prazedo a model based controller
design, which achieves the previously defined requirenfentae RF field control. The model
of the plant is estimated using a fixed procedure of data aitoui, processing and model
validation. The dynamics of the most important disturbarees classified and distinguished
according to the possible suppression strategy. Unpeddeetdisturbances can be addressed
by the output feedback controller, whereas repetitive feeddursions are ideally suppressed
by feedforward adaptations. A mixed sensitivity design anditerative learning controller
are implemented and tested respectively. Measuremertighvdtelectron beam are presented,
showing that ideal field regulation does not necessary irbpst beam conditions, which is
finally the control objective.

In this case often the notation beam and field stability isluseeaning invariance of properties
like amplitude or energy, whereas from a control perspedigystem is either stable or unsta-
ble. Restrictions due to hardware realization boundaresaken into account. The combined
application has been tested and technical expertise isd=yed for permanent application. To
show the applicability of this model based approach, tes@ifferent accelerator systems have
been made. The controller design method can be used eveativéhsystems if a model can be

3



CHAPTER 1. INTRODUCTION

found, and the application provides necessary testingitons. Finally a concept is presented
which will be used for the permanent application on the réah{p

This thesis is organized as follows. In Chapter 2 the RF obsiystem is explained, briefly
introducing the corresponding subsystems and focusindgy@specifics of the field measure-
ments and according to the digitalization process. Theidiances influencing the field to be
controlled are classified to the regulation concepts to Ipdegh Existing models as well as the
black-box system identification approach are discussedaptr 3. The steps for estimating
a system model specially for this plant from measured daademcussed. In Chapter 4 the
estimated models are used to design the feedback contitgee the concept of the parameter
estimation methods is discussed and the best field regula¢idormance achieved with th&,
loop shaping design method is illustrated. In Chapter 5 tiveiple of iterative learning con-
trol for pulse-to-pulse compensation of repetitive disaurces like beam-loading is introduced.
Also described is the integration of feedback and feedfaiveantrollers for simultaneously
compensating beam-loading effects and suppressing unfaelé disturbances. Finally the
implementation for routine user operation is discussedhager 6. Further ideas about the en-
hancement of the model-based design method are presemtledling beam information which
are expected to give improvements of the achievable fieldbaadh performance.



Chapter 2
RF control at FLASH

The Free ElectrorLaser in Hamburg (FLASH) at DESY is an accelerator facility which pro-
vides to users a brilliant laser light in the range of theauitiolet spectrum. Furthermore the
planned XFEL will be equipped with the technology developeBLASH. This marks FLASH
as a prototype test facility, a main advantage for the rebeactivities. Typical FEL users are
interdisciplinary scientist in biology, chemistry and m@&l science. The continuing enhance-
ments of this machine, allow its users to have best expetaheonditions. An overview of the
facility can be seen in Fig. 2.1.

RF gun Diagnostics Accelerating Structures
_]-IA?I-[-_
: Bunch
Laser Compressor Compressor
5MeV 127 MeV 370 MeV 700 MeV Bypass

B 250 m .

Figure 2.1. Schematic view of the FLASH facility with the maiomponents of the injector,
accelerating structures, and the undulator section, [5]

Free electrons are generated in the RF gun. A pulsed lasecusded on a cathode that emits
the particles by means of the photo effect with a defined rgpetate. These bunches are
accelerated by a.4 - cell normal conducting cavity to an energy of about 5 MeNe Tirst su-
perconducting acceleration mod#€C1lincreases the energy to 127 MeV by electromagnetic
field gradients of 12- 24 MV/m. Next the bunch compressor reduces the longitudipate of
the electron bunch to increase the peak current of the bymth 215 kA. After this modulation
the electrons are further accelerated to approximately\L Gleis series of acceleration mod-
ules is intersperced by different kinds of magnets for deflacand focussing of the electron
beam. Further measurement devices such as cameras altedifstadiagnose purpose. Finally
the undulators, which are essentially a gallery of cascattechating dipoles, force the electron
beam to oscillate transversally, causing then to emit ptswa synchrotron radiation. This re-
sults in a pulsed laser of variable wavelength, the lattpedding on the electron beam energy,
and may be as low as 7 nm. This laser light is transferred toske experiments, whereas the
residual electron beam is dumped after isolation.

5



2.1. LLRF-SYSTEM CHAPTER 2. RF CONTROL AT FLASH

In the following, only the first cryomodulACC1land its associated control system are consid-
ered. Nevertheless, the introduced concepts can also liecdppthe other modules and even
for other control systems, as will be shown later in this ihe$he measurements were made
at ACC1 because at the beginning of the work only this moduale gquipped with the digital
control system. Further, the location before the first burawhpressor has advantages in terms
of measurement possibilities which are discussed latérisrchapter.

The LLRF-System is introduced in Sec. 2.1, including dggimmns of the configuration of the
energy transport, field detection, and data processingrsyssed for field regulation in FLASH.
The main sources of disturbances are discussed in Sech@.i2fluence on the field regulation
described, and they are classified with respect to the cosapien concept. Lastly in this
chapter the existing models are discussed in Sec. 2.3 befwoelucing the novel modeling
procedure in the next chapter.

2.1 LLRF-System

TheLow LevelRadioFrequency (LLRF) system is responsible for regulation ofabeelerat-
ing field in the cavities used for a particle accelerator.sTihcludes the generation of control
signals, timing and synchronization, signal acquisitiod digital signal processing. The ideal
operation scenario is for the machine operator to set theediescceleration parameters such as
energy gain, and the LLRF system then provides the correspgcceleration field inside the
cavities with best achievable accuracy. This demands oorieenand a reliable and suitable
control performance and on the other hand a very precise@nglex hardware for signal and
data transportation and processing. The structure of threrttly implemented LLRF control
system is shown in Fig. 2.2.

The LLRF system can be divided into analog and digital sesti@s indicated in the figure.
From the control point of view, the analog part is the planbéocontrolled, while the digital
part includes the controller and the corresponding dataisaitipn system. The basis of this
work is with the controller.

Specific components of the plant will be introduced laterhiis section, but first the digital
signals presented in the figure are defined:

e Output signalsy;, yo: Measured sum of the RF field voltage vectors of the eight iesvit
o Reference signals), rq: Reference signals

e Control error signals €, eqg: Deviations of the measured output signals from the refer-
ence signals

e Control signalsu |, Uc,g: Controller output signals
o Feedforward signalsf, fo: Open-loop control signals

e Input signals u;, ug: Control signals of the digital control system which are agpto
the vector modulator
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Vector
Master ~ modulator Klystron

illat
oscIRglor Waveguide
@_' = = cryomodule

1.3 GHz

1.3GHz LO
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+ 250 kHz

( u, FPGA System

Vi Yo

Feedforward
S Uy Q € i
X)e X

Figure 2.2: Schematic view of the current LLRF control sgstd he different subsystems are
described in the following text, while an overview of the toh signals is given in the list
below.

The signals are defined in term of the régin-phase) and imaginar® (quadrature) part of
the field vector. Rather than of controlling amplitude andg#) the controller processes the
decoupled components of | and Q. A typical pattern of theagm open-loop operation can
be found in Fig. 2.3.

This single pulse repeats at a 5Hz rate. The pulse is dividedlifferent phases in time which
will be discussed in the following section.

2.1.1 Pulsed operation mode

The accelerating modules (cavities) are made from a niokillmy, which is a superconductor
at liquid helium temperatures. Even at these temperathmsgever, power is still dissipated
and the thermal losses must be removed by the cooling systenrder to keep the cavities
superconducting. The dissipated power depends on thesaatieh field and the quality factor
of the cavity. The cryogenic system is not able to sustainttieemal losses in continuous
(CW) operation, which forces the system to be operated inlsedunode. The field inside
the accelerator cavities has to be kept constant once the@edgmplitude for the appropriate
energy gain of the electrons has been reached at the end sd-tteledfilling phase During
the flat top phasehe electron beam is injected into the accelerator. Wherelietron beam
has passed, the RF field is turned off and the field amplitudaydeuntil the next pulse starts.
This duty cycle reduces the dissipated power to a level thaithin the cooling capacity of the

7
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4 Open Loop measurement

Ala.u]

0 500 1000 1500 2000
t[ps]

Figure 2.3: Open-loop response to usual feedforward ssgigalen in thel ,Q representation
used for data processing inside the controller

cryogenic system. The typical shape of the pulsed mode isrshoFig. 2.4.

ield
Fie bunch spacing

gradient
[Nﬁf/m] —
01-1s
Filling Flattop Decay -

25T

Beam Beam

; /L.
500 1300 2048

t [u;]

Figure 2.4: RF pulses in superconducting cavities, defithegperiod of beam acceleration

This figure shows the amplitude of the desired envelope oRthéeld for two consecutive RF
pulses as a function of time. The resonance frequency ofahéies isfy = 1.3 GHz, but the
envelope of the RF is sufficient for field control since fieldwobes are much slower than the
resonance oscillations, [9].

In this work several frequency notations are used for dpson of ranges of interest. Therefore,
in the following table an overview about the different tinwations used is given:

8



CHAPTER 2. RF CONTROL AT FLASH 2.1. LLRF-SYSTEM

notation frequency range description

bunch-to-bunch @ -3 MHz repetition frequency between two subsequent
bunches which depends on experimental set-

tings
intra-pulse 1 MHz the RF sampling frequency which determine
the time between two sampling instants
pulse-to-pulse 1+ 10Hz repetition frequency of two subsequent pulses,
mainly important for changes in control tables
long-term <0.1Hz drifts due to environmental changes such as

temperature or mechanical oscillations

The time variations are derived from different operationdemto be set by the user. For ex-
ample, the bunch-to-bunch frequency is often changed baséue needs of each user experi-
ment. For the normal operation, the filling phase is usua&tys = 500us and the flat top time

t <800us depending on the number of bunches to be accelerated &ithitse. The maximum
number of bunches is 2400 assuming a bunch repetition r&éviHz.

Having summarized the digital signals in the LLRF systera,lihsic analog subsystems of the
LLRF station are explained in the following section.

2.1.2 Drive signal chain

The digital signals generated by the control system areerten to analog signals iDigital
AnalogConverters (DAC). In the chain, the control signals are afigoliand transferred to the
cavity. Therefore, the real and imaginary field vectarandug have to modulate the cavity
resonance frequency of3lGHz, using a vector modulator. The demanded referencadray

is generated in the so-called master oscillator, providurther signals synchronized to this
reference. Details are omitted here but can be found in [Bis Pprocessed RF signal must be
amplified to drive the system with the demanded power nepessaccelerate the beam. Two
preamplifiers and one so-called klystron generates thisepamplification, and a waveguide
system distributes the RF power to the cavity couplers. Esecifunctionality of both systems
is introduced in the following.

Klystron and waveguide system

A klystron is a large amplifier often used in radio frequenpplacations where high-frequency
power signals are demanded, like radar system or accelerdtioe basic principle is to convert
a DC electron beam into RF power by bunching processes. Tdug@n beam is generated in
a cathode and accelerated by high voltage electrodes. Qudrsty the electron beam passes
through a cavity which is driven by a high-frequency fieldislélectromagnetic field introduces
an energy profile on the electron beam, such that some abscén@ accelerated and others
are decelerated depending on the field direction. This leaddferent traveling times of the
electrons and subsequently a bunching process (densitylatmoh). These bunches induce
electromagnetic fields in a second resonator, which can lyeled out.

Currently the considered system to be controlled, consfsdscavities which will be increased
to 32 cavities controlled by one high power klystron onlyefdfore operations close to power
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limits cannot be neglected, which is aligned with saturagffects and nonlinear behavior. In
measurements presented here, the 8 cavity control doegandt this levels and input/output
power linearity can be assumed. The bandwidth of the kipaised is about 6 MHz, which is

sufficiently large for this application.

The output power is distributed to the cavities in wavegsjdehich is a power transmission
line to carry almost lossless electromagnetic waves ealbpedn the microwave and optical

frequency range. Finally the RF power is coupled to the m/lty coaxial couplers, which are
a very sensitive part in this chain. It is possible to inflleetite wave propagation by a tuning
mechanism that the amplitude and phase of the incoming Wdvs.is necessary to adjust the
matching between the waveguide and the cavities insiderjloenodule.

2.1.3 Cryomodule

The cavities are housed in cryomodules, along with and vameeasurement and supply equip-
ment such as field probes, piezo sensors and motor tunersmaimepurpose of this module
is to carry several temperature layers including cryogsofply pipes isolating the supercon-
ducting cavity from the environment. The type of cryomoduyige used for FLASH is about
12 meters long and hosts 8 cavities enclosed by liquid helium

Cavity

The cavities are superconducting electromagnetic resmabmposed oNiobium material,
which has the physical properties to conduct almost losgiegh currents at temperatures of
about 2 K. These currents are generated by the high eleagrwetia fields inside the cavities
used for particle acceleration. Due to superconductivigydavity has a high quality fact@
defined as:

Q= Zﬂfoﬂ , (2.1)
Paiss
whereW is the stored energy ari@}iss the dissipated power. The quality factor is very high in
a superconducting resonator, e.g. approximafety 10 for Tesla type cavities. The vacuum
inside the cavities minimizes collisions between the are¢td particles and residual atoms.
One resonators consist of nine cells of special geometrg@srsin Fig. 2.5, [7].

. HOM coupler
pick up flange
flange

||
HOM coupler | |
flange 115.4 mm power coupler

(rotated by 65) flange
1061 mm

1276 mm

Figure 2.5: View of a 9 cell tesla type cavity with coupler$ [7
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Each cavity hosts 9 fundamental modes having electrical ¥iettors in direction of the cavity
axis. The so-calledr-mode is excited by the resonance frequencygf 1.3 GHz, whereas
all other modes are unwanted. Energy from the klystron ipggating from the power coupler
through the weakly coupled cells, creating a standing elatignetic wave in this structure.
Slight changes of the geometry have significant effects enrélsonance frequency. This is
exploited in the frequency tuning process where steppeorsatre used to distort the cavity.
The r-mode is of special interest, with respect to the electfieddl component on axis. The
field amplitude of this mode is equal in all cells, but has thpasite sign from one subsequent
cell to the next, [8]. On the cavity axis it is observed as & simve with a period of 2 cells
with the maximum amplitude in the center of each cell in thegitudinal direction. For beam
acceleration, this provides a field gradient in directiortrahsition when the particles enter
the first cell. As the beam travels to the next cell, the eleékeld direction reverses, and the
particles are accelerated in that cell. This pattern ih&rrtepeated over the full cavity length.
Wave propagation and the relativistic electron velogity ¢ are balanced which is important
for a constant acceleration.

Beam operation

The electrons being accelerated are relativistic, so tbee@se in their velocity is negligible,
already being close to the speed of light. The energy consampowever is significant. This
energy gain is provided in the real part of the complex fielctoe given as:

Vacc(t) = Veav: COPpp = Veay: COS wip) (2.2)

with the beam phasé, with respect to the phase of the cavity field vedgy, [9]. On crest
operation is determined when the beam passes the cell dhertgne the electric field has its
maximum amplitude, whereas off-crest operation is donatteduce an energy profile along
the bunch which is necessary for the bunch compression guoeeln this case the beam phase
deviates from the field phase by about 30 degrees. Thinking about a sine wave, the beam
traverses the cell not when the field is at its maximum, buherrising edge. The bunches pass
trough the bunch compressor, which is a chicane in the bepengoimprising a series of dipole
magnets, that reduces the longitudinal dimension of thetrele bunch. An energy profile over
the bunch leads to variable deflections in the dipole magmetsorresponding traveling paths.
All particles in the bunch have the same velocity, which fine¢sults by the different traveling
time to compression. This system is very susceptible toggnariations which translate to an
unwanted arrival-time jitter. Requirements for the fielgukation performance are derived from
the arrival-time stability requirements given by the maehusers. How to accurately provide
the demanded RF field is discussed in the following.

2.1.4 Field detection and processing

For appropriate field regulation it is first necessary to meashe actual field in the cavity,
which is done directly by field probes at the edge of the lalitaseit can be seen in Fig. 2.5
(pick up). For data processing, the analog signals have toabsmitted over long distances
from the accelerator tunnel to the computation devicess Takes the RF signals susceptible
to environmental influences, e.g. temperature changesstalk. Furthermore, latencies are
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introduced by the traveling time, and this might limit gainshe digital control loop. Once the
data are transmitted to the regulation system they are psede

IQ-sampling scheme

For data processing, the analog signals have to be digitizbath is usually done by sam-
pling the signals with a sufficiently high sampling frequgnthe Analog toDigital Converters
(ADC) available on the market at the time of system impleragomn were not sufficiently fast
to directly sampling the RF field. Today the development ia tbchnology allows to overcome
this drawback. Nevertheless the sampling method intratinegt is still applied, using a mod-
ulation concept to convert the high-frequency signals dmaan intermediate frequency (IF), in
a so-called downconverter. This IF is sampled with a specethod named 1Q-sampling, [10]
where original radio frequency of3d GHz is mixed with an additional frequency contribution
shifted by about 250 kHz as it is shown in Fig. 2.6.

Ia
™
2 — [ —
VM MO 1.3 GHz
> Q—
_r t{ps]
2 —p
2us RF 1.3 GHz
Q, LO 1.3 Ghz
. +250 kHz
2
>
n t{us]
2

Figure 2.6: Downconversion of the RF signals with time stepnges of 1Q, sampling and
frequency distribution

This local oscillator frequency is generated by the vectodulator. The modulation in this
case is done by step changes for the | and Q channel as showq. iB.&, [11]. After mul-
tiplying the IF with the measured RF, the resulting highgtrency term is filtered out so only
the low-frequency part remains. The phase and amplitudenretion is now transferred to the
intermediate frequency which can be sampled by the ADC asshown in Fig. 2.7.

The field information is computed by sampling the steps otithvenconverter output as sketched
in Fig. 2.7. After the step transition, which can be adjudigd variable delay, the values are
sampled at 81 MHz and averaged, as shown in the figure. ThevBetdr components are de-
termined in series df,Q, —I,—Q, and further rotated for every sampling instant of about 90
With the sampling time of 1 MHz, within one period exactly 4ues are calculated. Effec-
tively every 2us a new pair of I,Q values is generated, whereas the sampéggdncy of us
implies getting a new data pair every sampling instant. €arsbe provided by computing the
new vector from one step back value, and rotating it of ab@tit Fhis procedure is possible
because of the very narrow bandwidth of the cavity, wherefitid changes are expected to
vanish between two sampling steps. This sampling methodris sensitive to the generation
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Figure 2.7: Schematic illustration of the 1Q sampling antadaveraging method, having the
downconverted IF frequency.

of the intermediate frequency steps, e.g the step heiginyswiaich leads to non-perfect cir-
cles in the IQ planes and therefore wrong calculation of tblkel fvector. The digital IQ data
generation and all digital processing operations are dattennan Field ProgrammableGate
Array (FPGA) placed on the so-called Simc&iwnqulator andController) board. As the name
suggests, this board can be used either as the controlléorptaor as a simulator for testing
controller applications. A side view picture of this boaahde seen in Fig. 2.8.

The FPGA has the advantage that the controller structureedsigvnew applications are easily
realized by reprogramming this devise accordingly. Theriml clock rate of the FPGA is
81 MHz, which is sufficient to allow averaging of 16 valuesteaample in the 1Q detection
scheme shown in Fig. 2.7. The latency introduced by thisctiete algorithm is about 2s.
Further processing steps in the pipeline take about 500 herefore the overall input-output
delay sums up to 3 sampling steps measuring the input ouégpbnse with the sampling
instants. For detailed information it is referred to [12]s Already introduced in Sec. 2.1.2
it is not one cavity field vector but the sum of several casitlata is used for regulation. This
processing step is discussed next.

Vector sum calculation and calibration

The Kklystron is one of the most expensive devices in the acatelr system. Costs need to be
minimized to keep new linear accelerators like the XFEL afédle. Supplying every single
cavity with one klystron is much more expensive, then hawvng large RF source for several
cavities. For the XFEL it is planned to have 32 cavities, afist in 4 cryomodules driven
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Figure 2.8: Picture of the Simcon DSP board used currentli f&®F control including ADCs,
DACs, DSP, Virtex FPGA and optical links

by one 10 MW Klystron. The disadvantage is that becauseestaylities are not individually
controllable, the system is under-determined. It is assuthat all cavities have the same
physical behavior, so it is possible to sum up all individj&eld contributions which are also
seen by the electron beam. The vector sum represents thenanfanergy the particle gains
as it would be accelerated in one module with the same amdwemissgy. Certainly summing
up the individually field vectors averages over noise cbation from the field sensors, ideally
leading to more accurate field measurements if the noiseibonbns are uncorrelated. The
improvement in accuracy ig’N, with N the number of cavities. The vector sum calculation is
done inthe FPGA on one controller board for 8 cavities, pbstims are build when controlling
more cavities and further combined. Therefore the real aradjinary field vector components
are summed up. Before the summation a calibration of thevichaill components has to be
done, e.g. compensating for different cable length. Withlois calibration the measured field
vector differs from the real field vector resulting in a reaidn error. For this calibration
there exists a rotation matrix that scales the amplituderatades the phase of the individually
measured field vector. Calibration errors cause the medsector sum differ from the actual
vector sum seen by the beam, which significantly impactstyuailfield regulation. In Fig. 2.9
a pattern of the actual and measured vector sum is sketched.

Currently the calibration is done by measuring the field gientroduced by the electron beam
passing the cavities. The charged particles are a stalientwrhich generates with the shunt
impedance of the cavity a voltage with opposite directiothtostored field voltage. Assuming
all cavities have equal impedances this voltage must bd egathcavities. The regulation has
to be turned off and the cavities are only operated by the -bpa@mcontrol signals. Calibration
coefficients are derived by differences in the individuddfiéecay measurements. Therefore
the individual field vectors are rotated and scaled to a defie&erence cavity. Details about
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Figure 2.9: Sketch of the basic idea of vector sum calibnatitth measurement and estimation
errors

this procedure can be found in [13]. Finally the generatibtihe control signals is introduced
briefly.

Controller tables

The controller output is generated in the FPGA from tables define the values for everyone
of the 2048 sample points in one pulse. As illustrated in Eig.the vector sum is computed
and then subtracted from the setpoint table. The resulteid fleviation is further multiplied
with gain tables, that define the gain factor for each sarg@tep. Currently this table is kept
constant during the filling and flat top phase, although scheglthe gain factor to improve the
field regulation is intended.

The controller used for normal operation is a decentralpregortional feedback, that controls
the two vector components individually. Later in this wohkstcontroller is replaced by a mul-
tivariable controller. Finally the open-loop control sgis are added to the controller output,
generating a driving signal which leads the plant to reachoat the reference trajectory or
setpoint. The feedback controller is used to compensat# et deviations around this oper-
ation point. The disturbances leading to this imperfediorthe system response are discussed
next.

2.2 Disturbances

As is typical for a real system in presence of a disturbedrenment, influences to the con-
trolled system cannot be neglected. This disturbances@awe érom various sources and can
be categorized according to the strategy of suppressiaafdllowing diagram shows the clas-
sification in two subgroups, namely repetitive and non-tiéipe disturbances. This breakdown
was chosen according to the possible regulation conceaisely feedforward and feedback
control. The repetitive components in this case are prablietand can be compensated by the
feedforward signal to the system, updated between two pulden-repetitive disturbances on
the other hand cannot be foreseen. The influences must beeosated by the feedback con-
troller which acts within a pulse. These non repetitiveutisances are mainly caused by noise
sources from the measurement equipment, digitalizationgss and also actuator imperfec-
tions. In the following, three main disturbance contribas are distinguished, all of which will
recur within this work when discussing the controller pariances.
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Disturbances
Non-repetitive Repetitive
* Microphonics « Lorentz force detuning
* Measurement noise * Electron beam
« Actuator noise « Transition overshoots
« Digitalization errors * Residual control errors

2.2.1 Microphonics

Microphonics are mechanical vibrations of the system hardwhat couple to the cavity, lead-
ing to small oscillations which change the cavity geometkgcelerator components such as
cooling systems and vacuum pumps, or man-made sourcesstmdckraffic or environmental
ground motion are sources of mechanical vibrations. Thie igality factor of the cavity makes
it very sensitive to vibrations, which shift its eigenfremey by~ 300 Hz/um. An example
plot of the shifted resonance peak can be seen in Fig. 2.10.

VI

1
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microphonic oscillation

— W (0 Ay O ®q

Figure 2.10: Resonance curve displacement of the cavityau@crophonic vibrations. The
maximum achievable output voltage is given as function efakcitation frequency.

The microphonic oscillation in this figure is simplified ctiigted as a sinusoidal oscillation of:

Aw(t) = Apssin(2itft + @) (2.3)

with the microphonic amplitudéas and frequency off,,. These vibration frequencies are
typically in a range up to a few hundred hertz, which in pulspdration appears as fluctuations
from pulse-to-pulse. The amplitude or resonance frequeheyge for this type of cavities is
typically op,, ~ 6 Hz, [14]. The small changes in the resonance frequencyaatreng impact
on the field, because the RF drive frequency remains unckamhggerfect matching between
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the antenna and the module leads to a lower field amplitudehmniust be compensated by
the feedback controller. Beside the increased power, tihes@ation are undesirable because
they cause residual field errors visible as pulse-to-pulssuétions on the vector sum if not
perfectly compensated. To keep these effects small théiesare mechanically stiffened in
order ro passively suppress the effects. Further thererapogals to actively compensate the
microphonic oscillations, by a mechanical feedback lo@p] fnd [16].

2.2.2 Lorentz force detuning

In contrast to microphonic vibrations, the so-called Lazdorce detuning (LFD) is treated as
a repetitive disturbance, even thought the detuning eifestiso caused by deformations of the
cavity. In this case, however, the electromagnetic fieldleghe cavity acts on the thin cavity
walls and the resulting electromagnetic forces are sufficiechange the cavity geometry. This
process is sketched in Fig. 2.11, [17].

st
I 4
Outward pressure
at the equator

Inward pressure
«—— attheiris

—

(a) pressure directions (b) deformation simulation

Figure 2.11: Influences of geometric deformations to thetgawhe resonance frequency is
sensitive to deformations in the accelerating modules.

Compared to the microphonic deformations, this effectdeadstronger resonance frequency
deviation. Instead of vibration around the resonance &#aqy the detuning represents a con-
stant drift of the cavity eigenfrequency. If the RF field doed change from pulse-to-pulse,
the deformations will show almost the same behavior. Inftesnsuch as the LFD are well
understood and further predictable. Studies on this togmche found in [18] and [19]. If the
system would not operated in pulsed mode, the detuning wealch a final steady state when
the introduced deformations and the rigidity of the cavity im balance. In this case one could
simply detune the cavity by the RF field induced frequencyt.shtor the pulsed operation
mode only the transient response is measurable, sinceysttdd is not reached before the RF
is turned off at the end of the flat top. Deformations are gieaped before the next pulse starts,
so the effect is repeated with the next pulse. A measurensamy deformation sensors (piezos)
is shown in Fig. 2.12, giving the transient detuning respons

Unfortunately this measurement could not be correlatel thi¢ field measurement data. Only
a relative behavior is detectable, showing that the defoomancreases with field gradient
in the cavity as postulated. A simulation example on thisdép given in Sec. 2.3.2. From
Fig. 2.12, one can observe that the pulse is started at thplisgninstant of about 2000 and

17



2.2. DISTURBANCES CHAPTER 2. RF CONTROL AT FLASH

0.1
0.05!-
S
[}
o
2
2
& 0,05/
E . ¢
—0.1F
—10MV/m
—19MV/m
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

samples

Figure 2.12: Measurements of detuning by piezo detectorsvio different gradients as func-
tion of time. Due to synchronization issues these data damnoorrelated with measured field
information.

the pulse stopped at the maximum amplitude at about 2800.c@&meee that the oscillations
continue, which can be ascribed to mechanical modes of thiyca

Effects of this detuning process can be seen from Fig. 2.8reviine open-loop system response
is measured. The significant deviation of the field from theaet is caused by the LFD, vi-
sualized in the 1Q plot. In Fig. 2.13 the impact in the amplétand phase representation is
also shown. This means that the field inside the cavity can lbalkept constant if the input
power is increased. Otherwise the field amplitude decrems@she phase drifts away from the
setpoint. For practical application the cavities are petided such that the detuning effect is
minimized during the flat top region so as to keep the dewiatinimal during beam accelera-
tion, although this also increases the required power irillivegy phase. Passive compensation
is done by stiffening rings that enhance the rigidity. Thatyavalls have to be kept thin due to
thermal reasons and material costs. Active LFD compensétiourrently under developments
and first test show the benefit in much reduced detuning.

2.2.3 Beam-loading

The most serious disturbance to the RF field comes from thereie beam itself. Due to
the interaction with the RF field, the energy for the beam lacagon is transferred from the
field to the beam, which must be ascribed by the RF field reigulatin this case the beam-
loading can be seen as a disturbance, whereas the beam istilaé \alue to be controlled
and further used as independent measurement for the qoéliggulation. Characteristic of
this disturbance source is determined by the charge, tepetate, quantity and phase of the
particle beam. Usually these parameters remain unchangewadperation which means this
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can be classified as a repetitive disturbance source. Saratons, e.g. in the charge from the
electron gun are negligible. The effect of this beam-logaian be seen from Fig. 2.13, where
the feedback loop is already closed.
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= beam transient
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Figure 2.13: Effects of beam-loading with a particle bearB@bunches and a charge of 3 nC.
The proportional feedback controller closes the loop!

It can be easily observed that the feedback controller imhl& to sufficiently compensate the
beam-loading effect. In addition this disturbance caussegady state error until the beam
is turned off. If the beam properties are not changed thgeldield drop is predictable as is
illustrated in Fig. 2.13, where the measurement pointsdégeral pulses are overlayed as blue
dots.

As a result it can be claimed that the design of a feedbackatartalone will not be able to
suppress all disturbances, rather the addition of pre cosgi®n by an appropriate feedfor-
ward signal could significantly reduce the remaining cdngéroor. To design this combined
controller, first a system model is needed. Before intraayithe procedure of system identifi-
cation, the existing models are outlined in the following.

2.3 Existing models

Existing models are derived from physical consideratiohthe different subcomponents in
the plant. Therefore several assumptions have been madeh ate briefly discussed when
introducing the models. In the next chapter a system moglgliocedure will be discussed
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where characteristics of the physical models are auxjlexy. for prior assumptions or model
verification. The dominant contribution to the system dyitsns certainly the cavity, due to
the small bandwidth compared to other subsystems in the. plérerefore the physical model
is based on this subsystem.

2.3.1 Cavity model

The derivation of the cavity model has been given in seveoaks/ike [9], [11], [13], and there-
fore need not be repeated here. Rather the focus is more amanacteristics of this model.
As already introduced in Sec. 2.1.3, the cavity is an eletagnetic resonator, which allows
the propagation of standing electromagnetic waves for @n@asce frequency of.2 GHz, de-
termined by its geometry. The electromagnetic field is weaklupled from cell to cell. As an
equivalent representation, a coupled LCR circuit as slkeetam Fig. 2.14 is used.

cell 1 cell 2 cell 8 cell 9

> _ > 7w ¥ >

coupling coupling
Figure 2.14: Equivalent circuit diagram for the 9 cell cgvéhowing the coupling between the
cells.[9]

Solving the differential equation, which can be derivedhirthis circuit representation leads
finally to the state space representation of the field eneglafper removing the high-frequency
oscillations. The remain transient behavior is desiredwasngn Eqn. 2.4, [9].

(ve )= (ams =50 ) () ("6 b ) () - e

with the shunt impedance of the cavity defined as:

R = (é) o . (2.5)

The cavity voltage is given asin terms of the real and imaginary field component and the driv
ing current ag. For the TESLA type cavities considered in this work the ptglsparameters
in the state space representation are:

Symbol Value Unit Description

3.1° | loaded quality factor
2m-3-10° 1/s resonance frequency
o — w(t) 1/s detuning frequency
~2m-2167 1/s half bandwidth

1024 % normalized shunt impedance

QOl= > O
SEEL
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It is easy to observe that within this representation theeefixed structure in the system matri-
ces. The terms on the diagonal elements are equal for thandamaginary field component.
This is obvious from physical considerations and the deteetigorithm, where the field com-
ponents are only representation of & @ftated field vector. Unless the field detection algorithm
introduces some errors the components must not differ ibebavior. Later it will be shown
that this diagonal structure has significant influence omtbeeling procedure. Additionally
it can be observed that the detuning effects described inS2@ssign the coupling between
the two field vector components. Time dependency is causelegnicrophonic oscillations
as well as transients introduced by the LFD. There exist aanadeéscribing the effect of the
lorentz force detuning, which is discussed next.

2.3.2 Detuning model

A mechanical model is used to describe the time varying detguficw(t) as function of the
accelerating electric fielHacc, as previously introduced in [17]. This second-order moeléts
on mechanical modes in the cavity which can be described as:

DG(t) + —B6ft) + GBAG() = GAGT — 27K Elt) (2.6)

with 1, the time constant of the damping aang, the resonance frequency of the mechanical
oscillation. Additional pre-detuning of the resonancegfrency is represented lywr. In
Fig. 2.15 the detuning curves are simulated with a typicedumeter set for field gradients.

Simulated detuning curves
250 \ ‘ ‘ ‘
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Figure 2.15: Simulated detuning curves for different fielddients as function of time

The mechanical model and physical state space representdtEqn. 2.4 have been investi-
gated and studied in numerical simulations wMhatlab Simulink Furthermore as mentioned
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in the description of the Simcon board, it can be used as @lbetrand simulator, where the

simulator is based on the combined model introduced hers. mibdel, however, is both non-

linear and time varying, which would place high demands @nrtiodeling process discussed
in the next chapter. To overcome this drawback, a first agpraoathis thesis is to use a linear
time invariant model approximation to determine the sudficy for the controller design. The

integration of the mechanical model into the cavity modesviurther investigated in [26].

2.3.3 Summary

In this chapter the LLRF system was introduced along withnifaén subcomponents that are
necessary for the operation of a single LLRF station in aelacator complex. Further, pulsed
operation mode was explained with the consequences forregidlation tasks. As a main
topic, the sources of possible disturbances have beenfiddssccording to the suppression
strategy to be discussed later. Three main contributiofisltbimperfections were emphasized
in terms of their physical origin. Finally, existing systenodels were outlined, with respect
to assumptions to be made in the system identification proeedt is claimed that the cavity
dominates the system behavior, which allows effects frameiogubcomponents to be neglected
in the modeling procedure. Nevertheless the plant is mddatethe whole chain between
controller outputy;, ug and the computed vector sum controller ingut/o.

For all measurements presented in the following chaptecdhé&ol system introduced here has
been used. Additionally a duplicate of this system has bestalied in parallel by splitting the
field probes. Field detection and vector sum calculatiomsths parallel system. The main
advantage was the possibility of running setup proceduies fhe real measurements, signif-
icantly improving efficiency of the the actual experimeritade. Further it allows observation
of the regulation system with an parallel measurement egei out of the feedback loop.
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Chapter 3

System Modeling

This chapter will focus on the mathematical representatioihie RF system and components
that were described in the previous chapter. For most codésign methods it is essential
to have a model of the system representing the static andmdgrnaehavior, which can be
generalized according to the usage and application.

There are three possible methods to determine such a modast. tiie so-calledVhite Box
mode] where it is assumed that the physical behavior is exacthyvn The model is found
by describing the system by a set of differential equatiom#taning physical laws such as
conservation of energy or electric losses. The physicakaysnodel given in Sec. 2.3 was
determined by this method. In general the behavior of reahtslare not fully understood,
hence a second category of models is needed, where it is adsinat the physical context
is known but the parameters or states of this system have tieteemined. Estimating these
variables by experiments and fitting them to the given seiftdréntial equations is the basis
of Grey Box modelsFor the cavity system of Sec. 2.3 this would mean that tharpaters like
wy /o are estimated, e.g. by measuring the loaded quality f&gtorSome considerations of
methods for determining such physical parameters can belfou[26]. The assumption here
is that the system dynamics is dominated by the small bartbwidhe cavity.

Black box modelare often used to describe systems which behaviors are flainagerstood,
and as the name presumes, there only is a linearity assumgdiimut the internal system dy-
namics of the plant. The only possibility of characterizihg system is by its input-output
behavior in mathematical notation. The states do not nadgskave a physical interpretation
but they have a conceptual relevance. The plant output cangokcted by simulation with the
black box model and defined input signals. Here this methaolhiasen to find an appropriate
system identification method which not only relies on thatyadynamics, but also on the sur-
rounding environment which might influence the system. &foge various experiments have
been performed to model the system which will be describetktail in the following.

The chapter is organized as follows: first, in Sec. 3.1, tlséesy structure is described ; then in
Sec. 3.2, the identification steps and method of modelingeseribed in detail; Sec. 3.3 covers
results from measurement on the real plant, leading to thdeta@nd conclusions in Sec. 3.4
that are used in later chapters for controller design.
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3.1 System considerations

Like every other system, this plant has individual chanasties to be considered before pro-
cessing parameter identification. It is know that the dymranaire dominated by the cavity

compared to the other subsystems in the black box, e.g.r&tystouplers and measurement
devices. The subsystems are shown in Fig. 2.2, where th¢ iophe plant is defined as the

controller output to the DAC, and the system output will be tomputed vectorsum. The vec-
tor components are given in termslofin-phase) and (quadrature) of the field vector. It is

possible to measure not just the sum but every single cagitiov, however it is not possible to

control every single cavity, so the system is underdetezthiflence, the input-output behavior
must be defined.

3.1.1 Model representation

Having two inputs and outputs to the system, it is defined aslévariable input, multivariable
output (MIMO) system, which is represented in state spatation as:

X(t) = AcX(t) +Beu(t) (3.1)
y(t) =Cx(t) +Du(t) , (3.2)

with the state vectax € R", the control inputi € R™, the output vectoy € R' and the constant
system matri. € R™", input matrixB. € R™™, output matrixC € R'*" and the feedthrough
matrix D € R'*™. For physically realizable systems the matixis usually a zero matrix.
The data generation and storage is done at discrete sampditagnces, so the model will be a
discrete time model.

Discrete time model

In most modern control applications digital controllers anplemented and it is convenient
to use discrete time models. The continuous time state spacesentation Sec. 3.1.1 can be
transformed to a discrete time representation by compuhtiagliscrete time system matuy
and input matrixB; as:

]
A=ehT B:/ A, dt, (3.3)
0

whereT denotes the sampling time. This leads to the state spacelmode

X(k+1) = Ax(k) +Bu(k) (3.4)

y(k) =Cx(k) +Du(k) , k=0,1,...N (3.5)
wherek denotes the discrete sampling instants &hdé the maximum number of instants.
FLASH is operated in pulsed mode, with each pulse contai@d#8 sample points (limited

by buffer size inside the electronics). The continuous tand discrete time models can be
converted easily using MATLABs command&d andd2c respectively. For controller design
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both types of models are used and therefore mentioned herdéinEar time-invariant models,
parameter#é\, B,C, D are constant matrices of appropriate dimensions. Somengssuns have
to be made in order to use this specific type of model.

3.1.2 Assumptions

In general for real plants, the dynamics is rather complekiaftuenced by the individual char-
acteristic of the system. Although it is not necessary (dtehanot wanted) to model all details,
an approximation can be sufficient to characterize the mddeing some basic assumptions,
the system can be described in a very simple way such thatuwdirstood system identifi-
cation procedures can be applied. Here linear time inva(lan) models should be used for
the system description, provided the system fulfills the puoperties oflinearity and time-
invariancewith good approximation. For most physical systems thesditions are fulfilled.

System linearity and time invariance

From physical considerations about the real plant, it isskmthat especially the klystron in the
actuator part is the main source of nonlinearities, so wigEraiing close to saturation limits
as it is planned, the identification and modeling proceduorast be adapted. Furthermore the
measurement part of the control system also shows noniilesae.g. if the ADC is operated
in compression. Under typical system operation using a mabeléeedback gain, the system is
driven around the operation point, so it can be assumedhbditiearity assumption is true.The
time variance must be distinguished for both, pulse-ts@and intra-pulse variations. From
the physical model, it is known that the detuning effect isn@etvariant parameter changing
during the pulse. Also it is known that from pulse-to-pulsérophonic effects have an impact,
allowing the system to vary frequently. Furthermore unmtadble long-term drifts might be
observed that are a consequence of temperature changehe#dl effects are assumed to be
negligible in this model representation. It has to be shdven these assumptions can be made
for unchanged system conditions such as pulse length orgiialtient. Beside the definition of
an LTI system, further typical system properties are paoimtgt in the following.

3.1.3 Plant characteristics

In addition to define the prerequisite assumptions, it is abxessary to mention some specifics
of the underlying system. The identification can be impra¥edor knowledge of the physical
description is taken into account. Furthermore, modethadilon can be performed by verifying
whether typical behavior can be recovered using the estoimabdel.

While introducing the system, it was claimed that this cstssof a 2< 2 MIMO system, where
the inputs and outputs are the real and imaginary part of dineptex field vector. From a
physical point of view it is the difference between the vedbthe incoming electromagnetic
wave and the measured vector inside the cavity. This meamngtkhis special MIMO system,
the diagonal elements must model the same physical behd@h@ assumption presumes that
the measured system data are representing a plant with@sgumement errors from the data
acquisition. This is in general not the case for a real plalthough the noise contributions
should be small compared to the system response.
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Furthermore detuning effects can be found in the cross cayplements of the MIMO sys-
tem. As a consequence of the detuning effect, a constant pgweer results in an increasing
amplitude of the output channel I, whereas the amplitude déQeases, as shown in Fig. 2.3.
This cross coupling effect will be modeled as a constantrdegufactor. Further, it will be
shown that a detuning slope must be removed from the datangPnormal system operation,
the cavity is initially slightly detuned in order to compeite the detuning effect within a pulse
to get a constant flat top.

Compared to the diagonal elements in this model, the cragsliog components have less im-
pact on the system response because the detuning effedessarggnificant then the system
bandwidth. A plausibility check can be made by checking & slystem is diagonal dominant.
This assumes the system is appropriately calibrated, vdaoleasily be checked when rotating
the measured field vector by 90 degrees in the calibratiomiceat in which case the 1Q de-
tection would interpret the channels as swapped. Both &amdgliand phase must be calibrated
before closing the feedback loop.

A typical system response can be seen in Fig. 2.3, where thed teedforward signal is ap-
plied. It is easy to visualize that the system in mainly dcaiteal by the small bandwidth of the
cavity. The system has a time constant of aboutti®@hich is in range of a typical flat top
duration. The open-loop system response does not reaaly stizde conditions within a pulse!
Consequently, the open-loop control signal uses a higlpert power during the cavity fill time
and then set lower at the beginning of the flat-top to the ldval gives a steady state field.
The challenge in this case is to find a controller which insesathe bandwidth of this system
in order that the system is able to react on disturbance méeee The black box modeling
procedure will now be discussed in detail.

3.2 General identification procedure

Estimating the model parameters is done by using the fotigweneral sequence of steps that
take into account the properties and physical limitatidrihe system.

1. Find an appropriate excitation signal: This signal or sequence of several signals must
be able to excite all system dynamics that need to be modeled.

2. Postprocess the measured data set$rends and means from the observed data must be
removed in order to model the actual excited system aroundplerating point. Averag-
ing is a possible method to suppress measurement noise lfi@signal, while filtering,
shifting data sequences or removing outliers might be sacgso have a suitable data
set for the identification process.

3. Assign model structure and identification method: The complexity and kind of model
must be defined before identification. In this case a blackmbodel in state space repre-
sentation has been chosen, the variable to be determingitl s the order of the model.

4. Choose identification algorithm and estimate modelThis was described previously.The
data sets are prepared to estimate the chosen model.
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5. Validate the model: The validation process should verify whether an adequatgeino
could be found, and the reliability of the model is examingdbdmparing with measured
system data not used in the identification, or by comparirtg physical known param-
eters of the system. Comparisons can also be made with attadrlished models of the
system.

It is planned that a semi-automated routine for system ifieation will be implemented on the
real plant. A fixed procedure has to be developed in orderttmate the model frequently, for
example in cases when the operation point has changed. sThisd necessary because of the
limited time available for studies and application devebgmt. During this work, experience led
to slight modifications to the identification procedure s@ived modeling issues and allowed to
further improve the model estimation. As an example, detetion of an adequate excitation
signal has been found over several iterations that constlaygehe following set of data input
signals.

3.2.1 Choice of excitation signals

One of the most critical steps in system identification isrid tan appropriate excitation signal
that excites all relevant modes of the model. The "richnegsi signal can be described in
term of persistently exciting20]. The signals used for excitation are discussed latehis
section. Considering characteristics one can find termsiwditions like, the amplitude must
be sufficiently large that the system response can be ddtecpeesence of measurement noise
but small enough that linearity assumptions hold aroundofieration point. For excitation
in the high-frequency range this aspect is more crucial,tdude known narrow bandwidth
of the system. High-frequency dynamics in this case mightdre to detect due to the noise
contributions in the field detection process. These cornaiias can be summarized as follows:

e Appropriate amplitudes for a good signal to noise ratio amdlinearities prevention

e Persistent excitation of the system to detect all dynamigedes of the system

Taking all these considerations into account, the chanatites of the signal can be derived.
Beside the type of signal used for identification there ase hinitations on the data acquisition
and pulse duration. It has been outlined that one pulsesstedN = 2048 samples, whereas
the time duration of excitation is limited to the flat top ar&e maximum flat top time is given
as about 800s, which is short time period given the system time-constadtitionally tran-
sient effects have to be removed in the beginning of the flatrtboduced by the feedforward
step at the filling to flat top transition, hence the first saeaph the flat top are not used for
excitation. The maximum number of possible identificatiamples per pulse has been chosen
for the experiments tt\ = 750 (compare Fig. 3.3). Given a sampling timeTo& 1us, the
lower bound of the maximum possible input frequency is defiffédne excitation will be added
to the given feedforward tables during the flat top time,vailhg to study the system response
at the operation point. Nevertheless after applying théa&txen signal, several pulses can be
recorded until the excitation is turned off again. Due toghert pulse duration, long-term mea-
surements cannot be done since the system does not reaciuya state within a pulse, which
has drawbacks for the identification of very low-frequenkgracteristics. When presenting the
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identified models in Sec. 4.3, effects regarding theseditioihs will be discussed. The kinds of
excitation signals used for the identification are intrasih the following section, while the
final choice will be discussed when measurement resultsrasepted in Sec. 4.3.

Random excitation signals

Perfect white noise signals are generally not realizablédfentification experiments. Limited
system requirements and length of data sets restrict théwbdth of possible input signals.
Excitation sequences with comparable properties must lnedfoThis forces the usage of so-
calledpseudorandombinary sequences (PRBS) for identification. This signal can be obthi
from linear shift registers producing an uncorrelated sege that repeats after a certain amount
of steps. Another possibility is using chirped sinusoidalt signals for excitation.

d
u(t) = 5 acogawdt + @) (3.6)
k=1

Here it is feasible to have a wide band of excitation ampétidompared to the identifica-
tion using PRBS signals, where the input amplitude is vabigdwitching betweeniy,, and
Umax The bandwidth used here is determined by a priory knowledglee system dynamics.
Nevertheless the excitation bandwidth should not be to todetect some unknown dynamics
especially in the higher frequency range. The generatedbiggmean free and must fulfill con-
ditions which can be found in [20]. Both signal types can henfibby free available algorithms
or using theSystem Identification Toolbox of MatldB2].

4 Input signals for Identification
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Figure 3.1: Excitation with sinusoidal random signals dgrilat top for the | and Q channel
simultaneously. The signal amplitude is kept to abo(R df the operating point to have an
good signal to noise ratio without exciting the system tadram the usual operating point
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During the measurements it turned out that exciting botmobk (I and Q) at the same time
as shown in Fig. 3.1 might lead to modeling difficulties (s8ec 3.3.2). Applying the excita-
tion signals on both channels in consecutive pulses leamspgmvements in this case, as it is
described in the following.

Combining channels

By this method two experiments are used to excite both inpamels of the system separately.
It is known that the system dynamics of both channels arerdiieally equal. Therefore it
would be possible to excite in a first step the I-channel anasme the response in both output
channels. In the second step this experiment is repeatadentitation on the Q-channel. For
each of these two identification sequences, it is possibidaitify two SIMO (single input,
multiple output) models. This overcomes the drawback thasszcoupling components are
over-estimated, if both channels are excited simultarigdiysuncorrelated input signals.The
two identified SIMO models can be merged to a single model loylgoation of the estimated
system matriceé, B,C as follows:

At O By O
A:{Ol Az] , B:[ol Bz] c=[c C , (3.7)
where the subscripts 1 and 2 assign the individual modehpatexrs. The combined system
matricesA, B,C contain of the individual system matrices and zero matri¢egopropriate di-
mensions. Individual estimated SIMO models must have theesgystem order. It turned out
that this method leads to modeling improvements as showadn&3.2. Previously, the diago-
nal dominance, known from physical consideration, was efi¢cted in the estimated models if
the excitations has been applied on both channels simoltshe Distribution of this separate
excitation on both channel within a pulse is not feasible wuthe limited pulse duration and
variable detuning characteristics within a pulse. Takimg iaccount the assumptions made in
Sec. 3.1.2, equal experimental conditions are given fdn batitation channels. Additionally
this method implies a possible validation procedure. Kmgythat both channels are supposed
to have nearly the same behavior, it can easily be detedieel & the modeling process or the
system data itself might be corrupted. An example of PRB&atk@n can be seen in Fig. 3.2.
By conducting several excitation experiments over cortserpulses, it is possible to extend
the identification process and merge the input/output @atd,is described in the following.

Sequence merging

Having a limited pulse length makes it feasible to apply rmdthof merging different sets of
input/output data into a joint set. For the pulsed operaiida fast and easy to conduct several
experiments, even with different kinds of excitation. Iistbase the plant is excited in different
frequency ranges as it can be seen in Fig. 3.3. After cariingxperiments, the data sets are
appended in series by Matlabs identification toolbox [22].

In addition, it is possible to combine different kind of etation signals, such as PRBS and
chirped sine-waves, allowing to test different frequenagges with wider or smaller bands,
for example to detect sharp resonance peaks Iike%mmode that are known from theory.
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4 Excitation signal for identification
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Figure 3.2: Example of the excitation signal used for Ides@tion. Only one input channel is
excited with an PRBS signal. The same input is used for thergemput channel in order to
have same identification conditions in both channels

Measurements show that only exciting the system for oneepayer a broad band does not lead
to find this peak, even when increasing the model order. Ustggveral small band excitations
around the assumed resonance frequency and combiningrtieaseirements with other low-
frequency excitations might lead to an appropriate modelgpans all significant modes of the
system. A priori knowledge of the plant about possible rasoe peaks is necessary to excite
around this assumed peak in an appropriate way, so the sysasnexcited with sinusoidal
oscillations of constant frequency.

Sinusoidal excitation of constant frequency

Excitation with sinusoidal oscillations of constant fregay does not fulfill the criterium of
persistent excitation, but doing so might be beneficial fetedtion of resonance peaks. So
far, it has not been possible to use random signals to deyeettics of the additional modes
described in [8]. It is assumed this is because the noiseibation of the field detection
system is crossfading these signals. An example of consilamsoidal input signals is shown
in Fig. 3.4.

By sweeping the frequency of the sinusoidal signal and mreagsthe response it should be
possible to detect resonance peaks in the measured outpsge Tests have been made in open-
loop and closed-loop operation with the proportional fesxkbcontroller for various gains. If
the feedback loop is closed, cross coupling cannot be pregetue to the coupling betweén
andQ signals. This method has only be applied to find resonandespelaich might be present
in the plant. It was not intended to use this method for ideatiion only, but to gain informa-
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Figure 3.3: Example data set of different excitation signeded for merging different experi-
ments. In the upper plot the time domain data, and in the Ipée¢the corresponding frequency
spectrum is displayed.

tion about the system and improving the ordinary identiiasignals introduced before. The
results of this method are discussed in Sec. 3.3.5.

3.2.2 Processing identification data

As step two of the identification process, the data must beopeessed in order to provide
sufficient data sets to generate the model. Possible andssgepre-processing tasks can
be found in [20]. Usually data that have been recorded dutiegexcitation is not used for
the identification process directly, for example becauseupted data sets or outliers must be
removed. For each excitation signal, typically 20 systespoases were recorded. Advantages
about this will be discussed in this chapter. For the follmyvconsiderations all methods are
described for a single dataset. The system responses camuied &s the mapping of input to
output channels as discrete time transfer function matrix

[ R e | e oo

Although the pre-processing steps presented in the faligWwave been applied to all mapping
directions, the examples are discussed for the chaanebnly, without loss of generality.
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Figure 3.4. Example for the used sinusoidal excitation aign The various frequency are
snapshots of consecutive experiments.

Trends and means

Offsets and drifts in measurement data are quit common arsd beuremoved before identi-
fication. Another possibility, but not applied in the followg, is to have a disturbance model,
which is estimated and representing such influences, [28lially drifts are generated by the
system itself or caused by the surrounding environment.

In the following, three ways of processing the measurematat dre shown and the advantages
regarding the modeling is discussed. From Fig. 2.3 it is éasybserve that the open-loop
system response for a constant feedforward during the fiatststrongly influenced by the
detuning characteristic introduced in Sec. 2.2.2. To resrthis constant offset introduced by
the operation point, is to subtract the mean value by:

y(t) =yt -yt (3.9)

wherey’is the detrended system outputydf) with the mean value of(t). Generally for the
operation point measured hege# 0 holds. Detuning effects can be seen as an bias or slope
during the flat top, which is to be removed by a linear trendeiad of subtracting the mean
value only. Even more generally, a fitting polynomial can @ed as:

n .
p(t) = Z)ajt' =ag+art+..ant" | (3.10)
i=

of ordern andg (i = 0,...,n) weighting coefficients. In case of a linear treme- 1 has to be
chosen and the data can be fitted by least square methods Hgo®15 it is clearly visible that
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neither the subtraction of the mean value nor a removal eblinrends would be sufficient to
detrend the detuning effect and its influence on the field.
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(a) Original data and the curves for removing trends (b) detrend data for identification

Figure 3.5: Comparison of the used detrend methods for pcepsing the data for identifi-
cation. In (a) the data and the fits are shown before remoWiegletuning effect, in (b) the
identification data after removing the trends is shown

The curve is superiorly detrended by subtracting a higheergpolynomial from the measured
data setmeas Detuning effects cause a time-varying equilibria compkravith a polynomial
of 3rd order, {1 = 3) and are removed before identification because it is not@fbresponse
to the excitation signal.

From Fig. 3.5 (b) it can be seen that compared to the lineagni@tthe polynomial fity3) leads
to an almost constant and mean free system response forethtgichtion data.

Finally a last possibility is introduced, which turned oatlie the most effective because it
was less sensitive to disturbances that occurred whilagakieasurement data. Often the data
sets for identification are corrupted by errors out of thatdigneasurement equipment. As
an example, crosstalk on the signals caused by other pattige @iccelerator system have been
observed. This results in jumps of the measurement sigseds Fig. 2.13), which are known to
be independent of the subsystem dynamics. Detected asetitivepdisturbance source, it can
be easily removed by measuring the unexcited system resp@isre applying the excitation
signals. Averaging over several pulses or lowpass filtamight reduce stochastic noise contri-
bution. The unexcited system response can be found in Fdagasy,, and is subtracted like
the detrending operation introduced previously. In congoearto the 3rd order polynomial fit
no significant differences can be found, but this last methoged out to be most reliable and
gives best fitting results. This becomes clear if linear bihtas assumed, so subtracting the
normal system response to the feedforward should provasystem response to the excitation
alone. Further considerations of this method of removiegds from disturbances can be found
in the appendix A.1.
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Averaging and time shifts

Measurement noise is generally unavoidable under realitomsl The detection equipment,

sampling quantization and signal processing show a largetyaf noise aspects. Usually it

is possible to filter the data, e.g. with lowpass filters. Theadsets are available offline so
lag-free filters can be used. Most of the stochastic distaésare in the high-frequency range,
but filtering cannot be used for preprocessing due to passiigher frequency dynamics. In

addition PRBS input signals have to be filtered as well. Aappossibility is to average over

several pulses when recording the excitation response

A~

y(t) = %

> W) (3.11)
k=1

wherey(t) is the mean output signal of the same experiment outputropatses. Ifn — o the
stochastic error is ideally removed. In practice, a largelper of measurements can be made
by recording several pulses as already introduced. In FHig.a® example of the measured data
(red dots) and the corresponding mean value is given.

50r
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Figure 3.6: Measured data samples for the cross couplimgegies show a spread regarding to
noise and microphonic effects of the system. The excitaemuence remains unchanged, so
the mean of the output signals gives the response in thereguéncy range of the system

In this case with one specific input signal, the system resp@measured. This decreases mea-
surement imperfections, which are introduced by, e.g.ropitonics as described in Sec. 3.2.3.
These pulse-to-pulse fluctuations are also removed by givera

The last and significant step in pre-processing is the treatiof system delays. Inspecting the
system response in Fig. 3.7 a time delaygof 4us can be estimated.
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Figure 3.7: Measured system delay using open-loop idegtiific data. The data sets of input
u (only one channel shown) and the output chanp&gl be shifted in time to compensate this
delay effect for the identification, preventing increaseatiel order

Due to the processing steps and the field detection algorithdelay of about 2 4us are
introduced as described in Sec. 2.1.4. Delays are treatgdtm space models

xq (k+ 1)} _ {o 1} {xlao] . m oK
|:X2(k+ 1) 00 ;(2((kk>) ki 7 (3.12)
1

v =1 o (2]
by introducing additional states that behave like a shiister, as given in (3.12), where the
response is stored in one state and further processed irestisample step. This leads to an
increased order in the model parameter estimation, whithdaoces higher complexity to the
controller synthesis. For an estimated delayycf 4us, the system order is increasedté 4.
The identification data are modified by shifting the outputadabouty(k —tq) = y(k) while
leaving the input data unchanged to compensate the timg. ddi@se delay effects have to be
taken into account when designing the controller, as dssdish chapter 4 and chapter 5.
Having summarized the pre-processing steps, the ideniircalgorithm is outlined in the next
Section, where itis assumed that the identification datlieady pre-processed and is available
as detrended input and output data sequences.

3.2.3 Subspace identification

The third step in the procedures is to estimate the modehpeteas using a state space model.
Standard identification procedures for linear time invari@Tl) models can be chosen to es-
timate black box models at specific setpoints, even thoughkihown that additional external

disturbances and non-linearities in the actuator systemedevant when operating over a broad
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range of operation setpoints. Using LTI models is advardagéecause standard controller
design methods can be used for design of the feedback anfdfeadd controllers. The suit-
ability of this class of models for representing the systemeadnics has to be studied. In future
applications, it might be necessary to extend the modetgpbthis work the identified models
are restricted to LTI systems.

In the following, the subspace identification methddSID (Numerical algorithms foState
SpaceSubspacesystemid entification), provided by Matlab System Identification Thoax [22]

is used to estimate the parametdrB,C, D for the black box state space model. The advantage
of subspace methods is that they do not make use of any optionzorocedures. The system
matrices are obtained by solving algebraic equations. Gtindr information about subspace
identification methods the reader is referred to [20], [2DK] [23].

After this definition the system characteristics, data pepssing steps and the identification
algorithm, the measurement results from the identificgtimtess are now presented, where all
the measurements were done on a real plant over an extended @etime, during which there
was significant development of the data generation and sitigumi processes. This development
is reflected in the results presented.

3.3 Measurement results

As previously stated, the objective of black box system tifieation is to find a system de-
scription that describes the static and dynamic systemvioahi@r a large number of sources.
In general, distinctions can be made between determirasticstochastic signals and between
open-loop and closed-loop models. In the case of unstaktersg, only closed-loop models
can be identified. Fortunately, for this application, theteyn is open-loop stable, so identifi-
cation can be performed either in closed-loop or open-ldepending on the necessary system
representation for the controller design. The generaliteck diagram of a closed-loop system
is shown in Fig. 3.8.

f d
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n

Figure 3.8: Block diagram of the closed-loop system withthesfeedforward input and d and n
as plant disturbance and measurement noise configuraspaatvely. The reference trajectory
is denoted as r, which gives by subtracting the measureérysutput y the control error e.
The undisturbed outpyt is representing the field seen by the electron beam, whichatdore
measured directly.

The two open-loop input signals f are provided by the feedléwd tables as described in
Sec. 3.2.1, which are scaled such that in open-loop modenipditude and phase of the field
gradient is already approaching the desired values, atralied in the example in Fig. 2.3.
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Rather than using calibrated physical units, the systeporeses are presented in the notation
of bits, which vary during the individual results. Therefore thei@as measurement results are
not directly comparable by absolute bit values. Furtheembecause of the frequent usage, the
definition of on and off-diagonal elements is introduced.-dagonal elements are the parts
of the transfer function that define coupling between edeiavector components, such as
u — V. Off-diagonal elements in this notation are the couplingisveen | and Q.

The quality of the plant model is evaluated by comparing theukated output with the mea-
sured output. This first comparison was made with the samefdaput signals that were
used for the identification. All other validations where fpemed with different data sets for
identification and validation.

3.3.1 Model validation

Validating the estimated models is necessary in order tovanthe question whether the model
can be used for controller design. There are several methailable, namely:

e Cross validation with unused experiment data: Validation is performed using a dif-
ferent input/ouput dataset than was used during the idestidin procedure. The model
should give an acceptable validation with this data so asiéclkcwhether the dynamics
belong to the system or were caused by particular artifdctiseodataset. Furthermore
data from excitations of different frequency ranges cantiezked.

e Comparing different models: Compare models of different identification experiments
e.g. frequency ranges, experiment times and system changemparisons can be
done for different properties, such as pole-zero locatidregiuency and time-domain
responses. The models should not vary more than an acoefaaeél to verify the usabil-

ity.

In the following, some examples from estimated system nwdsd presented. It should be
clear from the ordering of the data how the modeling procedias developed as experience
was gained with the plant. Particular aspects of the datgpmeessing and their influence on
the model are discussed for each case. Limitations of thextidile system characteristics are
outlined, and solutions for improving the models will beraduced. To begin, the open-loop
modeling results are shown.

3.3.2 Open-loop modeling

The measurements presented in the following are exampmlestire large number of data that
were recorded during this work. For the design of the feeklisaatroller an open-loop model
of the system is necessary. The system characteristicseqaeprocessing steps like detrend-
ing and averaging previously introduced. It is known, tihat dpen-loop system is effected by
the detuning, leading to strong trends to be removed asidedadn Sec. 3.2.2. It turned out
that the subtraction of the un-excited system responseHge&.5y,) leads to best fits of de-
tuning effect and further some unexpected behavior, egjurdiances introduced by crosstalk.
This method is further applied for the rest of the presengsdlts. In addition it is known that
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especially in open-loop operation the system is fluctuafiiogn pulse-to-pulse due to micro-
phonics. Averaging as introduced in Sec. 3.2.2 over sepefaés reduces these field variations
adequately and therefore is applied in the following. Anrnegée of a cross validation data set
for used open-loop models can be seen in Fig. 3.9.
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t [us]

A [bits]

_600 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
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Figure 3.9: Cross validation data example of a third ordeaneleop model with excitation
PRBS signals in both channels simultaneously

It is evident that this third order model is sufficient to repent the dominant system dynamics.
Having a low order model, the controller synthesis compyesan be reduced. Several model
orders have been tested, whereas increasing the ordertéeadsoducing additional complex
pole pairs on the subharmonic elements of the IQ samplingnseldescribed in Sec.2.1.4. The
field detection leads to sampling steps residuals on theumeésignals which are interpreted
as harmonic oscillations. This is not caused by the exoitatignals and therefore not part of
the estimated model, but an outcome from the digitalizgbimtess.

From theory and step response measurements, the diagonaladwe of the system can be
seen, i.e. the gain from — y; is much stronger them — yq.

Overestimation

Physical consideration indicate that the dynamic behasiateally equal for both channels, if
assuming that the field detection is perfect. If the on-dmad@lements of the model do not
represent this, then the model parameter estimation isigt@u, something that can be easily
checked by observing the bode plot of the model. The ideatiio procedure of exciting both
channels independently turned out to improve the modeltgualthis case. In addition, tests
have been made to excite the two input channels distribwted the flat top region, which
leads to bad results because the detuning effects havergestrimpact at the end of the flat
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top then at the beginning [28]. In addition, due to the vemyited flat top time it is not feasible
to further reduce the possible excitation bandwidth bytspd for both channels. Further it
could be observed that the estimated parameters stronggndeon the pre-processing step of
detrending, where slight fitting errors lead to strong défeces in the estimated static gains
of the model. Subtracting the open-loop system response tine excitation response turned
out to be the best method to keep this modeling error smak. fitted polynomials vary from
pulse-to-pulse, which further leads to strong model veammain the static gains. As an example
cross validation of the estimated model with the combinedtatton method can be found in
Fig. 3.10.

W=y
300
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__ 100t [} It _
Z )
8 0 S,
< <
-100
-200
- --model —meas ‘
=300 200 400 600
t [us] t [us]
uQ —-> yI uQ —-> yQ

0 200 400 600 0 200 400 600
t [ps] t [ps]

Figure 3.10: Cross validation of a 4th order open-loop systeodel identified with the combi-
nation method of partially excited channels

It can be observed from the cross validation that the eséichapen-loop model gives a good
representation of the measured system response in all elsaiiso the off-diagonal elements
are appropriately modeled, even with higher relative niggels on the identification data. The
response amplitude is almost 10 times smaller in these etarifrom this figure, the assumed
diagonal dominance as well as a similar dynamic behaviobeagasily studied. A comparison
between the different channels of the model can further hedan the bode plot given by
Fig 3.11.

The diagonal dominance of the system is apparent and alsthdmels look similar in their
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Figure 3.11: Bode plot of a 4th order open-loop system matgitified with the combination
method of partially excited channels

frequency behavior. The main difference comes from phaenmation in the off-diagonal
elements where one channel is rotated by 180 degrees in.pHase it can be seen that the
identified model has strong similarities to the physical elddee Sec. 2.3.1) which has the
diagonal dependencies.

3.3.3 Closed-loop modeling

Beside the open-loop model, it is further necessary to hesgeasufficient description of the
closed-loop dynamics in order to design the feed-forwartrodler that is discussed in chap-
ter 5. The closed-loop model can be found either by combitiregopen-loop model with
the model of the feedback controller, or through direct tdieation of the closed-loop model.
Direct identification was chosen because it gives the piisgitf identifying system character-
istics not identified in the open-loop model. The estimatias been done by the same method
and procedures as used for the open-loop identificationh Ye&fierences to Fig. 3.8, the exci-
tation signal was again applied on the system infguwthile C(z) # 0. This is the feedforward
input signal that will be used and subsequently optimizedheyfeedforward controller dur-
ing normal operation. The closed-loop model dynamics merethe transfer function from
f — y as applied for the controller. When changing the feedbacirobler it is necessary to
update this closed-loop model. The feedforward contradlessisting the feedback controller
and therefore relies on the closed-loop system dynamicawifig that the excitation signal
is superimposed by the feedback controller, equal comdit@an be found for excitation and
normal plant operation.
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The stronger impact of the cross coupling elements areyeasible when comparing the
closed-loop measured data amplitudes in Fig. 3.12 withpe@doop response shown in Fig. 3.10.
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Figure 3.12: Cross validation of a 4th order closed-loopgprtional feedback gain 40) system
model identified with the combination method of partiall\cg®d channels

The feedback controller leads to a stronger impact on theliafjonal elements. The system
response to excitation signals is faster due to the incdeglssed-loop bandwidth. The valida-
tion data set gives a sufficient model fit in the dominatingj@iency range. Influences to the
higher frequency dynamics are discussed later. Here thenétinmy lowpass-characteristic and
diagonal dominance as seen by the open-loop model can alsieidied. The off diagonal
elements show almost the same dynamic behavior, in contrés¢ open-loop model given in
Fig. 3.13.

Here it can be seen why it is important that the feedback obletrhas also cross term compo-
nents like the MIMO controller. High-frequency dynamics atronger coupled over the cross
term components that arise from the feedback. For furtreaudision on the controller design
see chapter 4.

In summary, it can be seen that the procedure for identifgpen-loop and closed-loop models
is sufficient to find good models for design of feedforward &eetlback controllers. The same
methods can be used for both design procedures. Taking detaacsmall number of pulses
works very reliably. This makes the method useable durimgnaboperation of the machine,
where excitation signals could be applied for short timesegating the system responses used
as identification data, and all design procedures are paedrnoffline. It can be seen that the
system model does not change significant over time if no i@lidn changes or significant
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Figure 3.13: Bode plot of a 4 th order closed-loop system rhidéatified with the combination
method of partially excited channels

operation mode changes are performed. Validating the nedehvath old ones is possible and
has been done.

An important aspect not discussed so far is the impact of arathsystem delay from applying
the excitation to the measured response. The dependemnciebearesulting considerations to
be made are discussed in the following.

3.3.4 System delay

As discussed in Sec. 3.2.2 there is a small time delay in teeesyresponse because of the
long cables and from algorithms for the field detection, \Whadd up to an input-output delay
of about Jus that must be taken into account when identifying the systexdel. It is well
known that delays can lead to instabilities in closed-loggiesm. Furthermore, the closed-loop
system might become unstable for particular time delayaudmsz of the additional modes, [8].
There is a significant improvement from removing the systetaydfrom the datasets during
pre-processing. With the delay compensation a significaptevement of the model fit can be
achieved by having the same model order as shown in Fig. 3.14.

It is clear, therefore, that removing the system delay hag anfiuence on the later controller
design procedure. Detecting the effective delay time freedforward input to the measured
output of the system will give a hint on possible shifting@eflforward tables to get the wanted
response to the dedicated time. Additional measuremesteiased with delay compensation
can be found in the Appendix A.1.

In this Section, it was shown how the processing methodsendle the quality of identified
black box models. Next, ideas are presented for modelingmigtslow dynamics, but also any
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Figure 3.14: Comparison between the delay compensated ifig@ad uncompensated model
(2). Both models have equal order 3, and the system delay @tastdd to be gs.

high-frequency dynamics that might be present.

3.3.5 Model extensions by higher frequency dynamics

It can be seen that the models identified so far are dominateldebcavities lowpass charac-
teristics. Knowledge of the physical plant suggests thezeatso higher-frequency dynamics
coming from the coupled-cavity modes. Unfortunately, iiferation of these higher frequency
dynamics is difficult because measurement noise cannotjeaks filtered. Averaging would
suppress the high-frequency dynamics if there are phass sler several pulses. Conse-
guently, another way has to be found to extract this inforomeso the model can be extended
to include high-frequency dynamics.

One possible approach is to excite the plant with steadg-stausoidal excitation signals, as
will be described in the next Section.
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Response to sinusoidal inputs

For controller design it is important to know if there are ampgecific frequency ranges where
the system contains modes that destabilize the closeddgsigm. It was found by broad
band excitation, that the system does not show these modss tleough there are known to
exist from physical considerations and closed-loop oparawith high gains. Subsequently,
additional tests were performed where the system was exditeing the flat top region by
using sinusoidal input signals (see Fig. 3.4) in a givendezgry range. To illustrate the effect of
resonances in the system, the time domain system outputwensior the sinusoidal excitation
with frequencies on and off the resonance frequency in Figh.3Here it is clearly visible why
the continuous frequency excitation is necessary to ifletitis mode. After some transient
time the oscillations reach an amplitude which is measaerabhis method allows to detect
several resonance peaks when sweeping through a define@figgrange.

4 Time domain sin—response
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Figure 3.15: Time domain response with and without exa@tatin resonance

One possible explanation for not detecting these resonaealkes with the original excitation
signal, even with a small excitation bandwidth is that tHeafwas small compared to the noise
level, because of the weak input power to this mode and thsitran time until the oscillations
are visible. To find this peak, sine-waves were used to ekogesystem at particular frequen-
cies and over the whole flat top. Having measured system mespaover all the excitation
frequencies, several resonances can be easily identifethaavn in Fig. 3.16.

The plot shown in Fig. 3.16 was generated by taking the freguepectra of the input signal
and output signal for the given frequency point and subtyaaif the input and output signal
in logarithmic scale. In the figure several resonance peak$e observed. The first resonance
peak is assumed to be the aliased component og thenode. The considerations leading to
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Sinusodial Excitation Responce
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Figure 3.16: System response to sinusoidal excitationasigweeping frequency in the I-
channel. The responses are given for both channels, shawsunance peaks at approx.
174 kHz and 212 kHz.

this assumption are sketched in Fig. 3.17.

This special mode can be found about 825 MHz below the cameguency of 13 GHz. In
order to prevent aliasing effects, it is usual to filter agad@mnals prior to sampling using a so-
called anti-aliasing filter. Additionally, the well knowrh&nnon theorem must be fulfilled, [27].
For a sampling frequency of 1 MHz, signals above 500 kHz walddlly be filtered out before
sampling. In this application however, the field detectiomcedure discussed in Sec. 2.1.4 does
not allow the use of anti-aliasing filters since the | and Q ponents of the field are detected
in steps so the filter would smooth the steps for | and Q, hamegative effects to the field
detection.

The fundamental modes are aliased in this case to the medsegeency range as sketched in
Fig. 3.17. Therefore the estimated controllers must nott@especially this mode due to the
fact of causing oscillations in the control system.

It is worth noting that changing the intermediate frequewowld also influence these aspects,
as would the use of other sampling schemes, such as direpiingmnwith fast ADCs. The
considerations done here can be applied for any other figttlen procedures, whereas the
model especially in the high-frequency range will probagipw different behavior as given
here. Detection of these resonance peaks turned out to Herghag. Recent measurement
results however turned out to give possible solutions ®idsue. Further details can be found
in [29].

Having made these measurements once, one can find out wioethet the resonances are
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Figure 3.17: Example of aliasing effect of the fundamentaties. The table on the right shows
the estimated aliased frequentyy in the nyquist band while aliased on the baseband sampling
and there higher harmonic components.

changing over time. Usually they stay the same and can belfiush by sweeping around this
bandwidth to get the information. Alternatively, checkihg validity of the old model could be
included in maintenance procedures for the system, so asify that the previous controller
is still applicable. Furthermore it is possible to limit tirequency from PRBS signals to this
range, and applying identification methods used so far.

In the following section, we will discuss incorporating kmiedge of significant resonance peaks
into the system model and then into the controller design.

Combining system responses

Having found these resonance peaks in the system, the natdeéextended by this knowledge
to give a better approximation of the high-frequency systiymamics. This leads to a better
prediction of stability boundaries for closed-loop opemat

As a first possible solution, tests were made to see whethatitferent identification data sets
could be merged into a single representation of both, théagxm with PRBS signals and
excitation with sinusoids of constant frequency. This eystwill show a significant increased
order due to the sharp resonance peaks and their corresgamdidel. Furthermore, there is
a significantly higher computation time because of the largmber of data sets needed to
take into account every single frequency excitation. Fdiingf generation of the model this
would be acceptable, but it would be unsuitable for fregiyemiodel updates during normal
user operation, for example if the operation point is chadnge

Averaging data from several measurements turns out to reegine influence on the resonance
modeling because the emerging oscillations are time shoter a series of pulses and are
therefore canceled out by averaging. In Fig. 3.18 bode piiaise identified model are shown.
It can be seen that the resonance peak extends the lowpaastehatic of the model at the
frequencies identified by the sinusoidal sweeping in thgahal component — |. In the off-
diagonal element this characteristic can not be found, @dsethe resonance peaks are at the
same frequency.

This method seems to have some beneficial effects in the higdguency range but also a
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Figure 3.18: Bode diagram of a 12th order model identified daylsination of PRBS excited
and sinusoidal response data for excitation in the | chaf2@]

drawback when considering the low-frequency responsedimtidiagonal element. Knowing
the specific peaks, it is also possible to use the funatisid of the identification toolbox to
define the frequency areas of interest to improve the maglelirhe excitation signals must
have an appropriate bandwidth as discussed before. Svgeeyen the whole frequency range
to identify the critical points is no longer necessary whatto reduces the time for generating
measurement data. In the last Section this recent reseltg\an.

3.4 Model and conclusion

It has been seen that system identification is a challengiogeplure that demands a priori
knowledge of the system characteristics. An appropriatéaion signal is the most important
key because dynamics that have not been excited are not redaamud therefore cannot be
modeled. Various signals have been tested in order to finghprogriate input sequence, and
it turned out that the combination of several input signaith wlifferent frequency ranges is
the most effective. Due to the high Q-factor of the cavitg #ystem bandwidth is very low,
which has a strong influence on the identification proceduhesall models it is possible to

determine the lowpass-characteristic that dominatesyters: dynamics, while knowledge of
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the other fundamental modes in the system and the aliasiact éfas lead to a more detailed
study of the high-frequency behavior. Some preprocesdessare not applicable and the
identification procedure must be adapted to generate thessary data sets. Just increasing the
model order and using broad band excitation does not negdssa to a good model quality.
Modeling errors in the static gains turned out to be strodglyended on the detrending method
applied. The short identification period and the correspantbw system bandwidth leads to
modeling difficulties especially in the low-frequency rangrhe combined channel excitation
for the two input channels turned out to improve the qualityh@ model, especially in the
off diagonal elements of the system. All tested methods %eitation and preprocessing are
summarized in Tab. 3.1. The ratings given for the individuathods can be taken as guideline
on which methods might be used in the permanent plant syskentification procedure. Taking
into account all these factors, it was possible to identifj@lel that has a bode plot given in
Fig. 3.19.
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Figure 3.19: Bode Amplitude diagram of a 11th order modeatidfied by weighted and merged
PRBS excited, averaged parameter combined system respdiimemean of both correspond-
ing channels is taken to get the equal behavior in the sysygrandics. The resonance peak at
174kHz (aliased mode) can be identified in the black box m¢a8]

This plot shows the recently developed system model tharparates all the expertise gained
during the modeling steps described before. Here the régp@oupling elements are forced
to show same behavior as known from the physical descripfidine system.

Comparison to physical description

One can easily observe that this model shown in Fig. 3.19ndlagi to the physical model
of the cavity given in Sec. 2.3.1. The diagonal dominanceasleled well and the high and
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low-frequency dynamics show the expected behavior of thiycas observed after the digital-
ization process. The first resonance peak at about 174klszusreed to be the aliasédr—mode
as discussed before. The second sharp peak at about 250&btzriised to be an influence by
the sampling frequency of 1MHz. As mentioned the identiftcatvas forced to get the same
behavior for the corresponding elements of | and Q in the MIB§Stem. From the physical
point of view these elements must show the same behaviopegoeme disturbances are present
in the field detection algorithm. The phase shift of 90 degd®uld not have any influence
on the dynamic behavior in the system, furthermore the fieléation algorithm mixes these
channels when computing the components in the controkeudsed in Sec. 2.1.4. This is also
true for the cross coupling components, whereas the phastaied by 180 degrees in one
channel. When modeling the system these considerationstakes into account and addi-
tionally they are helpful to validate the model. Becauseadieatification was done only during
the flat top time, data detrending must be done with care aglsasssed previously as well
as the combination of the consecutively identified chann@tsmparing the bandwidth of the
physical and identified model, is is clearly visible that tbw pass characteristic is dominant.
Especially when keeping the model order very small one campeoe both state space repre-
sentation in a good way. Nevertheless LTI black box modelg lagvantages compared to the
physical model, especially when considering the gaineé@ige for future identification tasks.
Independent validation of these claims would be performezka different sampling scheme
is used for data processing. For further modeling, it is alsssible to try a given structure in
the identified model, which is known as grey box model. Recesults on this topic can be
found in [29]. Beside this, some more thoughts about theesyshodeling are done in the final
paragraph.

Further ideas

The model discussed so far is only valid under the given apsans and the current machine
setup and will probably change in the future due to systemmagss, different hardware setups
or field detection algorithms. The system model must be adafut take this changes into
account. It is also planned to operate the whole system oglehgradient which means the
klystron will be closer to saturation. The linearity assuimps must be revised in this case and
the model might be valuable for limited area around the dmergoint. Additionally piezo
sensors and actuators will be used to reduce the cavity idgtdaring the pulse. This will have
a strong impact on the system dynamics which have to be takeaccount. Furthermore these
actuators can be used to support the feedback control @it extend the current MIMO
system structure by adding channels that provide coupletgéden field and detuning.

Finally it has to be taken into account that the field regatatan be considered as an actuator
for the real object to be controlled, the electron beam. @rmeent in the beam measurement
devices allows information to be gathered directly aboatghality of field regulation by mea-
suring beam imperfections. RF fields and electron beam e@at&n depending on each other,
which opens the door to further improvements by changingtimrol structure in a way that
beam measurements are incorporated in the inner FPGA loiye @uter ILC loop.

The combination of RF, mechanical systems on the cavity aaimbinformation must be
merged in an appropriate system model to show these depsgeden the general case of a
MIMO system. This is the only way of designing a controllerigéhallows to handle different
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actuators and sensors to an optimal beam regulation, dlefeedback system with control
loops are defined together in a full closed-loop system gegmn.

Table 3.1: Overview of tested identification procedures

method

rating description

PRBS

chirped sinusoidal excitation

const. sinusoidal excitation

++  The signals are easy to realize by standard methods.
Bandwidth and amplitude can be chosen regarding
experimental conditions.

+ The signals are easy tozedly standard methods.
Bandwidth and time varying amplitude can be chosen
regarding experimental conditions.

0 Method is only used for resme peak detection and
not directly for system identification. Improved the
plant knowledge and choice of identification signals.

combining channels

sequence merging

++  Prevents the overestimation of tlsscicoupling
terms. Additional validation method by comparing
the different channels

+ Broad band excitation can be realizedifteyeaht
narrow band regions. Combination of different ex-
citation signals.

linear trends

polynomial trends

unexcited system response

--  Not sufficient for detrending due to higbeder de-
tuning effect. Estimated models give non sufficient
validation results.

+ Good fit to detuning effects. Leads tocatrmean
free excitation response.

++  Best fit to detuning effect$uatiter disturbance in-
fluences. Data mean and trend free due to removal of
unexcited system response.

averaging

time shift

+ Removing of stochastic noise contributions @urtel
liers. Noise model cannot be estimated from the data.
++  Model order can be decrease. Cross validataia d
set show significant improved fit. Must be considered
during controller design.
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Chapter 4

Feedback Control

Disturbances such as those introduced in Sec. 2.2 are conmreal systems. In order to
achieve disturbance rejection and good reference trackifgggdback controller is used. The
RF field control task can be defined as keeping the measuréor\geon on the given setpoint
trajectory during the RF pulse. For this task the feedbackrotier is assisted by a pulsed feed-
forward drive waveform that has constant shape and thaes$attee system to almost achieve
the reference trajectory. Residual small excursions,@alhepulse-to-pulse fluctuations, must
be regulated by the feedback controller. To date, two indeéest proportional feedback con-
trollers have been used to regulate in-phase and quadr@tangl Q) components of the RF
field vector sum, but the performance has been inadequatet time requirements defined
in Sec. 1. This work introduces a multi-variable highereasréeedback controller to improve
the regulation performance. The necessary controllempaters have been estimated and the
controller has been tested on the plant (the FLASH accelgrat

It is known from chapter 3 that the plant has a very narrow dpep bandwidth and dynamics
that have a similar timescale to the RF pulse length. Theralet must be designed to suffi-
ciently increase the system closed-loop bandwidth in ailachieve fast disturbance rejection
without destabilizing the closed-loop system and whileimining amplification of measure-
ment noise. Itis already known that the closed-loop banttwgennot be sufficiently increased
to suppress high-frequency disturbance contributionstuRately, disturbances such as tran-
sient beam-loading effects are repetitive from pulsetitsg@and can be compensated using the
feedforward controller. Disturbances are correspongictissified as listed in Sec. 2.2. The
main objective of the feedback controller in this case wdltb minimize the pulse-to-pulse
fluctuations of the measured vector sum.

The controller parameters have been estimated using tH&main mixed sensitivity design
method, [30], [32], [33]. This model-based design methdoled the parameters of the fixed-
order controller to be estimated using tHg norm that has the benefit of being robust against
model uncertainties. Presented here are results from mezasuats taken on real accelerator
systems using this controller design method.

This chapter is organized as follows: In Sec. 4.1, the stratimplementation of the feed-
back controller will be introduced, giving particular caaeration to the system constraints; the
controller design procedure is discussed in Sec. 4.2 andumaaent results from tests on the
plant will be presented in Sec. 4.3. Finally, further stepthe controller design will be given
in Sec. 4.4.
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4.1. CONTROLLER IMPLEMENTATION CHAPTER 4. FEEDBACK CONTHO

4.1 Controller implementation

In the present system, independent proportional contsodliee used for in-phase and quadrature
terms, with the proportional gain being the only tunableapagter. The controller is imple-
mented as a digital control system inside an embedded FP@A each 2ms RF pulse being
managed as a separate event. Each RF pulse is treatéd=-82048 sampling steps that are
processed in real time, after which the data acquisitionnsetd off until the next pulse. Be-
tween RF pulses it is possible to apply changes to the cotatibbés. For each sampling step
within the RF pulse, there exists a single proportionaldafgain table) that is a function of the
feedback gain and a calibration constant. The relevanevalthe gain table is multiplied with
the control erroe and then added to the feed-forward signal. While this gditetmnakes it in
principle possible to implement a time-varying gain ovex tluration of the pulse, to-date only
a single stable gain factor has been used.

The feedback controller maps the control eoandeg to the controller outputy andug as
follows:

{ lljclg((zz)) } =K@ { SQ((ZZ)) } ) 4.1)

with K(z) the feedback controller. For the separate 1/Q proportioaatrollers K(z) simplifies
toK as:

10
K_Kp[O 1} , (4.2)
whereKp, is the proportional gain factor to be chosen. The feedbackraiber must appro-
priately compensate the vector sum field error, which canisttnduished in the fluctuations
both from one pulse to the next and within each individuakpulUsually the reference sig-
nal remains unchanged for several pulses, so the fluctgati@asured from pulse-to-pulse are
caused by measurement noise, input disturbances and bgphamics inside the system, as
discussed in Sec. 2.2.

4.1.1 Limitations of the closed-loop system

As described in chapter 3 the system response is dominatéaebpwpass characteristic of
the cavity. Additional resonance peaks can also be obsearetithese have a strong impact
on the closed-loop stability. Delays caused by the digittraprocess have a further impact
on the closed-loop stability. The combined impact of thes®drs is to significantly reduce
the range of achievable feedback controllers. Refereacgitrg is improved by increasing the
feedback gain to give a higher closed-loop bandwidth artéifagstem response. Unfortunately
this also amplifies the regulator response to measuremeése,nwhich is then injected into
the system. Resonance peaks in the system significantlgegtie gain margin over that of a
simple lowpass filter. For example, the so-ca@eelmode frequently can destabilize the system
in closed-loop operation. The destabilization effect isaetelent on the overall loop delay. For
further details the reader is referred to [8]. The gain nracgin be further reduced by the phase
lag caused by the digitization loop delay.
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It is important to note that, ultimately the parameter to batmwlled is the energy gained by
the electron beam as it passes through the cavity, whicteiseult of the cavity RF voltage
at the instant the electron beam passes through. This mieainsat all electron bunches will
have the same energy gain if the cavity field fluctuates frotegsto-pulse or within the pulse.
The primary goal is therefore to keep these energy fluctnatas small as possible. Indeed,
RF cavity field regulation tolerances are derived from theimam allowable energy devia-
tions. The electron bunch energy fluctuations will be mizidi by stabilizing the measured
cavity vector sum, provided the measured vector sum exegpisesents the actual vector sum.
Unfortunately, it is not possible to exactly measure thé veator sum because of calibration
errors, measurement noise, and because of errors in theldigiion process. This leads to the
statement:

e A perfect RF field regulation does not necessary lead to a&gityfstabilized beam ac-
celeration!

During this work, only the measured cavity field informat@wuld be used for feedback regu-
lation, while beam-based measurements were used to \atitatmeasured vector sum control
performance. Later measurements showed that the fieldategutould be improved by using

both, beam information and the cavity vector sum in the feelllvegulation.

For a proportional controller the residual error is redulbgdhe gain factor. Fig. 4.1 shows the
measured beam energy stability as a function of the feedipaick

4BC2 DOWN fluctuation

0.12

0.1

0.08

dE/E [%]
o
o
(o))

0.04f

0.02

0 1‘0 2‘0 3‘0 46 5‘0 60

Gain
Figure 4.1: Relative pulse-to-pulse fluctuation of the e@tbeam as function of the propor-
tional feedback gain, measured with the synchrotron rexiatamera (4BC2DOWN)

It can be observed, that there exists an optimal feedbacktganinimize the measured beam
energy fluctuation. By increasing the feedback gain, thelWwaith of this closed-loop system
increases. This further results in feeding measuremesermsck to the system input, which in
this case results in an increased beam energy fluctuatioriufber details refer to [35].
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The question is whether or not a controller can be found #dices beam energy fluctuation,
keeps the system stable, and is robust against measurenisat Performance of the inde-
pendent in-phase and quadrature proportional feedbadkotlens is limited in part because
there are cross-coupling components between the real aglnary part of the field vector as
a result of detuning effects. Since this cross-couplingughbe taken into account in the feed-
back controller design, a multiple input / multiple outpiMiIiO) controller (comp. Fig. 4.2)
is introduced as an upgrade to the existing controller,.[3Bdnsiderations of the controller
structural implementation will be discussed in the follog/section.

€ K, ~ u,;
— > —>
K12
— > K —>
€, = > Uq

Figure 4.2: Schematic view of the multiple input, multipletput (MIMO) implementation in
the feedback controller. Within the decentralized cogrdhe cross coupling componerids;
andKq» vanishes.

4.1.2 Structural design

The necessary low latency response in the control loop clgrberachieved by implementation
of the feedback controller in a digital platform based on &GR. In case of the proportional
feedback controller the implementation is very simple. @osely, the MIMO controller sig-
nificantly expands the computations to be processed, ingesduse it must implement the
cross-coupling dynamic terms. Due to memory limitationghie FPGA, each channel of the
MIMO controller is restricted to second-order terms. ThewWl controller implementation is
represented in Eqn. 4.1 as &2 matrix:

B Ki1(z2) K21(2)

7= ( Kia(2) Kaa(2) ) 7 2
with the elements
N
Kij (2) = kij Cj-Z2+dj-z1+1

(4.4)

This is a second-order digital lIR-filter having 5 free paedens per channel that must be deter-
mined by the user. The block diagram in Fig. 4.3 represergscbannel of the IR filter as it is
implemented on the FPGA.

The data processing is done in binary fixed-point arithmeticadditional scaling factors must
be applied by bit shifts in the processing units. If now theapageters are able to be chosen arbi-
trary it is necessary to implement the computation with dlsgcuracy to prevent overflowing
and precision losses. Once an appropriate set of achiepatdeneters has been found it might
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Figure 4.3: Block diagram of one coupling element in the MINE&dback controller. This
infinite impulse response filter has 5 free parameters tossghoothe feedback controller.

be possible to reduce the computation effort and theretecethe required memory size for the
implementation.

Currently the MIMO controller is implemented in series witfe proportional feedback, which
means that the amplification of the corrected signals aleded the output of the MIMO con-
troller. This has a practical benefit during testing of newtoaller parameters, because it allows
the gain to be reduced for the initial testing and hence ptdhee system against unexpected
problems. The measurement results presented in Sec. 4sheil this gain dependency. The
gain tables define sample-by-sample scaling factors &dou and hence allow gain schedul-
ing during the pulse. This may be particularly applicablemty the initial filling time and the
transition from filling to the flat top phase because it carv@ne large control error correction
outputs resulting from steep transitions in the refereabdet This topic is further considered
in Sec. 4.4. During these studies, however, the gains weteckastant within a pulse.

4.2 Controller Design

The large variety of possible design methods is limited bseaof the necessity to retain
the same controller structure as is presently implemen@mhsequently, an output feedback
scheme was selected rather than using schemes such asstiiadk or observer-based con-
trollers. The design parameters for the feedback contratie determined by the well known
mixed sensitivity oH, design method. In the following only the basic functionadbf this de-
sign method is outlined. Eventually, itis intended to auhtera fixed procedure for determining
the 20 controller parameters.

4.2.1 Standard feedback loop

Generally a control system is described by the standard&xdoop, sketched Fig. 4.4 with
C(s) the feedback controller an@d(s) the plant transfer function. The referenceefines the
trajectory of the desired system response from which thesored system outpytis subtracted
to generate the control errer The error is processed in the controller to generate amisyst
control inputu.

Real measurements are usually influenced by system disebdand measurement noise
Within this feedback loop, several transfer functions carfdund, depending on the desired
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d
r e

—0— C(s) G (s) Yo
y

n

Figure 4.4: Standard feedback loop with Controliés) and Plant5(s) and the signalsr,e,u,d,y
and n denoting the reference, error, plant input, outpaticheince, system output and measure-
ment noise contributions respectively.

input/output definition. "In the following, two basic traies functions necessary for the mixed-
sensitivity design are emphasized.

System functions

The transfer function from the disturbance input to theeysbutpud — vy is called thesensi-
tivity functionS(s) of the closed-loop system,

S(s)= (I +G(s)C(s)) 1 . (4.5)

In addition one can find another transfer function referredhie complementary sensitivity
functionT(S):

T(s) = (1 +G(s)C(s)) G(s)C(s) (4.6)

which is the transfer function from the reference inpt the system outpuyt, and is also the
transfer function for the noise inpatto the system outpwt Inspecting both transfer function,
it is clear that:

Sjw)+T(jw) =1 Vo . (4.7)

Design objectives can be formulated in terms of these tearfighctions, given as follows:

e perfect tracking: The controller should ideally keep the measured systenubotpthe
reference trajectory, which implies thats) = I.

e disturbance rejection: Real systems are generally disturbed by environmentakindie
which is given as the disturbance contribution. This disémces should have ideally no
impact on the measured output, demanding $igt= 0.

e noise rejection: Usually when generating measurements the data are noisgta by
measurement equipment. Due to the system feedback thishgrdn is applied again
to the control loop which influences the system output. Igiehke output is not affected
by the noise, demanding thats) = 0.

Clearly, the design objective of noise rejection conflictthwhe first two objectives, so it fol-
lows that a controller must be found which tracks the refegetmajectory well but without
feeding measurement noise back into the system. An additaamstraint comes from the fact
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that the actuators of the system have limited power, meahiagthe plant inputi is physi-
cally limited. This becomes clear when considering refeeetmacking, which is not possible
for arbitrary high frequencies, e.g. jumps in the referesiggmal which cannot be followed
perfectly.

The mixed sensitivity design method is used to fulfill thebgeotives, and this is discussed in
the next section.

4.2.2 Generalized plant and weighting filters

In modern control theory, the so-called generalized plsuaffien used in the controller design
process. In the block diagram in Fig. 4.5, the generalizadtpgomprises the elements inside
the dotted lines. Usually disturbance and noise contoimgtare defined as external inputs, but
in this case the desired (reference) output is given as thtesyinput. The fictitious system
outputszs andzr are filtered through so-called weighting filtéks andW .

r

el G(s) HeT—{Ws(s) s

Wr(s) =21

'y

Figure 4.5: Block diagram of the generalized plant with tlempmodel G, the controller K and
weighting filtersWs andW;. The input and output signals are the system reference mgnd
the fictitious plant outputs andzy

The general idea of the weighting filtaig andWr is to obtain a desired closed-loop behavior.
Using these filtered output signals, it is possible to shapesensitivity and complementary
sensitivity functions using the, norm. Following [32] the shaping filters for the MIMO case
usually are chosen to be diagonal as:

Wg(s):<WS(§S) WSO(S>> ; V\,ll-(s):(WTO(S> Wr0<8)) (4.8)

with ws(s) andwr (s) being scalar weighting filters for each system output. Frem S.4 it is
known that the two channels | and Q are phase rotated vedwonsghalmost the same dynamic
behavior, so it follows that the matrix of weighing filtersxdae diagonal, as given in Eqn. 4.8.
The closed-loop transfer function is then defined as:

(if) N (\\:/fgzii((?)) r (4.9)

The requirements on the closed-loop system can be achigvaessigning the weighting filters
such that the resulting closed-loop transfer functionilifthe H., constraints, as [32]:
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%%KWS(‘:W)S“."")” <1, (4.10)

usually theH.,, norm is minimized:
<WSS)
Wy

Using the weighting filters, boundaries for the closed-lt@msfer functions are defined. Al-
gorithms solving this problem will be discussed in Sec.3l.Blowever appropriate filters must
be designed first, which is discussed in the following sectio

min

) (4.11)

[o0]

Design of weighting filters

Determining appropriate weighting filters that define th&ropl controller demands a reliable
model and a-priori knowledge of the closed-loop requiretsie®uring the measurements it
turned out that the application of a second-order filter gitree possibility to test especially
influences of corner frequency and gains within the filterseing the weights simple reduces
the number of tunable parameters to a small number, whichaigtipal for implementation.
Nevertheless for future projects and with the more advasgsttm model this filters will prob-
ably become more complex, especially in the frequency raviggre resonant modes are as-
sumed. Currently these modes are effectively suppresséuelyll-off at higher frequencies
of —40 dB/dec. The transfer function of the weighting filters gireen as:

We(s) = 1 (s+ wsl)(5+ we) (4.12)

Ms (s+ ws3) (S+ wss)

e 1 (s+ wry)(s-+ wr2)
S+ Wr1)(S+ Wr2

wr (s Mr (s+ wr3)(s+ wra) ’ *-13)
where usually the poles and zeros are chosemsas= ws, etc. to have a steeper roll-off. An
example plot is shown in Fig. 4.6, where also the correspwfa(is) andT (s) are computed for
the closed-loop system.
For comparison with the proportional controller, the cbb$é@op sensitivity and complementary
sensitivity are plotted (grey). Having this comparisorsipossible to estimate the improvement
due to the MIMO controller by inspecting the defined weigbtiiters. The shaping filtenf
influences the rejection of noise and step response ovdsshydimiting the roll-off frequency
and maximum singular value df(s). Further the shaping filte/\s is used to determine the
closed-loop bandwidth and to achieve steady-state agcutais obvious that due to the de-
pendencies of both transfer functions, arbitrary shapeaatabe achieved. There are certain
limitations due to the fixed-order of the MIMO controller.

4.2.3 Fixed-order controller

The structure of the controller has already been discussgda. 4.1.2. Due to hardware limita-
tions in the FPGA, the controller terms are restricted t@otdio, which also limits the number
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Figure 4.6: Singular value plots of the shaping filters &®j andT (s) of an example designed
controller in comparison with the P controller.

of parameters to be determined. However there are no restiscon the order of the plant
model that is required for the mixed sensitivity design, eftis typically chosen to be higher
than that of the controller. This requires application oégorithm that solves the problem of
Egqn.4.11.

Usually inH. controller design methods it is necessary to have the sadex tor the model
and the controller. However the so-called HIFOO algorittan solve fixed-order stabilization
and local optimization problems based on techniques likesigNewton updating and gradient
sampling methods, [40]. In practical application this aition demands as input values the
above-described generalized plant along with the defineghtiag filters. The algorithm starts
the searching method with 3 arbitrary sets of parametensg asgradient-based search method
to find the optimal set within the given constraints. Furttletails about the search procedure
can be found in [41], [42]. Rather than using arbitrary stgrvalues, the computation time can
be decreased by starting with parameters from a previougrdsgstem model. The weighting
factors in the controller design are chosen such thatithenorm is fulfilled and the desired
closed-loop performance is achieved.

It is practical to begin the design process with "weak” weiigd filters such that a set of use-
ful controller parameters can be easily found. Design caimgs are subsequently tightened in
order to achieve a higher closed-loop performance. For ¢énmanent implementation of this
design method for the real plant, a standard procedure dgligutiefined in order to automate
this. For example if the model has been changed over timecause of different machine set-
tings, it might be necessary to update the controller paterseln addition it is necessary to to
convert the computed continuous-time controllers to af#isarete-time values before upload-
ing them to the plant. For the realization of this design radiiMatlab has been used, but for
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permanent implementation it might be necessary to coniertd plant specific programming
language. In the following the measurements are preseatdtié¢ controller implementation
on an example set of controllers.

4.3 Measurement Results

A large variety of the designed controllers have been testethe real plant, but because of
limited access to the plant, many tests had to be performiideotising data from previous
runs. Furthermore interfaces and procedures have to beediakt in order to apply the design
parameters to the real plant. It was necessary to gain exmerifor estimation of the applica-
bility of the controllers, e.g. judging by simulations therfprmance or the correct settings of
the weighting filters. A major improvement was the implenag¢ion of a copy of the control
system (the so-called development system), installed nialle&to the real one. This system
was used for controller development and for preparing &uitudies. A second benefit of the
development system is that it can be used as an externaldndept observer to measure the
controller performance. In addition, electron beam diagies provided another independent
measurement of controller performance.

Before showing the actual measurements, difficulties aatmtwith limited testing time and
susceptibility to incorrect controller settings will besdussed and methods of evaluating con-
troller performance will be introduced.

4.3.1 Controller application test

For a complex machine such as considered here, the corsldi@nlimited by the physical
bounds of the plant and the need to protect the plant froompiatly serious damage or equip-
ment down times. For example, an unstable controller migatl Ito high gradients in the
cavities, yielding to quenches in the machine. In this cageiconductivity tends to break
down and the cryogenic system, raises an interlock for th@evmachine until this subsystem
recovers, which might take hours. To prevent these scejatiis necessary to find an appro-
priate way of testing the designed controllers. Closingneffeedback loop is done by smoothly
increasing a proportional gain factor in order to detecspus instability. In the measurement
results presented in Sec. 4.3.3, this gain sweep is furtest for controller comparison.
Furthermore it was tested if the simulations can be used tim@e the weighting filters con-
cerning the performance tests on the real plant, which has béescussed in detail in [37]
and [44]. Concerning the idea of having a frequent contralj@ate by changes in the sys-
tem or large setpoint variations, it is necessary to devalogiable procedure of the controller
parameter estimation, based on the new model of the planSgse. 6.2).

4.3.2 Performance definition

To characterize the controller performance, measurenréatia must be defined that distin-
guish between the two controller design objectives. Thairements defining the deviation of
the measured RF field from the reference trajectory duriegltt top. This is also described
as the field stability as it was introduced in chapter 1. Itnewn that the measured vector sum
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signal is corrupted by measurement noise contributionsif &aly the rms value of the field
error is taken, it is not fully representing the field erroside the cavity. Nevertheless large
imperfections are penalized during the analysis by the mas eaused by instabilities or large
field excursions. The relative rms amplitude variatid\/A),ms can be measured as:

AA 1 R
— = — )—r , 4.14
A >rms rA\/ Z ya(n) —ra(n)) (4.14)

and for the rms phase variatigAP),ys as:

(OP), s = \/ Z yp(n) —rp(n))? . (4.15)

Hereya(n) andyp(n) denotes the measured vector sum for the sampling instaramplitude
and phase respectively. If only extracting the flat top regibe summation is given from 1
to the flat top lengtiN. This has to be shifted about the filling time if the whole pulsngth

is considered. The reference trajectory is similarly defjrathough it is assumed that the
reference is constant during the flat top, witlin) = ra as given in Eqn. 4.14. For normal
operation it is often the case that the amplitude and phassumement show slopes over the
long flat top due to detuning effects. When the entire flat ®paken into account in the
computations, the data must be detrended before comphtmgts error. Usually it is possible
with an optimal feedforward signal to keep the field almodtdiaring the pulse, as it will be
discussed in chapter 5.

The second criterion is related to the long-term invariasfdbe vector sum. Often the machine
is running in a single bunch mode, meaning that during a putéeone bunch is accelerated.
In these cases, the flatness of the RF field within a pulse ised@tant, but variations from
pulse-to-pulse still must be minimized. Therefore, a métisoneeded to quantify the pulse-
to-pulse variation. Equivalent to using rms as a measurewifestability during a pulse, the
relative pulse-to-pulse amplitude variatighA/A) op can be measured as:

AA 1 N

2
<K> 2 “ra\(M z ( z ya(n,Kk) —ra(n, k))) ; (4.16)
pZp

and for the pulse-to-pulse phase variatig®) po, as:

2
<Ap>p2p: |V| Z ( Zl YP n k) _rP(n k))) ) (4.17)

whereya(n, k) denotes the measured amplitude vector sum for the samplétaritn and the
pulsek. The phase notation is defined similarly. In contrast to the variation defined pre-
viously, pulse-to-pulse variations are measured using thrd mean value of the vector-sum in
order to reduce the high-frequency contributions to thel fetor during the flat top.

In the following, three example controllers are presentegite an overview of the performance
improvement using a MIMO controller instead of the propamrtl feedback controller.
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4.3.3 Controller comparison example

Rather than presenting results from the large variety ofrodiars tested, three examples have
been chosen to demonstrate the performance improvemémesed using the complex higher-
order controller. To allow a comparison, the model used $tin@ation of the controller param-
eters has been retained. The variance of the controllelises @y the weighting filters used
in the design process. As an example four different comrslare compared, which are the
usual proportional feedback plus three designed contsadiéfering due to different bandwidth
used in the shaping filters of Eqn. 4.12, wheref2 = wg; = We. Typically, a gain sweep was
performed in order to determine the optimal controllerisgitmeaning that the proportional
gain is incrementally increased and the field error meast@dcomparison with the estimated
MIMO controllers presented now, the gain factors wereaflitiscaled down and subsequently
increased to the designed proportional gain factor. Furibee it has to be mentioned that al-
though I and Q are the controlled field components, for therd@hation of the field regulation
quality, the amplitude and phase are taken and therefargatsented in Fig. 4.7.

<107 RMS field stablity
A
< 2‘: t“\“
~ 'Y \“
<l
W
:'l > \ .-t
B \\ k PR EEL L
.\\ ‘\‘~ - ’.-f_f;;.-‘.‘:‘wh
1 S :'fioi;q.u-.muh-hm»dﬂ.lﬁ.lwq- ae T i'Ei"‘--‘"’“'¥""¥w’? et |
0 50 100 150
0.02r wm
n - - -P-Controller
p ---MIMO (fs = 2)
| - ---MIMO (fs = 2.5)
g0 0.015 f. - --MIMO (fs = 3.5)
el i
) \
Q by
0.011- e .
Q&ﬁ -~ "P ‘
\‘\*E? b z€ e g ":‘:::"": _;**-:—*'.
e et v s 2 v e e B TR R E SRR 1
0.005 ‘ ‘
0 50 100 150

Gain

Figure 4.7: Comparison of the rms stability during the flgt tor three different MIMO con-
trollers and the proportional feedback as function of tleglfeack gain.

It can be clearly seen that the rms field stability for ampl&@and phase does not significantly
differ for all controllers. The minimum achievable valueletermined by the residual influences
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from the measurement noise. The single dots denote indiVideasurements, while the lines
represent the mean over 20 pulses.

When the proportional gain is increased, the closed-looplWwalth also increases, leading to
growing field excursions as can be seen from Fig. 4.7. Thesesikeursions are caused by the
feedback of measurement noise in the system. Furthergmeﬂode leads to growing oscil-

lations (see Fig. 3.15), until the closed-loop system gewtable. To this point, the designed
MIMO controllers do not show significant improvements in thes error since high-frequency
measurement noise dominates the field error signal.

The second controller task was to reduce the pulse-to-fiuistiations of the measured RF

field. Measurement results of the pulse-to-pulse fluctnatare shown in Fig. 4.8 for the same
controllers as in Fig. 4.7.
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Figure 4.8. Comparison of the pulse-to-pulse stabilityhedf mean flat-top for three different
MIMO controllers and the proportional feedback as functibthe feedback gain.

By contrast with the rms field stability, the pulse-to-putsability shows significant differences
for the compared controllers. The gain sweeping range #ptbportional controller is smaller

then for the MIMO controllers. During the measurementshhiggains have not been tested
because the vector sum started to build up oscillationsemdied to get unstable. It is easy to
observe that the MIMO controller with the shaping filter carfrequencyfs = 3.5 kHz gives

63



4.3. MEASUREMENT RESULTS CHAPTER 4. FEEDBACK CONTROL

the smallest relative amplitude error for small gains, wehsrthe proportional controller has
the worst amplitude stability. For the phase, the errordese significant but show the same
behavior. In this case the improvements due to the highsgrarontrollers compared to the
proportional feedback controller are easily visible. Rartit can be seen that increasifigalso
enhances the performance especially for lower gains. Asiaetpience of the measured rms
stability given in Fig. 4.7 the last (black) estimated cofiér is used with a proportional gain
factor at about 46- 50 (half the gain as estimated by the design procedure).

Other measurements have been performed in addition to tlasureaments shown for these
three example controllers. A digest of measurements caonlelfin [37], [43] and [44]. The
conclusion is that the best improvements in pulse-to-pillstuations come from the higher-
order controllers with higher low-frequency gain. Thematy it would be possible to achieve
these reductions with the proportional controller as weli{ the growing rms field error is
not acceptable. The steep roll off at the closed-loop badithnallows to achieve the noise
suppression in combination with the high low-frequencyngai

Verification with electron beam

The performance of the RF field regulation is measurablelnyystg the electron beam deflec-
tion in the bunch compression section (corresponding tontergergy), and hence it provides an
independent measure of RF field regulation in the up-stream@l@rator module that was being
controlled by the MIMO controllers. For more details abdw quipment and technique, the
reader is referred to [45], [46]. In Fig. 4.9 the results dreven as relative beam energy stability
vs relative pulse-to-pulse amplitude stability of the mgad vector sum. In a similar way to

the field measurements presented in Sec. 4.3.3 a compadseedn three designed controllers
and the proportional feedback controller is shown.

It can be seen that the controller with the lowest amplituderedoes not have the best beam
stability measurement. This might be due to the discrep&mtyween the measured vector
sum and the beam energy and the limited accuracy in the neasuats. To investigate this
assumption, additional measurements would be requirédhese have unfortunately not been
possible so far. Nevertheless, Fig. 4.9 shows that the wegdigontrollers improve the beam
energy stability as well as the field amplitude stabilityeTdontrollerC3 has a meaAE /E ~
1.3-10"%atAA/A = 4.4-10-°, which is below the requirements defined in chapter 1.

Nevertheless the improvements to the beam stability arenmotense compared to the pro-
portional controller as it might be expected. But with thedabimprovements introduced
in Sec. 3.4 it might be possible to enhance the controllerels W turned out that the high-
frequency noise contributions are the main disturbanceceda be suppressed by the controller.
This conclusion raises the question if a conservative l@gbidter in the feedback loop would
also fulfill the same requirements as the complex designettaters. Tests have been made,
showing that with filtering only the achieved performanceas comparable with the designed
controllers. So far the presented data are derived fromh@EC1system as the main exam-
ined plant. In the next section, a brief account of the deajgplied to a different system will
be discussed.
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Figure 4.9: Relative beam stability as function of the meaduelative vector sum amplitude
error. The points give the actual measurement whereas tisees give the standard deviation
of the points for beam and amplitude stability

4.3.4 Measurements from the3.9 GHz module

At the time of writing, a new “third harmonic”.9 GHz accelerating cavity is being installed
at FLASH immediately downstream of ti&CClaccelerating cavities in order to linearize the
longitudinal phase space of the electron beam. With theogpiatte relative phase and ampli-
tude settings the performance of the FEL is improved. Faildathe reader is referred to [47]
and [48]. From the perspective of controller design, theeesmme differences in the third-
harmonic system compared with the other modules, for exanspime changes are necessary
to the cavity field probe signal chain because of the highefr&fuency. The main difference,
however, is the system dynamics because the cavities hagaer thandwidth due to the lower
QL ~ 1.3-10°. Nevertheless, the same process is used to design the nasia bontroller,
albeit with different input parameters, meaning that tr&tesyn model was estimated according
to the steps presented in Sec. 3.2 and the controller desagmding to Sec. 4.2. Analogous to
the estimated controllers in the previous section the nreasents were done as a comparison
to the designated proportional controller. Unlike pre@gmoeasurements, however, tests on the
third-harmonic cavities were performed in a high power R§t stgand without beam (still suf-
ficient to measure RF regulation quality). The conditiormrsni@asuring the field stability were
kept unchanged, i.e. measurements of RF flat top and puigelse stability used the same

65



4.3. MEASUREMENT RESULTS CHAPTER 4. FEEDBACK CONTROL

formulae given in Fig. 4.10 and Fig. 4.11.
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Figure 4.10: Comparison of the relative amplitude errottsvben the MIMO Controller and a
gain sweep with the proportional feedback controller. it ba observed that the proportional
feedback gains a better pulse-to-pulse stability witheasing the gain (marked as dots). This
unfortunately also increases the measured RMS error délah¢gop. The MIMO controller
(marked as triangles) which has only one optimal gain, fslfiie pulse-to-pulse requirements
without increasing the rms error during flat top.

Sweeping the feedback gain of the proportional controbewsed that the gain is limited by
the predicteog rm-mode and the system is more sensitive at higher gains dine teitler cav-
ity bandwidth. The influence can be clearly seen by the flatstapility in the amplitude of
Fig. 4.10, where for high gains the rms error grows to unaeds levels and beyond the levels
measured during open-loop operation. By way of comparig@pest performance achieved
using the MIMO-Controller is given as the points at gain 1eHetual values are given within
the figures for direct comparison. Here the improvement dubé MIMO controller is more
significant than in the case of the31GHz system. The smallest flat top error with the pro-
portional controller is achieved using a feedback gain betw05 — 2, but for this setting the
pulse-to-pulse stability is worse than with higher gaimscdéntrast, the MIMO controller com-
bines the two objectives in the best condition regardindheofield stability in amplitude and
phase. The improvements using the complex MIMO controllemaainly the result of higher
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Figure 4.11: Comparison of the phase errors between the MM@Xroller and a gain sweep
with the proportional feedback controller. It can be obsdrthat the proportional feedback
gains a better pulse-to-pulse stability with increasirgghin. This unfortunately also increases
the measured rms error during flat top. The MIMO controllea(ked as triangles) which has
only one optimal gain, fulfills the pulse-to-pulse requiets without increasing the RMS error
during flat top

gain in the low-frequency range and the lowpass charatiteasthe controller, which filters
high-frequency noise and especially the frequency camiohs from exciting other modes of
the system. Frequency spectra of the controller | and Q ésigme shown in Fig. 4.12, which
confirm that high-frequency noise is amplified by the cotgrdr higher gains. The bode dia-
gram of the presented controller is given in the appendix &ig and detrimental effects from
aliasing are discussed in detail in Sec. 3.3.5.

It is evident from the figure that the main differences betwde two controllers are in the
frequency range above 40 kHz where the higher-order MIMQrotiar suppresses the signal
but the proportional controller adds peaks at about 50 kHazis €ffect was also visible for
the 13 GHz system, but the disturbance suppression is more clisgnn the 39 GHz case
because of the higher bandwidth.
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Figure 4.12: Comparison of the spectral components of tmdraker output between the

MIMO and P-Controller at the gain with highest pulse-togmulstability (compare with

Fig. 4.10). Due to the bandwidth limitation in the MIMO, isetloutput at frequencies above
40 kHz suppressed compared to the output of the P-Controller

4.4 Conclusion and suggestions

Experience from the feedback controller design can be suinettthrough the following state-
ments.

1. A model based feedback controller design was tested ssittky for two different kinds
of RF feedback systems on a real plant.

2. The second-order MIMO controller improves the field regjoih of theACC1system to
an amplitude stability of 5-10~° and a phase stability £ 0.003 for pulse-to-pulse
fluctuations. The flat top rms stability does not show sigaiftamprovements.

3. The best achieved pulse-to-pulse beam energy stabilitytiae designed controller was
measured at 1.3-10~%

4. For the 3 GHz system, the improvement in RF field regulation is in ttdeoof 10 over
the proportional feedback controller!

Such results could be achieved even with the simple lowpessra model and a corresponding
simple weighting filters, and it is anticipated that furtimaprovements in regulation would be
achieved by using a more complex plant model and a highesr@ahtroller.
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The main conclusions to be drawn from the designed contsoidethat the primary source of
instability is excitation of system modes other than thedhamental from high-frequency noise
injected into the system by the controller, which means ithe@teasing the proportional con-
troller gain to achieve stable pulse-to-pulse conditicass & negative impact on the flat top rms
error by inducing oscillations. In addition, the digitaton process and corresponding alias-
ing effects lead to oscillations of tk@n—mode whose influence on the driving signal cannot
be neglected. Discrepancies between the measured veotarslithe vector sum seen by the
beam and their influence on the RF feedback system are notul)eufderstood since mea-
surements of the electron beam energy show that perfect RFdgulation does not necessary
lead to a perfect beam energy stability. Rather it could tsenked that, for long-term mea-
surements, the detected and regulated vector sum can betkbj#, but the observer system
detects drifts which are correlated with the beam energysoreanents and with changes in
humidity and temperature. Clearly reference tracking oaie guaranteed even with a good
controller when feedback signals are measured inaccyrddelft compensation applications
are currently under development. To overcome this drawhiagkssential to incorporate beam
energy measurements into the feedback controller. Clyréns is achieved using an energy
control loop on top of the RF field control. In this implemedrda it cannot be guaranteed
that both control applications do not influence each otheckvimight cause instabilities, but a
combined controller concept has to be developed such teafitMO controller is extended in
order to incorporate beam information as well as the RF faeklbFurther considerations on
this can be found in chapter 6.

In the next chapter, we will discuss suppression of predietpulse-to-pulse disturbances using
a sophisticated pre-compensation on the feed-forwara drMso discussed is the combina-
tion of this feedforward compensation with the feedbacktiaier concept, which efficiently
achieves the required regulation performance.
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Chapter 5

Iterative learning control

The low bandwidth of the feedback loop and limitations ondgha of the feedback controller
lead to residual field errors that are not suppressible isecldoop operation. Open-loop con-
trol, also known as feedforward, is used to bring the syst&sec to the reference trajec-
tory, thereby reducing the error for the feedback controliethe present implementation, the
feedforward drive remains unchanged from pulse-to-puidess the machine operators apply
changes to the configuration. This lack of automation raiseguestion of whether or not the
feedforward can be better optimized with automated contrélirther decrease the remaining
control error. Since repetitive disturbances are preblietahey can be suppressed by automatic
tuning of the feedforward drive.

Iterative learning control algorithms provide the necegsantrol theories to realize automatic
feedforward tuning. The principles of learning control@ithms were originally developed
to control processes akin to robots fulfilling circular piakd place tasks. Applications can
be found in [49], [50] and [51]. The routines are derived frospetitive operational proce-
dures where an unchanged reference trajectory is cyclddrigrtime. Predictable disturbance
sources arise from the physical properties like inertiaciwhead to control errors or slowing
down the operation speed. These influences can be supplssiezaning from previous errors
and using that information to optimize the control signgg].

The task for RF field regulation is analogous to the examplh@frobots. In the case of RF
control, the predefined setpoint trajectory has to be faidwithout deviation. Repetitive dis-
turbances as well as non-optimal initial feedforward sgicause deviations from the setpoint
trajectory and need to be minimized. Therefore, the idedhisflearning algorithm is trans-
ferred to this system and implemented to improve the RF fegdlation.

This chapter is organized as follows. First, general priogeof the iterative learning control
algorithms are introduced in Sec. 5.1. Disturbances whieheapected to be suppressed are
summarized and some considerations about the implemamtati the systems are mentioned.
Subsequently, the measurement results are presented.if.3eThis encompasses both open-
loop and closed-loop measurements with the proportiomalldack controller. Afterwards, the
combination of the MIMO feedback controller and the ILC iseagi in Sec. 5.3. Regulation
performance for the RF field and the electron beam energy,eflsaw the long-term conver-
gence is discussed. Finally, the main results are sumntbaizé considerations regarding the
implementation for regular machine operation are preseint&ec. 5.4.
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5.1 General properties

Iterative learning controllers (ILC) are used to contrgdeBtive processes consisting of a num-
ber of trials, each representing the same procedure. Sheceavities to be controlled are
operated in pulsed mode, meaning that every specific tintarins the same RF pulse is gener-
ated, the accelerating process is considered to be repetiioreover, some of the disturbances
appearing during this operation are repetitive as well,Grdbe predicted for upcoming pulses
as long as the operation conditions remain unchanged. fionerehe application of the ILC
technique is considered to be feasible for the RF field chntndhe following the general idea
of an ILC is presented.

5.1.1 Repetitive disturbance

An overview of the disturbance sources, including the maintigbutions of repetitive distur-
bances have been introduced in Sec. 2.2. These unavoidahlebdnces are caused by the
properties of the plant, or due to the relation to the aceétam process like beam-loading ef-
fects. Additionally, there exists further contributiorsthe resulting field error. Several are
not fully compensated, or they are actually introduced leyfdedback controller, e.g. transi-
tion overshoots due to closed-loop operation of the systensummarize, the main sources of
repetitive field errors to be compensated by the iteratiami@g controller are as follows:

e Beam-loading effects during the flat top, including the bé&am-on transient, that can not
be compensated by the feedback controller due to the lowtadtideven in closed-loop
operation

e Lorentz force detuning, introducing slope on field phase amglitude if not compen-
sated by active mechanical suppression (main open-lodpat@nror contribution)

e Overshoot in phase during the transition from filling to fl@ phase caused by the feed-
back controller and klystron phase jumps, due to switchiregatower to ¥4 from filling
to flat top

e Non-optimal feedforward configuration, especially in tla fbp phase to keep the control
error small to the feedback controller

The first two items have been discussed in detail in previeetans, while the latter dis-
turbances are described here. The typical feedforwardakluas a significant step transition
from the filling to the flat top phase. This feedforward trépeg was derived from the desired
cavity fill time and beam-loading compensation assumptimage when designing this ma-
chine, [9]. From control point of view, step transitions Batrong impact on the system due to
their broadband excitation. Furthermore, additional dragks arise in this application largely
because of the klystron. The power ratio between filling aatitip in open-loop operation
is Prilling =~ 4 - Priattop, @nd this step change in power causes changes in phase dystrerk
output. Both control channels are affected by this phaseg#hdue to the IQ control scheme.
The ILC should also compensate for deviations from the esifez field trajectory during cavity
filling. For example applying a pre-detuning to the cavityprder to keep effects of LFD small
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during the flat top has an impact on the cavity fill time, anddeechange the trajectory during
the fill time. The impact of LFD on field errors are particujeglident at the end of the flat top
where detuning effects are strongest, which is easy to ebseiSec. 5.2.1.

Beam-loading effects contribute largest to field errors aredthe most important disturbance
effect to be compensated. When the machine operates wihadéunches in a single pulse, it
is generally the requirement that all bunches have the saotesiation voltage, leading to the
same energy gain for all bunches in the train. By extractimgrgy while passing through the
cavity, bunches introduce field errors that would cause esylosnt bunches to have a smaller
acceleration gradient. This effect continues over thaembtinch train, which results in strong
differences of the accelerating voltage from the first tol&ts¢ bunch within this train, as illus-
trated in Fig. 2.13. The induced field error depends on thelbuapetition frequency and the
charge of the electrons. Especially for high charges anl regetition frequency, compensa-
tion of this beam-loading effects is necessary for machperation. In Sec. 5.2.2 and Sec. 5.3
compensation of this effect using the ILC is presented.

5.1.2 Overview of iterative learning techniques

Various concepts for iterative learning control algorighooncerning the application to be used
can be found in the literature, e.g. a nice overview can badan [53]. The idea is to take
information from previous trials to optimize the contropurts on the next trial. Clearly, only
repetitive disturbances can be suppressed through thiigdggorocess. In the general form, a
P-type iterative learning control algorithm can be writéex) [54]:

Uera(t) = Q(Ue(t) +Lec(t)) . (5.2)

whereQ andL are filter matrices of accordant dimensions. The trial nunibgiven byk,
whereas the sampling instant within a pulse is denoted lythis work only a P-type algorithm
is considered, although extension to a so-called D-typerdlgns would be possible. Higher-
order algorithms consider additional previous trials a#l a& the most recent, [55]. Analog
to the feedback controller, the ILC can be seen as a pulpedse feedback, calculating and
updating the feedforward signal before the next pulsesstdid address more complex system
dynamics, model based algorithms can be found, which inlsitgses generate an inverse of
the system moddl = G~1, where G denotes the plant, [56]. This requires exact kriyde
of system dynamics, something that is not generally the fraseal applications. Ideally the
errors will become progressively smaller from pulse-téspiso the feedforward changes will
approach zero, which means that the algorithm convergearttsnhe optimal input signal. A
convergence criterion based on the norm of the control &miven as:

|le&x|]] = 0 ask— oo ke N | (5.2)

with ||ex|| thel>-norm of the control erroe for the k-th trial. The procedure to determine the
filter coefficientsQ andL is the task for the algorithms. Several approaches can belfou
the literature, for example, [57] and [58]. Further a largeiety of studies to application of
different kinds of algorithms can be found [59], [61] and J60n the following section, an
algorithm is proposed that is based on minimizing a quadcaist function, see [64].
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5.1.3 Norm optimal iterative learning control

In this section, the basic derivative steps are outlinedHerproposed iterative learning con-
troller. Further details can be found in [64]. This modeséa algorithm has been chosen
because it can achieve fast convergence with small compuifort between two subsequent
trials. Furthermore there is already a proposal for a fastior of the algorithm in [62], which
minimizes the computation effort between two trials by coimg the necessary matrices be-
fore the iteration starts. The algorithm provides curreial feedback mechanisms combined
with feedforward of previous trial data by splitting the twlonensional dynamics into two
separate one dimensional dynamics, [64]. It is possibleatize this approach by separating
disturbance suppression between the feedback and feedtboontrollers in the frequency do-
main. The allocation of controller actions is discussedrlathen introducing the update law.
Furthermore, since this algorithm is based on the systenemibds consistent with the model-
based design approach that has already been applied todtiieafek design. The identified
state space model of the plant was introduced in Sec. 3.4dlisegiven by thee discrete time
state space matricéds B,C. The control signals remain as they were described in thaqus
chapter, and the basic ILC requirement is defined as:

lim y(t) =r(t), lim ug(t) = U (t) (5.3)

k—s00 k— o0

whereyy andr is the measured system output at the tkiahd the desired reference trajectory
respectivelypy is defined as the system input amgl is the learned control input. All discrete
time signals are given as a function of the sampling intetrveith t € [0,N] (hereN = 2048)
sampling steps within a pulse. In order to be able to computgpéimal input signal, a criterion
has to be determined which defines the goal of the controlaadiallocates the quality of the
input. This is done by minimizing the following minimum-moroptimization problem:

U1 = argmiT{JkH(Ukﬂ) te1 =1 —VYks1) (5.4)
+

with the performance index

M
Jea(thi) = 5 3 @O0+ Bia ()~ (O WO o) ~ud)] . 69
t=

wheree, = (g eQ)T denotes the tracking error vector signal of the desireédtajy of thek th
trial, for the I and Q channel.

The quantitie®Vy (t) andWs(t) define weighting matrices of appropriate dimensions Wilt) >

0 andWx(t) > O for allt. By selecting the matricash (t) andWa(t), the (k+ 1)th trial control
input is determined which reduces the tracking eeroran optimal way, while keeping the de-
viation from the control input used kth trial small. The full derivation of the update equations
given in Tab.5.1 can be found in [64]. The basic idea is to edr& non-causal representation
by transforming the costate system used for the updateiequato a causal system that can
be solved as introduced in [64]. In order to derive the upda#ices given in Tab.5.1 the well
known discrete time Riccati equation has to be solved.
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First level (before operation):
K(t)= ATK(t+1)A+CTWy(t+1)C
—[ATK(t+1)B- {BTK(t+1)B+Ws(t +1)} 1
BTK(t+1)A] ; K(N)=0

a(t) = {1+K(0BW ()BT}
B(t)= a(t)AT
y(t) = a(t)CTWy(t+1)

Second level (between trials):
Sra(t) = BO&ksa(t+1) +yt)e(t+1) ; &ka(N)=0

Third level (between each sample interval):
Ukea(t) = Uk(t) = A () {Xera(t) —Xc(t)} + @(t)Ea(t)

Table 5.1: Summary of the control law used for the ILC, [66]

Both The Riccati gairK(t) and the the predictive update componént; (t) are computed by
the backward computation, having instead of an initial, alfualue ak(N) = 0 andéy1(t) =

0, with N giving the final sampling instant. The solution hasiajor drawback for practical
implementation due to the large amount of computationarefi/hich has to be performed
between two trials. Therefore in [62] the so-calleast—Norm—Optimal Iterative Learning
Controller (F-NOILC) was introduced which minimizes the computatifforé between two
trials by offline calculations before the iterations hawetstd. The update equations are given
in Tab. 5.1, where they are grouped in Levels according ta&vimethe cycle the computations
must be performed. Figure 5.1 shows a sketch of the levelitiefig, as applied to the pulsed
operation in this application.

2nd level

/ \ 3rd level

1st level

t
Figure 5.1: Sketch of the level notation given in Tab. 5.1

The algorithm is divided into three levels, where the firsteleconsists of computations that
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can be done before the adaptation starts, such as calcutstiarious matrices that remain

unchanged. In the second level are those components thabemguted between two trials,

such as the calculation of the predictive component. Thatisgnals with a state feedback
component are computed during the third level, which cpoaeds to the time available for

computations between each sample of a trial. The algorithis @& presented in Tab. 5.1 can

not be implemented on this plant, since the full state kndggeas it is presumed here cannot
be provided. This and other practical limitations are désead in the following.

5.1.4 Limitations for the real plant application

The algorithm introduced could not be realized without giag the existing fixed controller
structure that is implemented in an FPGA. This algorithno @ssumes full state knowledge,
but it is claimed that this state feedback scheme can beceglay an output feedback scheme,
specifically the MIMO feedback controller that was introddadn the previous chapter [64].
Observer-based methods might be suitable for future agipdits, but they are not considered
here.

For the first simulations and tests, the states were estihadiene using model based simula-
tions which turned out to be impractical for this applicati§28]. It has been studied that the
measurements made on the plant showed best results wheaattndifference remained small
and therefore have been neglectful for the algorithm. It desded to implement the ILC on
the plant without state feedback, meaning that the matrx 0. This is rather a heuristic fix,
which turned out to be practical in the real application. i@ptity proofs for the original algo-
rithm do not apply in this case. Nevertheless the applioat@as been successfully tested and
for later examination either state estimation by obsebased methods or other ILC techniques
have to be tested, [29].

Substituting the state feedback for output feedback mdwighe third level computations of
Tab. 5.1 can be moved to the second level, and the computaiobe performed from pulse-
to-pulse, while intra-pulse feedback is done by the MIMQdtesck controller. Consequently,
the update equation reduces to:

U1 (t) = Uk(t) + @(t) Geat+1) (5.6)

with the predictive componerdf, 1 and w(t) computed as defined in Tab. 5.1. Therefafe,
has to be evaluated first due to the fact that this is a nonat@esnputation with a terminal
conditioné(N) = 0. The update law requires only matrix multiplications, @his feasible
for real time applications and implementation, [63]. In@rdo combine the ILC algorithm
with feedback controller, the update equations must be cbaafrom the closed-loop system
model rather than the open-loop plant model. The time sealéferent for the two controllers,
because one is active when the other controller remainsamge: the ILC acts on the feed-
forward input to the system between pulses and the feedlaukotler acts intra-pulse. The
end-boundary condition for the ILC forces the last samplineffeedforward control to remain
unchanged. From the overall system perspective, the fiedd naly be controlled during the
flat top phase, and since the decay phase need not be cahtrtbiéefeedforward input and
the feedback are both turned off. As a result, it is suffictertompute the update corrections
for just the flat top and filling tim& = tyijjing + triattop — tstart: Wheretgar is taken as starting
offset at the beginning of the filling phase. This startintgetf is needed for practical reasons,
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because the control error is large at the begin of the fillimgse ant it must not be compensated
either by the feedforward or feedback controllers. A typstarting time for the ILC has been
chosen to bésa = 250us after the pulse starts, which is half of the filling time. Tkequired
computation steps are listed below.

1. Computation of the matricék y, w depending on the state space system matrices, weight-
ing matricedV; andW; and the time span defined for the update.
(= this procedure has to be done once when initializing or réstpthe update)

2. The control errog(t) saved in the FPGA after the pulse, has to be readout by theotont
system. The previous feedforward inpy(t) is stored inside the memory.

3. Once the datais available, the predictive compoé&en((t) is computed using the control
errore.

4. The new control inputi1(t) is computed from the old feedforward inpug(t) and

ke (t).

5. The new controller input has to be uploaded to the FPGArbefe next pulse starts. The
system will be operated with the new feedforward signal &mhs 2— 5 are repeated.

Normally, one would expect that the feedforward tables greated on consecutive pulses.
However, the present controller structure inside the FPS&Aat able to do the calculations.
They have to be computed on a server that provides all tables processed inside the FPGA.
These tables are written in registers and transferred gffraie communication interfaces.
There is a fixed and limited time available for communication processing since the con-
troller must operate at a fixed pulse repetition frequent¢yz(presently). If the update is not
computed fast enough, old tables will be written and the tgp@eocess will get out of step.
The choice of algorithm, processor performance, and spleashamunication are all important
considerations if pulse-to-pulse adaption is required.ddtermine the convergence speed of
the algorithm, the iteration steps instead of pulses haee beken. This allows to be indepen-
dent of transmission time variations from one step to thd.nAxlditional considerations for
the future permanent implementation are given in Sec. 5Rrdt the measurement results are
presented in the following section.

5.2 Experimental results

The measurements are taken from the same plant as it waduo&d in the previous chapters.
Usually the ILC would update the original feedforward tabésery adaptation step. However,
by directly overwriting this tables, the influences to maehoperation are significant, e.g. in
case of malfunctions the original tables are incompletelraritten. Furthermore, by phase
or amplitude changes the original tables are set back lgadiwrong adaptations. Introducing
additional correction tables that will be added to the ordjfeedforward tables overcomes this
drawback. Therefore the algorithm is started always wittieiizero vectorg(t) = 0, whereas
the usual feedforward is left. In the following, the corientinput is denoted agcor. The
error data are readable after the pulse through the constdi®s. All processing steps are done
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in Matlab. Due to the fact that the tests have been made netsagly from pulse-to-pulse,
also several data sets could be taken to average the contgl keeeping the high-frequency
noise small. The convergence speed is thereby describdugk ifolowing by the number of
iteration steps. Next the ILC algorithm is presented as amdpop adaptation and in addition
in closed-loop, which is more feasible for the usual operat[43]. Closed-loop in this case
means the combination of the ILC with the proportional fesmko The combination with the
MIMO controller is presented afterwards in Sec. 5.3. Thegh®ng matriced\, and\W, have
been chosen in a way that the adaptation is fast enough wigfeting unstable. The possible
time dependency df, andW, as given by Tab. 5.1 has been tested, but for the following
presented results they are chosen as:

W =qgxlI, W =1 , (5.7)

with g giving a scalar weighting factor. This scalar factor is ntted to provide machine oper-
ators a "tuning knob”, as it is discussed in Sec. 5.3.4. Ferdsults presented in the following
a practicable setting has been found vejta 100.

5.2.1 Open-loop adaptation

For the first tests on the plant, adaptations in open-loogwene to check that the algorithm
is valid and that it gives results comparable to simulatiarigch have been shown to converge
even with adaptation of the beam-loading effects, [28]. Gensation of beam-loading was not
tested in open-loop operation due to operational limitetiof the plant. Without the feedback
controller the risk of so-called beam losses is high andefioee the electron beam with less
charge and number of bunches can be turned on for short tityie on

The main source of repetitive disturbance is the field ingagidn due to LFD, which introduces
significant field errors, particularly at the end of the flgt tehere detuning effects are largest.
Whereas the field error must be as small as possible durirgetia transmission time only, the
feedback controller is compensating during the whole RBeularge control errors demand-
ing strong feedback controller action for compensatiore gbal for the ILC is to minimize the
control error, reducing the actuator gain given by the fee#llcontroller. This allows to keep
the closed-loop bandwidth small in order to prevent oswdfes. The open-loop measurements
presented here are the first measurements made with the litkisoplant. In this case, state
feedback was implemented in offline simulations, which wéoduced to omit when combin-
ing the ILC with a feedback controller, [28]. The correctioithe lorentz-force-induced field
decay during the flat top is compensated, as can be seen iB.Eig.

The adaptation is done during a part time of the flat top fohlebiannels only. One can easily
observe that the field error at the end of the flat top is alrdedyed within one iteration step
for the | channel. Within only 10 iteration steps the updalesost converged and the measured
output has reached the reference trajectory during theoftat®he corresponding feedforward
tables to be adapted are given in Fig. 5.3. It can be seertibéingl value at the end of the flat
top remains unchanged, which is related to the specifica®atgorithm.

Adaption during the flat top only turned out to be insufficidrgcause the residual overshoot at
the begin of the flat top is not compensated fast enough, $®inéxt measurements, the adap-
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Figure 5.2: Adaptation of the open-loop system responsmglilat top. Effect of LFD is
compensated within 10 iteration steps, [28].

tation was started during the filling time in order to keep tfasition excursions acceptable.
Additionally, it became evident that a better startingecapry was achieved by replacing the
standard (not adapted) feedforward tables with the addpbdes once the algorithm had con-
verged. This is of course only possible for consistent aingé and phase settings. For machine
operation this method would allow to be faster and closehn¢aiperation point without having
a permanent adaptation. Furthermore, studies were peztbusing the optimized feedforward
tables as the nominal feedforward and superimposing theaéira signals used for the system
identification. Thus it is possible to overcome the drawhafcbomplex detrending routines.

As an addition, further open-loop control experiments Heeen done on a different acceleration
facility to test the benefit of a model based approach. Tragesy is rather complex to discuss
in detail, but the basic results are given in the appendix A&mparable to the studies on a
different system for the feedback controller, this apgiaashows the advantages concerning
the model based design approach.

5.2.2 Closed-loop adaptation

The first closed-loop measurements were made with the propal feedback controller which
is permanently installed at the plant. Depending on theecldeop conditions, the model has
to be updated if the feedback controller is changed. Thdlphdevelopment of both control
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Figure 5.3: Corresponding input signals to Fig. 5.2, wheesfeedforward signals are adapted
during flat top, [28].

techniques demands some compromises regarding the measureonditions. For ideal set-
ting of the feedback loop the proportional controller wagit¢glly operated with a feedback
gain of about 40, which turned out to be a good choice. Afterghrallel system was intro-
duced as described in Chp. 4 the implementation of the MIM&Ili@ck was easier to realize
and therefore measurements with this controller in contlmnaare presented as well, in the
following section. The essential benefit of operating th€ tn a closed-loop system is to test
real operating conditions. This disturbance source cadiffesent contributions then the LFD
which has adapted in the open-loop measurements. Whereatethning process results in
a low-frequency drift during the flat top, the beam is a higdgtiency disturbance which has
a large amplitude. The machine is operated in a way that thiebiimch of an electron beam
always occurs at the same sampling instant during the flataiogp measurement devices are
synchronized to this time, to facilitate analysis of bunebalved measurements. The train is
distributed over the flat top according to the bunch-to-lwepetition frequency and number of
bunches selected. The large disturbance impact is not awape by the feedback controller
due to the limitation on the closed-loop bandwidth discdssé&ec. 2.2.3. Due to compensation
by the ILC it is claimed to have higher frequency control signwhich might be sufficient to
suppress these effects. The adaption steps and the impthet Held error is shown in Fig. 5.4.

Here the amplitude deviation introduced by the bunch is iximam AA/A > 3.5-1073 in
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Figure 5.4: Fitted curves of RF field amplitude changes dueedforward adaptation, com-
pensating effects of beam-loading. Dots represent the une@a&nt points after 50 iterations
showing that only non repetitive fluctuations are left over

closed-loop operation with a feedback gain of 40. One carmbsthat the beam-loading
effects can be minimized within 10 pulses to an acceptabkd End fully compensated within
50 iteration steps. Itis important, from a machine operetigerspective, to quickly compensate
large deviations over the train, so as to minimize transiomsgroblems in the accelerator by
optical settings. The fine removal of residual field errokesaadditional steps. In Fig. 5.4
the measurement points are given as the dots after havingi@@ions performed. The lines
represent the fitted curves of the measurement point fordtieeiteration steps. In this case the
first measurement point is given by the first bunch and onlyrtiportant 250 sampling instants
during and after beam transmission are plotted. The miniroithe blue curve represents the
last bunch position in the train of 29 bunches at a charge &, lwhich is typical for current
operation. On crest acceleration leads to strong ampllieden-loading effects as it can be seen
from the figure. Therefore the phase information is left héme~ig. 5.5 the relative amplitude
and phase error are given as function of the iteration stepls,the same beam conditions as
shown in the previous figure.

It can be seen that within 10 iterations, the main contrdngito the field error are compensated
for both phase and amplitude. For the phase error, the mmimm@lmost reached after 25 iter-
ation steps whereas the relative amplitude error keepimgetaller for the whole 50 iteration
steps. This is due to the fact that the main contributioneéaimplitude field error comes from
beam-loading, while for phase, itis LFD. It can be seen thigtapplication ultimately reaches
a relative amplitude stability oAA/A < 0.01(rms) and phase stability &P < 0.025°(rms),
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Figure 5.5: Norm of amplitude and phase error as functiorhefiteration steps. Main field
error contributions are caused by electron beam for ang@iand LFD for phase

both of which are close to the requirements defined in thedluiction. This raises the question,
what would be the impact regarding the beam energy stabiMgasurements of the beam are
discussed in the next section.

Beam energy measurements

The main objective for RF field regulation is to deliver seabhergy gain to the electron beam
as needed for acceleration. Therefore it is necessary tifycl@ghether the compensation of
beam induced disturbances on the RF field is also observdukagi¢ctron beam. A study can
be made of whether or not perfect field regulation over thetdjptis achieved after adaption,
also results in a flat energy profile over a bunch train. Comsetly, an assessment can be made
of whether beam-based measurements must be taken intordéoobeam energy regulation,
e.g. by applying further corrections for the setpoint table

In Fig. 5.6 the beam energy profile is shown for a bunch traB0dbunches at a charge of 1 nC.
The different measurements are given as bunch resolvedidaneith mean values and rms
spread given by the bars. To guide the eye the discrete bsir@rkeconnected by lines. The
iteration steps are identified by the arrow.

Before starting the ILC a broad energy spread over the buaghdan be observed. The energy
is normalized to the first bunch, leading to an energy diffeesbetween the first and last bunch
in the train ofdE/E > 4- 103 before starting the adaptation. This is reducedEJE < 5-
104, after feedforward adaptation. However, a small energyadiew is visible over the bunch
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Figure 5.6: Removing transient energy slope on a bunch ¢aiised by beam-loading effects
on the field amplitude. Iteration steps are marked by arroection

train that resembles a sinusoidal waveform, although tlais ebserved to be less significant
in the field measurements. This residual error may be a restifte limited accuracy of the
measurement equipment, but it also might be introduced eyt as a result of incorrect
field detection. Especially measurements with the paraifstem have shown that accurate
field regulation does not necessary result a perfect fieldetst Therefore it turns out to be
necessary to include the beam information to the controlterally by redefining the setpoint
tables based on the measured flatness of the energy profileh@/bunch train. The ILC in
combination with the feedback controller is taking carerémk this beam optimized reference
trajectory.

Fig. 5.7 shows the beam energy distribution over the buraih trersus iteration steps. The
plot illustrates the rapid adaptation that can be achiewdth is important for machine oper-
ations. The energy spread over the bunch train is given asritheeviation. It can be observed
that within 10— 20 iteration steps the energy deviation is significantlyusedi, while some
additional steps are needed to further improve the energgtitan.

Pulse-to-pulse fluctuations still occur that are not corspeed by this algorithm, which are
mainly associated with microphonics and measurement noideese fluctuations are non-
repetitive and therefore compensated by the feedbackaitamir Integration of the MIMO
feedback controller and ILC are discussed in the followiegti®n.
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Figure 5.7: Convergence of energy spread over the bunah dafter 40 iteration steps using
proportional feedback with the iterative leaning congoll

5.3 Combined controllers

It has been shown that the ILC adequately suppresses thigtivepdisturbances in both, open-
loop and closed-loop operation. The previous chapter tegtimprovements in pulse-to-pulse
fluctuations that were achieved using the MIMO feedbackrodiet.

Now the combination of both controller types will be intragwl to study the cooperation re-
garding the field control of the plant. Allocating disturleas to the two controller types based
on the frequency range, helps to overcome the drawbackscbfiedividual controllers. The
final implementation is shown in Fig. 5.8, which extends thespnt system shown in Fig. 2.2
by adding the ILC and MIMO feedback controller.The figureoatslicates broadly which com-
ponents of the controllers are implemented in the FPGA, amidiware implemented on other
platforms, such as using Matlab code or in DOOCS servers.tHeomeasurement examples
presented here, the correction tables are not directlyemrinto the FPGA but are computed
beforehand and added to the original feedforward tablesthégermanent implementation the
correction tables will have to be implemented inside the ARGorder to allow fast interrup-
tion if exceptions occur. Additional notes to this statet@mn be found in Sec. 5.3.4. Several
steps must be followed in order to determine the combinetralber parameters, which are:

1. System setup and estimation of the open-loop model. &&tid of the model using
measurement data and previously estimated models.

2. Estimation of the MIMO controller parameters with a mix@shsitivity design solved
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Figure 5.8: Schematic view of the new LLRF control systeme TILC is updating correction
tables in the FPGA but calculated offline in a server. InsiieRPGA the MIMO feedback is
used for intra-pulse feedbacks

by HIFOO, and testing the controller applicability by offfisimulations. Loading the
controller parameters to the system and closing the feédbap. Check the performance
of the feedback controller and if necessary tune propaatigain factors.

3. Excitation of the the system to generate closed-loosysésponse data and estimation
of the closed-loop model. Validation of the model as dondHeropen-loop model.

4. Using the closed-loop model for computation of the adaptanatrices depending on
system conditions (flat top time) and settings of the werghtnatrices. Application of
the ILC and start of the iteration process to compensateirenggrepetitive field errors.

5. Verify there is effective compensation of beam-loadifigats and further repetitive dis-
turbances such as LFD and overshoots. Monitor the conveeggreed and measure field
stability from pulse-to-pulse and during the flat top phase.

The above list describes the procedure as it was appliedg@ltine test presented here. For
future applications, it could be feasible to compute theetbloop model from the open-loop
model and the estimated feedback controller parameters widuld allow to take the open-loop
model wide before measurements and do the feedforwardiadapthout having to estimate a
closed-loop model during operation. Excitation of the ptzannot be done during regular FEL
operation. Validation of the closed-loop model can be doitk the online data taken during
operation. This is also discussed when considering the gregnt implementation.
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5.3.1 Measurements with combined ILC and MIMO feedback contoller

The presented measurements have been performed with ariiecdidéM O feedback controller.

It has been seen that the pulse-to-pulse fluctuations arenimed by the MIMO FB, and the
ILC is able to remove the major impact of beam-loading plwditahal repetitive errors on the
acceleration field. To visualize the improvements, in Fi§.the field error during the flat top
is compared with open-loop measurements, closed-loop tweéiMIMO feedback controller,
and the combination of MIMO feedback and iterative learrengtrol. All measurements have
been done at the same plant, but without the electron beam.

The residual control error is mainly determined by LFD andrshoots in the closed-loop mode.
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Figure 5.9: Comparison between open-loop measuremeats| IO feedback and the MIMO
feedback controller + iterative learning control after fidation steps. Measurement points are
given as dots, whereas the average is given in the solidhvagked by colors

For open-loop operation, large deviations of the field er@an be observed during the flat
top, which is here at about= 300us. Single measurement points are given as dots in the
corresponding colors of the mean values labeled in the tegBolse-to-pulse fluctuations are
observable by the spread around the mean value. The ca&dulas and peak to peak (p2p)
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errors are given as values inside the plot. This spreadf&igntly reduces from open-loop to
closed-loop operation. Beside this, any fluctuations iroffeet can be reduced while applying
the feedback controller, as it is expected. Neverthelbssetremains a small slope in the ampli-
tude and phase field errors, even in closed-loop operatitinthe MIMO feedback controller.
Enabling the ILC removes this residual field error after salviéeration steps. For illustration
only the last iteration step is drawn. Furthermore the dwarsat the beginning of the flat top
is also significantly reduced. Residual fluctuation are ndly fsuppressed, which is easier to
observe in the more detailed Fig. 5.10.

i Field stability
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—MIMO FB
—MIMO FB + ILC
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Figure 5.10: Comparison between closed-loop measuremetitgshe proportional FB con-
troller (gain 40), the MIMO feedback and the MIMO feedbackoller + iterative learning
control after 10 iteration steps. Measurement points arengas dots, whereas the average is
given in the solid lines marked by legend given colors

Here, closed-loop measurements with MIMO feedback (in aad)the MIMO + ILC (in green)
are compared with the closed-loop response of the origir@gstional feedback controller
(shown in blue). Combining the MIMO feedback with the ILCuls in almost perfect field
regulation, except for the transient at the beginning offiditetop. It is the steep step transition
between filling and flat top that leads to the jumps in the adrirors. This transition ideally

87



5.3. COMBINED CONTROLLERS CHAPTER 5. ITERATIVE LEARNING COTROL

should be smoothed so as to reduce the oscillation at tha bétyie flat top. Clearly, the settling
time after the transition seen in Fig. 5.10 is much fasteitfierMIMO controller then for the
proportional feedback. Furthermore, in the case of the gntagnal controller, the measured
plant output is deviating from the setpoint, as seen by thiglval slope in the amplitude error
and a larger residual error on the phase. The slopes areesifallthe MIMO feedback but
are still not fully compensated. The overshoots at the meggnof the flat top as well as the
slope are then removed by the iterative learning contrdilean be seen that the performance
requirements listed in the introduction are fulfilled withs combined controller concept. The
pulse-to-pulse fluctuation (rms) are minimized to abdAfA = 2-10~° andAP = 0.004 by
the feedback controller, whereas the field errors measurethé flat top are approximately
AA/A < 1-10-%andAP < 0.001°, when ignoring the overshoot in the beginning. To visualize
the distribution of the relative amplitude error during fia, all measurement points are plotted
as a histogram in Fig. 5.11. The relative sample distriluisogiven as function oAA/A for

different iteration steps.
‘ /

Figure 5.11: Distribution of the relative amplitude erfgk/A for all measurement point during
the flat top. The envelope of the histogram bars are giverhiitération steps.
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The detailed distribution for iteration step 1 is shown bg bars and for better visualization,
the normal curve of distribution is fitted. For clarity, tharb have been omitted from all sub-
sequent steps. It is easy to observe that the mean valueefdirshiteration step is offset by
approximatelydAA/A = 2. 10~4. The standard deviation (FWHW of the first iteration step is
about 2r = 2-10~*. With increasing iteration steps the mean value of thiseapproaches 0
which denotes the suppression of steady state errors ot€fiiee LFD. The standard deviation
is also decreasing. Already after 10 iteration steps th@tatian has almost converged and

Lfull width half max
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after additional 10 steps only minor changes can be obsemrezistandard deviation has been
decreased tAA/A < 1-10~4, which is demanded by the requirements stated in the begjnni
The requirements defined as control objective are achievdd wsing the combined controller
concept.

For a permanent implementation additional considerati@ve to be made, and these are dis-
cussed in Sec. 5.3.4. However, before discussing impletient one further aspect must be
studied, namely whether the algorithm is stable over a long tnce it has converged - some-
thing that is a common issue for iterative algorithms.

5.3.2 Long-term adaptation after convergence

For iterative algorithms, both the convergence speed amtbtig-term stability are important.
Latter is very important for operation of the accelerat@cduse the machine users do experi-
ments over large time periods. As a test, 1000 iteratiorsdtape been made where in Fig. 5.12
some iteration steps have been sorted out. Machine conslitiave not been changed during
this adaptation, e.g., no phase or gradient changes as svifleasame beam conditions. The
figure gives the measured relative field erfdy/| andAQ/Q instead of amplitude and phase
presented so far. The yellow dots mark the measurementspduming the flat top for 5 pulses,
whereas the red dots give the mean values for every sampigtgnt of the flat top averaged
from these 5 pulses. The mean is given to emphasize the trepetomponent which is over-
layed by additional measurement noise error, varying fralagto-pulse. The yellow ellipsoid
marks the region of the computed rms error of the measurep@nts and the red ellipsoid
the rms region of the mean values respectively. To give tiérgbtrajectory the required area
of convergence determined by the required amplitude andepsibility is also drawn. Due
to the phase settings in the machine the relative requiresmen are higher then for Q. In the
following the individual plots of Fig. 5.12 are discussedigtail.

In plot (a) the first iteration step is given. It is evidentatlthere is an offset control error for
all measurement points in the plot. This is mainly determibg the residual field error of the
closed-loop system. As has been previously mentioned eidbfack controller is not able to
compensate completely for these residual errors. This uneaent was taken with beam that
was being accelerated on crest, and beam-loading effectisecaeen as the horizontal branch
on the lower edge of the measurement points. The error igliaig the | channel because
when operating on crest, the electron beam couples to th€imgahase) component of the
acceleration field, as introduced in Sec. 2.1.3. The twoiastito the right of the plot are
residual overshoot sampling instants from the beginninipefflat top, and the steep diagonal
tail is caused by the lorentz force detuning effects for #itel flat top region. It can be seen
that as the detuning increases, there is a correspondingase in the error contribution to
Q. The width and location of the ellipsoids demonstrate thetrol error without applying
the ILC to adapt the feedforward signal, even when the feddbantroller is acting. In plot
(b) the situation after 10 iteration steps is shown. Theisgalon the axes are equal to plot
(a) to emphasize the improvements already after 10 iteratiGor a pulse-to-pulse repetition
frequency of 5 Hz this would be within 2 seconds. It can be gbahthe LFD effects are
not fully compensated and that there are still two outliershe right of the plot. However,
the offset of the center of the ellipsoid has been moved tdsvdre required location, and the
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Figure 5.12: Deviation of measured field errors in IQ durirag fop with MIMO FB and ILC
for long-term iterations. Structural development of "@bsrrors, caused by oscillation during
flat top
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spread of data-points has been reduced to an appropri&te I&fter 100 iteration steps the
requirement for the rms field error is achieved, as can bdyealsserved in plot (c). Some
measurement point are still outside the black area, but thie@ mumber of points is located
inside. In plot (d) the algorithm has converged and the tesidrrors are distributed equally
in the region. One can see that the centers of all ellipsoilfogated approximately at origin,
whereAl /I = AQ/Q = 0. Additionally it can be seen that the measurement poirettofy) are
fixed to a mesh structure meaning that the points are aro@dishrete limit given by the fixed
points in the FPGA. Based on the data in plot (d), further mmpments in the regulation would
be hard to realize. Unfortunately, it can be seen from plptHat after 400 iterations the data
points are moving away from the convergence area. It hasterbarked that the measurement
points are not equally distributed, rather a "cross” seerhgtdrawn by the measurement points.
This assumption can be verified when studying the last plthisseries (f), giving iteration
step 600. These two crossed diagonals raising the questianmeasurement point distribution
causes this final distribution? Obviously the measuremeinitg cannot be derived from noise
contributions, therefore one would assume an equal digtoib in the 1Q plane. The cross is
likely caused by an oscillation distributed over the flat tdp prove this assumptionin Fig. 5.13
the spectral distribution of the vector sum amplitude i®giv

VS amplitude spectrum

# of iteration

-=1---100 500 —900
-90 ‘ —

10* 10
f [Hz]

5

Figure 5.13: Frequency spectrum of the measured vector systitade. In the low-frequency
range are the magnitudes smaller after several iteratitvesaas after 900 iterations two reso-
nance peaks are observable

The amplitude spectrum is derived from the measurementgdunring flat top and normalized
to the maximum range of bits given in (decibel full scdBFS)). The frequency spectrum is
generated by a fast fourier transformation (FFT). The adpectrum is given as the dashed
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opaque background, whereas the lines are drawn to guidg¢hd be iteration steps are color
labeled. One can see that in the low-frequency range, thditadgwill be suppressed with
increasing number of iteration steps as it can be expectad fig. 5.12. The green curve
represents the smallest achieved control error, sincesithalowest integrated spectral con-
tribution. In the higher frequency rangel kHz are no significant changes observable except
for iteration number 500 and 900, which are representinglthergence cross section of the
previous figure. The assumed oscillations can be easilyceten this plot. There are two
resonance peaks, which seem to be mirrored at about 250 kimp&ring this with Fig. 3.16
shows the same resonance peaks. Therefore, it can be statdde ILC seems to excite the
gn-mode, which could also be detected with the sinusoidaltattens have been made. The
first resonance peak here is also located:ét74 kHz. This effect is unwanted and has to
be overcome when implementing this to the plant. Unfortelyadll measurements have been
made with the simple model of the system presented in Se@.3TBe resonance peak in the
measurements has not been included in the system modelwas presented in Sec. 3.4. It
is expected that with this improved system model, the etioiteof these resonances can be
avoided. Test are currently under investigation which aafoloind in [29]. The significance for
the implementation and possible solutions are outlinecem S.3.4.

5.3.3 Beam energy spread for a bunch train

As has been discussed already, removing beam inducedanéssin the RF field must subse-
guently improve the beam energy distribution over a bunaimtrit has been observed from
measurements that the correlation between the field flaamesshe beam energy distribution
over a bunch train is given only to a certain limitation. g Bi14 the relative amplitude stability
and the beam energy relative to the first bunch are given asrashlvesolved measurement.
The residual wave which was visible in Fig. 5.6 is mostly reewin this plot. This has two
main reasons. First the bunch repetition frequency was®s0ykHz during this measurement,
which lead to a longer disturbance impact with half of the bimge, meaning the disturbance
was smaller. Additionally, the feedforward adaptation wasected by time shifting steps. It
was introduced in Sec. 3.3.4 that the measured system respam be detected with a time
delay ofty ~ 2 —4us. Therefore, the control error is computed with a time delathe same
value. While using the delay corrected system model, itrh&r necessary to compensate later
in the allied correction terms Byeorr (t) = Ucorr (t — T). The same experiences have been made
while applying the feedforward correction term at a the P&thine, as discussed in the Ap-
pendix A.1. The outcome is a much improved flatness of thdrelebeam energy distribution
as well improvements in the measured field amplitude. Indase, the large transition over the
first two bunches is not being compensated, and this is eisiblthe amplitude. Ideas exist to
simply remove first bunches in a train, but this demands iakek magnets which are currently
not applied. Even so, the achieved relative amplitude ésrar a range ofAA/A < 1-1074
and alsaAE /E < 1-10~# over the bunch train for typical beam-loading conditionshéAéas
the large drop at the beginning of the bunch train is visiblelfoth measurements, the small
fluctuations visible on the amplitude are not fully correthtvith the electron beam energy.
Having collected all this expertise described herein, sooresideration must be given to ap-
plying this combined controller method for permanent usagke plant.
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Figure 5.14. Amplitude and beam energy stability for a butnaim of 30 bunches after feed-
forward adaptation with the ILC

5.3.4 Implementation considerations

For a user facility considered here a reliable system with lperformance requirements is
required. Therefore, all new applications have to be testadfully before implementation,
and further must be embedded in a functional system withavinly negative influences re-
garding existing applications. This demands a smart ekaepiandling for all applications.
As an example, the algorithm must be stopped if there is aumetifon in the underlying sys-
tem. Defining a list of exceptions and developing tasks todréopmed demands experience
with the operating system and knowledge of typical operatoutines used in the machine. In
case of learning algorithms the framework for exceptiondiiag could be applied to different
algorithms that might be tested in the future. Another pointonsideration is the communi-
cation interface to the machine operators. Interactiomtgdiave to be predefined and those
identified that might remain unchanged, such as the setfitigeoweighting matrice8V;, and
Ws. For the tests presented, the matrices have been choseremthat the convergence speed
was sufficient without having overshoots in the correctiainiés from pulse-to-pulse. It might
be possible to provide the users a tuning knob which allonchemge the weighting factor g.
This would have a comparable effect to a learning gain, widelally can be tuned between
convergence speed and reliability depending on the camdiior current operation. Therefore
additional test must be made which show the practicabifithis proposal. It is further to be
thought if the weighting functions are defined as time depenohatrices, to emphasize special
regions of strong suppression like the filling, flat top titos. Simulations have been made
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and can be found in [28].

Figure 5.15: Simulation of the influence of the weighting neats for the sum of of residual
control errors for a traiy &yial, [28]

For tuning processes in the machine, it might be necessayainge phase and amplitude fre-
guently by small variations. It could be verified that setp®ichanges do not lead to effect
the ILC. Additionally, it might be possible to take the opined feedforward signal as a start-
ing point for normal operation. Furthermore, it has turned that in the case of long-term
adaptations, the algorithm is critical to avoid resonaneaks building up. It is assumed that
this is caused by the special mode of the system which haseasot tonsidered in the model
used for the measurements. In Sec. 3.4 an advanced modeitwakiced, which was recently
developed but could not be tested with the ILC. It is assurhatlwhen having modeled this
resonance peak, the learning controller will not excitesgtem in this frequency range. To
prove these assumptions tests on the plant must be perfordxedn optional solution for
the implementation, it would be possible to define threshtbdddetect when the algorithm has
converged, and the adaptation would then be stopped ugtitdhntrol error grew above this
threshold. Meanwhile, the correction term would be filteredrder to generate a new starting
correction signal. This is only a heuristic solution. Anetissue which has not been discussed
so far, but has been turned out to be most critical for thislieg algorithms is a sudden disap-
pearance of the electron beam driven by the so-called maghotection system (MPS). This
is a machine safety system that cuts the beam if there areliwatigns is other machine sub-
systems, e.g. focussing issues or radiation alarms. Theeasation of the beam-loading leads
in this case to increases of the field amplitude, which mighher result in unacceptable field
gradients that could harm the machine. Consideration asdilple solutions to this problem
are discussed in Sec. 6.2. Finally the pulse-to-pulse ataptin combination with the com-
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munication interface has to be considered. The resultshidna¢ been presented were made
with Matlab based routines. For permanent applicationdbmmunication interface has to be
transported to a server-based functionality that is supgdday the operation systems. The com-
putations that have to be made between two pulses are limoit@atrix multiplications, which
are easy to realize. With the additional exception routitleas to be tested if the computations
can be performed fast enough to allow a pulse-to-pulse atlaptor if it is necessary to reduce
the update rate.

5.4 Summary

In this chapter an iterative learning controller approaxbytimize the feedforward input to the
system was introduced. The variety of disturbances wasedtivhich are not compensated by
the feedback controller. It could be seen that the limitesdetl-loop bandwidth of the system
does not allow to compensate high-frequency effects likerbading from the electron beam.
The repetitive appearance of this disturbance source cangdgressed by changing the feedfor-
ward control signals. Following a short overview of possiitérative learning techniques, the
F-NOILC algorithm used for this application has been introed. Limitations of the system to
be controlled demand a modified version of this algorithrkin@ginto account the intra-pulse
feedbacks that have been realized with the previouslydoized MIMO feedback controller.
Measurements are presented that were made in open-loom @tmsed-loop operation using
the proportional feedback controller. Compensation ohbé@ading effects significantly im-
prove the RF field flatness. This has been shown by measurngethm energy spread over a
bunch train, which has been decreased by a factor of 10. Tie\actemarkable results only 10
iteration steps are needed. As the major point in this tliasisombined controller concept of
ILC and MIMO feedback was tested in real application. It carsben that improvements to the
current controller implementation are significant. Theuregments for the residual control er-
ror can be achieved using this combined controller impldaatem for pulse-to-pulse as well as
for the flat top field error. This marks a major improvementi®presently used controller algo-
rithm. Studies have been made on the long-term stabilitysig that after a large number of
iteration steps oscillations tend to build up, which canrbedad back to general system charac-
teristics. Finally, some considerations have been madeetnimg the permanent usage of this
controller concept for the real plant to be controlled. @uatly, there are other iterative learning
controller concepts under investigation, which will betéelsand compared with the presented
results [29]. With the enhanced system model, it is assumegdtimize the learning algorithm
in order to minimize residual control errors. Further, irprating beam measurements will
improve the achievable beam regulation performance byigaedditional information about
the real control value. The number of sensors in the systeatddse increased but the control
signals remain as the real and imaginary part of the fieldovect
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Chapter 6

Conclusion and Outlook

In this thesis, a procedure was introduced for the desigmaddel-based controller for pulsed
radio frequency fields in superconducting acceleratingutes] where high performance is an
essential requirement for free electron lasers and rekteélerator system. A suitable black-
box system model of the plant dynamics has been identifiedjssibspace identification meth-
ods that generate an LTI state-space model from systemnssptata only. Special excitation
methods were used to characterize higher-frequency resermeaks that come from physical
properties of the system. The validated models are thenfosetksigning the controllers re-
quired to stabilize the system against disturbances teadminherent characteristic of system
operation.

A combined controller concept has been developed that takesaccount both disturbance
characteristics and system limitations, with a signifiagargrovement in field regulation from
that of the original controller. There are two componenth#combined controller: a MIMO
feedback controller that suppresses non-repetitive andriequency field errors; and an itera-
tive learning controller applied feedforward drive tha¢qmompensates predictable and repet-
itive disturbances, most notably caused by beam-loadirige Viery narrow bandwidth of the
system permits the MIMO controller to suppress high-fregpyedisturbances occurring within
the pulse with reasonable control effort.

This concept of splitting the compensation across comrdyipes is essential for meeting re-
quirements, and the resulting performance is significarelyer than previously achieved with
a single controller. A mixed sensitivity approach with theeti-order controller design method
HIFOO can be used to determine the feedback controller peteas It has been shown that the
feedforward controller is able to minimize repetitive fi@dors with minor adaptation steps,
and it is particularly effective for compensation of beamading effects.

The outcome of this work is a model-based controller apgrdaadrF field control that meets
the required level of performance.

6.1 Achieved goals
Objectives of this work were outlined in the introductiom dubsequent chapters, additional
perspectives were covered that addressed the machinetaperaisted below are the main

achievements and experiences with respect to the itemizgiven in chapter 1.
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1. It was shown that a model of the plant was identified by applgtandard subspace iden-
tification methods for LTI systems. The input/output dataegation and preprocessing
steps were classified and tested in dedicated routines.n&dddadetrending routines for
pre-processing the measurement data turned out to haweifdghgences on the model.
It was shown that essential system dynamics can be modeieg asimple 8 order
model. It was subsequently shown that the model qualityccbel improved by taking
into account resonance peaks that were most likely causedidsed from higher fre-
guencies. Recent modeling results give hints how to impthbigeprocedure in order to
further improve the model-based designs.

2. Feedback controller parameters have been estimategl asemi automated procedure
and the resulting controller designs have improved the fietglation relative to the
original decentralized feedback controller. The mixedssivity design allowed control
parameters to be determined that improve the pulse-tepigkl regulation by about a
factor five. This model-based approach has been furthedest a new module that has
been installed in the facility.

3. Iterative learning controllers were shown to succebsfulppress repetitive disturbances
to a remarkable level in amplitude and phase. Requiremaentieflat top have been
achieved both with and without presence of the electron bednth provides the most
significant source of disturbance. Furthermore the itegdarning controller has been
tested on an additional application with comparable swsfaksesults.

4. Finally it has been shown that it is possible to realizecthrabination of both controllers
on the plant, and that the combination meets requirementefd stability pulse-to-pulse
and intra-pulse. The different time scale makes it posg$dai¢he two controllers to be
active without influencing each other. It is expected thatgberformance will be further
improved once the newest system models have been estimated.

While the performance requirements have been achieveduaddmental questions answered,
experience from this work has raised additional questibas gshould be the subject of future
studies, allowing this work to be built on for future apptica and tests. Additionally, the
machine operators perspective is essential. Finally, atiponents of this work should be
realized for the permanent machine operation that is so fitapofor the goals of this work.
These components are as follows.

1. All data transfer, evaluation and processing tasks ane eoth Matlab, while the feed-
back controller is implemented in the FPGA in order to achige real-time performance
necessary for intra-pulse field control. It is intended tovast the Matlab routines as far
as possible to programming languages used for the currematpn system allowing a
structured implementation. For the ILC it is intended toéhaweal time pulse-to-pulse
adaption which demands a platform transfer for the datagssing. The whole approach
must be embedded in the present system used for operation.

2. Throughout the tests, no significant negative impactshenr¢liability of the machine
were observed. The setup of the controller parameters dasvitle identification method
requires additional machine time, which limits how oftea tipdates can be done. Oper-
ability must be tested once there is a permanent implenmentat
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3. The use of an automatic routine for estimating the systemaiand designing the con-
troller parameters reduces the required machine time toafdw pulses for exciting the
system and measuring its response. Most calculations cperfimed offline and there-
fore do not impact machine operation. The higher complexityre feedback controller
is justified by the achievable performance improvementsit©ter parameters must be
established before operation and only updated if found todoessary.

4. It has been shown that the achieved improvements in the fégjulation also have a
positive effect on the beam energy spread and profile. It Wasshown that RF field
regulation alone is not sufficient to perfectly control thecéron beam and consequently,
further improvements should be achieved by including thelable beam information,
e.g. by optimized desired beam trajectories. Some detailde found in Sec.6.3.

In summary it has been shown that many issues associatednaithine operations can be
addressed. The proposed approach will, however, need to fmeiiine operation over some
period of time in order to confirm reliability. In addition the results presented here, tests
have been performed on other accelerator systems usingatiel imased approach and MIMO
feedback and iterative learning controllers, hence detnatinsg that the model based controller
design methods can be used, provided the model describsgdteen sufficiently. For example,
the MIMO feedback controller delivered very precise fieldtrol on the 3rd harmonic system,
although these results need to be proven with the electramladter the system is installed
in the accelerator. Expertise gained from the modeling gutace shows the approach offers
the highest possibilities for improvements that will stilither enhance the quality of RF field
control. All considerations made so far can be applied thoaig implementation framework
which is briefly outlined in the following.

6.2 Future applications

The measurements presented in the thesis are only an eafralttthe results obtained. It

has been always the goal to to implement this system formeuiperation which demands
many other complex considerations to be taking into accdardrder to achieve the reliability

and operability required by machine operations, the degfeetomation and the use of fixed
routines becomes a crucial factor, especially becauseeoftbater complexity and from an
increasing number of subsystems.

An example application to be automated is the system ideatifin procedure that validates
and if necessary updates the system model, which occalsiofagies due to changes in the
operation point, such as for significant gradient changesrgvthe detuning effects vary. In

Fig. 6.1 is sketched how a permanent validation of the madeh fmeasurement data could
detect changes in the system behavior.

Should the system response vary from the simulated respansassible malfunction in the

plant can be detected. Otherwise, if the system behavespastexl, the model has to be up-
dated. This proposal is just one example of possible rositithet might use the model-based
approach.
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Figure 6.1: Idea of a frequently updated system model depgrmh current system status and
operation point changes
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Algorithms such as the ILC tested in this work might be substd by different approached
which are currently under development. For this purposeneicessary to keep the framework
of the implementation modular. The control of 32 cavitied @ad to further considerations
which might contain nonlinear modeling approaches. Changthe controller structure might
be explored, for example to use observer-based feedback.

At this point, the combined controller concept still neealbé implemented. Considerations of
how the combined controller could be fully integrated in F&iA operations are outlined in the
following.

Planned system integration

Ideas for the possible implementation have already beeoduated in the individual chapters.
Beside integration to permanent operation, additionalimes must be developed to deal with
unexpected events. The tools used for the measurementased bn an Matlab environment,
and these have to be converted to the operation system.

The implementation of the MIMO feedback controller is le§a@oncern because the FPGA
realization already exist. Communication from the opeagsystem to the parameter registers
can be tested offline ahead of time. In case of problems, thyeoptional controller used so
far can easily be realized by special setting of the comrggarameters. On the other hand,
implementation of the ILC is more complex for two major reasoFirst of all the algorithm
convergence is important. Once the algorithm has been em#tdhould ideally converge fast,
and once the control error is small enough, the adaptationlglive halted so meaning the feed-
forward signal remains unchanged. It has been shown thaitistgoroblems can occur after
many iterations. Triggering the algorithm based on the ritaga of the control error might
be a sufficient practical solution. Furthermore, the maglpirotection system introduces com-
plications not mentioned so far. It has been shown that é&spethe operation of long bunch
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trains demands a very effective exception handling, formgxta, the ILC should ideally react

synchronously with fast beam cuts and if necessary scalethacorrection terms to the feed-
forward, or simply not apply them. Unfortunately this syrmfization cannot be guaranteed
due to the spontaneous appearance of bunch train cuts.eFuadhe the computed correction
term is ideally stored to have a fast adaptation when tha tsaiecurring, preventing the re-

currence of this cutting effect. A proposal for the beanding compensation in two stages,
namely coarse and fine is illustrated along with additiomappsals in Fig. 6.2.

Toroid ¢ oo User SP Control error
e .
k-l O MPS l (DOOCS) Ampl/Pha inl/Q
' l ¢ ¢ '
Iteratlve learning Beam Load. FF Tables MIMO FB
control Comp (smooth) (mcludes P)

\xu

Limiter
to DAC

Figure 6.2: Implementation proposal for the RF table garm@rand control signal computation
from sources of driving signal components

The control signals applied to the plant are combined askkdtin Fig. 6.2 are described in
the following.

1. Using the MIMO feedback controller for intra-pulse RFdbacks. Together with a
smooth ramping of the proportional gain factor during thénfyl time, preventing un-
necessary large control signals which are occasionallyjnfuhito RF hardware. The
controller parameters are estimated previously and ugditecessary.

2. Nominal feedforward tables, used as open-loop contgokds will be applied. The transi-
tion from filling to flat top phase and the first sampling ingsor the filling are smoothed
compared the previous tables.

3. For coarse beam-loading compensation, the user setmjsurrent system status are
used to generate a simple feedforward correction tablé cttrapensate main contribu-
tions from the electron beam induced field deviation. Dimminection to the machine
protection system allows application of the compensatiyorcisronized to the current
beam settings (fast exception handling).

4. The iterative learning controller is the used for fine ddapn of repetitive control er-
rors such as LFD and the residual beam disturbances, frothéheoarse beam-loading
compensation.

101



6.3. BEAM BASED FEEDBACKS CHAPTER 6. CONCLUSION AND OUTLOOK

5. Limitations and threshold values to prevent unusualnggtin the tables before applying
control signals to the system. Mainly as additional exaapto protect against unforseen
events.

Coarse compensation of beam-loading effects can be rdalsiag a rectangular feedforward
addition whose shape is depending on beam parameters scicArge and number of bunches.
This adaptation must be synchronized to the system redgerfsr the beam generation. The
advantage is that main field deviations generated by thérefebeam are synchronously com-
pensated to the beam arrival. If a bunch train is shortermediXdample by the machine protec-
tion system, then the coarse compensation is synchrontuslyated. This prevents exceeding
of physical limitations of the cavity, due to bounded maximgradients. The residual control
error from the coarse adaption is compensated by the werkgarning controller, which per-
forms fine compensation of beam-loading effects in ordeneéa¢lative small energy variations
over a bunch train. Additionally, it has turned out that theep transition from filling to the flat
top phase lead to large control errors. A smooth transisameieded to reduce the overshoots
introduced by the feedback controller at the beginning efftat top phase. Further improve-
ment is expected by introducing a time-depending propaaligain for the feedback controller,
especially at the begin of the filling phase, where the coetror is large but is not necessary to
be compensated. This can be realized by ramping the feedjaatlas it is sketched in Fig. 6.2.
It is also necessary to apply limitations to the controlletpoit, in order to protect the system
of controller malfunctions. As an enhancement to this psapd is intended to integrate beam
based information in the RF field control. Some considenadi@ given in the following.

6.3 Beam based feedbacks

It is planned to integrate beam based information into thid fiegulation process, and the
required sensors are being developed and tested at the piamtly adding an additional feed-
back loop is not feasible without previously studying thitlience of cascaded feedback loops
that are connected to same actuators, especially sincauthber of sensor will increase, but
the number of actuators remain unchanged.

An additional issue is the different vector components tedresidered. Whereas the RF field
is controlled in the IQ space, the beam information is predith terms of amplitude and phase.
Both descriptions can be transformed among each otheouajththis would demand additional
processing steps. For first tests of the beam based feedppdaah, where the feedback signal
from the beam diagnostics was applied to the amplitude irRiRdeedback loop, while the
phase was controlled by the RF itself. This demanded a dpegementation of the controller
structure that is not discussed here. For the MIMO feedbaok however both controller
channels are coupled by the cross terms in the controlldrildaa cannot be implemented in a
simple division.

Furthermore itis not feasible to control RF fields from beafoimation only. For example after
startup of the system the RF fields must be stabilized firsireehe beam can be turned on.
The solution might be found in the combination of both feeidaops in one controller. The
results and experience gained with the MIMO feedback ctlatrestablished a good basis. Itis
conceivable to extend the multivariable-input, outputtoalier to a 4x 2 system by including
the beam information as two additional inputs. This woulguiee enhancements of both the
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model and the feedback controller itself. The mixed sensitdesign would be a possible
method to estimate the necessary controller parametetshas ibeen shown in this thesis.
Certainly the weighting filters would have to be extended argbod tradeoff between beam
and field contribution to the control signals would have toftnend. An issue not detached
from this idea is the small bandwidth of the cavity, which easily be observed by the slow
transient effect in the beginning of a bunch train. Howewds@-to-pulse fluctuations visible
on the beam would lead to an improvement for the regulation.

An additional possibility is to measure repetitive impetfens in the energy profile for a bunch
train. It has already been shown that an ideally flat measueetbr sum does not necessary
lead to a correspondingly flat energy profile along the bumnaimt Measuring deviations in
the energy profile can be used to optimize the setpoint taoléhe RF field regulation. The
feedback controller and the ILC take care of minimizing tbetcol error with respect to the
optimized setpoint trajectory. Measurement errors can imenmezed by having an additional
information about the assumed real vector sum measuredebgl¢ictron beam. It has to be
shown in measurements how this approach could improve thealdeld regulation.
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Pseudo Random Binary Signal

Paul Scherer Institut

Radio Frequency

Self Amplified Spontaneous Emission
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Appendix A

Additional results

A.1 Measurements from PSI

Beside the studies that have been done on the FLASH fachiéyPaul Scherer Institut (PSI)
offered the possibility to test the model based iteratiaerieng control algorithm on an electron
gun control system. These measurements have not been teckberfore, due to the different
system characteristics. The system assembly is compdaathie control system presented for
FLASH. A normal conducting cavity has a much lower qualitgtéa which leads to a significant
higher bandwidth in the system. Nevertheless the modebbaszapproach presented should
be able to control this system as it was claimed in this the$ise application is of further
interest, due to the normal conducting electron gun whichstalled at DESY too.

«10* Klystron Output responce
—u
1
8 L
] o
2 —
i) _y
G \ Q
2 L
— i —

0 100 200 300 400 500 600 700 800 900 1000
samples

Figure A.1: Measured System response to usual input signals

The system is intended to be operated in open-loop and poiedd. This requires to find opti-
mal open-loop control signals, achieving the intended @orioutput trajectory. By applying a
rectangular pulse as starting trajectory, the followingtegn response can be observed as shown
in Fig. A.1. This repetitive oscillation visible as the ktgen output is applied to the modulator
which generates the necessary high voltage drive for th&trkly. The control objective is to
adapt the modulator driving signals andug such that the klystron outpyt andyq are flat
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during the pulse. A reference trajectory does not exist @zt be defined as constant during
the flat top computed from the mean valueycdindyq. The application of an iterative leaning
controller is feasible to suppress this strongly repetifield imbalances. The determination of
the controller is done analog to the procedure discussdusritiesis. Therefore an open-loop
model of the system has to be estimated from response dateageth by excitation of the sys-
tem. An example for the system response is shown in Fig. Al2¢lwgives a comparison of
the system outputg andyg with and without excitation signals.

Overlapped excitation signals

I — Channel

Q - Channel

samples

Figure A.2: Comparison of the system response with and witbrcitation signal.

The measurement points are given as the blue dots and thevalearas the red line. Excitation
signals are applied within the shadowed area. It can be se¢mhie operation point is strong
disturbed, which makes it necessary to remove this trendsibiyacting the unexcited response
from the data, as it has been shown in Sec. 3.2.2. After tigaction the system response to
the excitation signal can be seen in Fig. A.3.

The system response delay has been marked and is removedtlmgshe data sets before
identification. For the later adaptation done by the ILC tetay has to be taken into account,
in order to apply the correction signals shifted to the meaerror. Having the model, update
matrices of the ILC algorithm can be computed and the cdetri@ applied to the system input.
In Fig. A.4 and Fig. A.5 the adapted system input and the spording responses are shown. It
can be seen that within 10 iteration steps the input sigreshhmost converged and the measured
system output is liberated from the repetitive disturbagftects. Although fluctuations from
pulse-to-pulse still remain, they can not be compensatedtalthe absence of an intra-pulse
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A.1. MEASUREMENTS FROM PSI

Responce to excitation signals
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Figure A.3: Response to excitation signal after removirgguhexcited system response from

the measurement data

feedback controller. Finally in Fig. A.6, the amplitude grtthse stability are given as function
of the iteration steps. It is easy to observe that the coevexg speed is fast and the adaptation
remains stable for several iteration steps. Compared teetave amplitude erroAA/A and

the phase errakP the improvement very significant.

These measurements show, that the model based approaehlio€tis able to compensate for

repetitive disturbances also on different acceleratosgsiems.
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Modulator Input
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Figure A.4: Adaptation of the input channels | and Q of thaeys
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Figure A.5: System output for different iteration steps
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Figure A.6: Amplitude and phase control error during flat fops)
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A.2 RF feedback controller

In the following an example of the parameter settings in tiMM feedback controller should
be briefly shown. This is done by a Bode plot of the feedbackrotiar parameters used in
the measurements done for th® L&Hz system. It can be seen that the controller is diago-
nal dominant for the low-frequency randge< 1kHz. For comparison the dc gains are given.
Remembering the pulse durationtisc 130Qus, the frequency range of interest is given by

~ 1 kHz. In the high-frequency range some singularities oeduich is due to the sampling
process and therefore can be neglected here.

2
10
E DC-Gain
_ 60.1007  0.84363
=] 10! -1.2456  97.8671
- : o
e
£ T
B 1¢° :
=
,17
lO i il i [ | i il i [ | i iioiaaiil
10° 10" 10° 10° 10° 10°
—£=3.1102kHz —0.0001 kHz —15.9104 kHz —3.0402 kHz
200
100F .
3 0
(]
<
[a Y
-100
-200} :
—KI11 —KI12 —K21 —K22]
T S T S i il i [ | i iioiaaiil
10’ 10' 107 X 10* 10°

10
f[Hz]

Figure A.7: Bode diagrams for the MIMO controller transfanétion of the matrix elements.
The frequencies given in the plots are the crossover fregegf the the controller elements.
Furthermore the dc gains of the controller parameters anersh
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A.3 Additional plots for ILC
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Figure A.8: Energy deviation over a bunch train measuredimtgmultipliers after adaptation
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Figure A.9: Measurement of the energy jitter within a bunrelmtfor several pulses after adap-
tation with the ILC

117



A.3. ADDITIONAL PLOTS FOR ILC APPENDIX A. ADDITIONAL RESULTS
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Figure A.10: Snapshot of the control system panels with llo@rovements
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Figure A.11: Snapshot of the SASE energy monitor after rengplseam induced transients in
ACC1
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