
RF System Modeling and Controller Design
for the European XFEL

Vom Promotionsausschuss der
Technischen Universität Hamburg-Harburg

zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing)

genehmigte Dissertation

vorgelegt von

Christian Schmidt

aus

Parchim

Hamburg 2010



Gutachter: Prof. Dr. Herbert Werner
Prof. Dr. Arne Jacob
Dr. Frank Ludwig
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Kurzfassung

Das Deutsche Elektronen Synchrotron wird durch den Bau des Europäischen Röntgenlasers
XFEL eine Röntgenquelle besitzen, die intensive, ultrakurze, monochromatische und kohärente
Pulse für die Materialforschung bereitstellt. Zur Erzeugung der Röntgenblitze werden Elektro-
nenpakete mittels eines Hochfrequenzfeldes in supraleitenden Hohlraumresonatoren auf Ener-
gien bis zu 17.5 GeV beschleunigt. Die digitale Regelung dieser Felder bedarf sehr hoher
Qualität, um die physikalischen Prozesse der Photonengeneration zu ermöglichen. Mit FLASH
verfügt das DESY über eine Pilotanlage, welche es bereitsvor Fertigstellung des XFEL erlaubt,
den Großteil der benötigten Komponenten zu entwickeln undzu testen. Die gegenwärtige Feld-
regelung, basierend auf einer proportionalen Rückführung in Kombination mit einer konstanten
Vorsteuerung, kann die hohen Anforderungen für den XFEL nicht erreichen.
Im Rahmen dieser Arbeit wird gezeigt, dass mit einem modellbasierten Reglerentwurf die not-
wendigen Anforderungen an die Feldregelung erfüllt werden. Hierfür wird zunächst ein linea-
res zeitinvariantes ”Black Box Modell”des Systems erstellt, welches die wesentlichen dynami-
schen Vorgänge charakterisiert. Dieses Modell basiert nicht auf physikalischen Annahmen, es
charakterisiert ausschließlich dasÜbertragungsverhalten des Systems. Die Beschleunigungs-
module werden in einem gepulsten Modus betrieben, indem für ein finites Zeitintervall das
Hochfrequenzfeld konstant gehalten wird. Weiterhin soll die Variation der Felder über viele
Pulse möglichst klein sein. Der Charakter der auftretenden Störgrößen und die Eigenschaf-
ten des Systems erfordern die Kombination aus geregelter Vorsteuerung und Rückkopplung.
In der Regel nicht vorhersehbare, niederfrequente Variationen von Puls zu Puls werden mittels
einer Ausgangsrückführung unterdrückt. Die Struktur des implementierten, komplexen Mehr-
größenreglers ist dabei vorgegeben, sodass der modellbasierte Entwurf sich auf die Bestim-
mung der einzelnen Reglerparameter beschränkt. Die in dermodernen Regelungstechnik oft
angewandte Methode desH∞ loop shapingermöglicht es, die Menge an nicht mehr manuell zu
bestimmenden Parametern zu ermitteln. Störungen innerhalb eines Pulses hingegen sind auf-
grund der kurzen Pulsdauer als hochfrequent anzusehen. Siekönnen durch die geringe Band-
breite des Systems mit einer Rückkopplung allein nicht ausreichend minimiert werden. Hierbei
handelt es sich überwiegend um repetitive Einflüsse, wie den strahlinduzierten Feldabfall. Ite-
rativ lernende Algorithmen erlauben es, die Vorsteuerung dahingehend zu adaptieren, dass auch
wiederkehrende Störeinflüsse kompensiert werden. Die Kombination beider Konzepte und die
damit erreichten Grenzen der Regelgüte bilden die wesentlichen Ergebnisse dieser Arbeit.
Die gezeigten Ergebnisse stammen aus Messungen an FLASH unddemonstrieren damit die
Möglichkeit der permanenten Verwendung dieses Reglers w¨ahrend des laufenden Beschleuni-
gerbetriebes als auch des späteren Einsatzes am XFEL. Um die Flexibilität und die Vorteile
eines modellbasierten Entwurfs zu zeigen, sind zusätzlich Messergebnisse von weiteren Be-
schleunigersystemen ausgewertet worden.Überlegungen bezüglich der Integration strahlbasier-
ter Informationen zeigen, dass auf dem Weg zu einer optimalen Feldregelung mit dieser Arbeit
die Grundlagen geschaffen sind.
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Abstract

The European XFEL is being constructed at theDeutsche Elektronen SynchrotronDESY to
generate intense, ultrashort pulses of highly coherent andmonochromatic X-Rays for material
science research. X-ray flashes are generated by accelerating electron bunches within supercon-
ducting cavities with radio frequency (RF) fields to energies up to 17.5 GeV. The digital control
of these fields requires extremely high quality in order to achieve the physical processes of pho-
ton generation. DESY offers with FLASH a pilot test facility, allowing to test and develop most
necessary components, even before the XFEL is conducted. Current field control is based on a
proportional feedback controller in addition to a constantfeedforward drive, which do not meet
the high requirements of the XFEL.
This thesis shows that a model based controller design can achieve the necessary field regulation
requirements. A linear, time invariant ”black box model” isestimated, which characterizes the
essential dynamic behavior. This model is not based on physical assumptions, but describes ex-
clusively the transfer behavior of the plant. The acceleration modules are operated in a pulsed
mode, in which the RF field must be kept constant for a finite period. The character of the
disturbances and variations from pulse-to-pulse, together with the properties of the system, re-
quire a combination of controlled feedforward drive and feedback. Generally unpredictable,
low frequency pulse-to-pulse variations are suppressed bythe feedback controller. The struc-
tural design of the complex multivariable feedback controller is given, which constrains the
model based design approach to assign the controller parameters only. Estimation of the pa-
rameters, which can not be tuned manually, is done by the method ofH∞ loop shapingwhich is
often applied in modern control theory. However, disturbances within a pulse are in a high fre-
quency range concerning the short pulse duration. They are not sufficiently suppressed by the
feedback controller alone, due to the small bandwidth of thesystem. These are mainly repet-
itive effects like the beam induced field transient decay. Iterative learning control techniques
allow adaptation of the feedforward drive such that repetitive disturbances are compensated.
The combination of both controllers and the achieved limitsof regulation represent the central
results of this work.
The results presented are from measurements done at FLASH that demonstrate the possibility
of permanent implementation of these controllers for the accelerator operation as well as for
later application at XFEL. To show the flexibility and advantages of the model based controller
design, additional measurement results are given from other accelerator systems. Considera-
tions for integrating beam based information show that thiswork forms the basis for optimal
field control.
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Chapter 1

Introduction

A current field of research in particle accelerator physics areFreeElectronLasers (FEL), which
produce laser radiation with tunable wavelength. In contrast to FELs, conventional laser light
sources have a fixed frequency spectrum due to the specific energy levels within the atom struc-
ture. The FEL process demands very dense electron bunches, either longitudinal or transversal.
The transverse dimensions of the electron bunches have to bein the order of the desired FEL
wavelength, while peak current after bunch compression have to exceed 50 A (infrared) or even
5 kA (X-ray), which determines the longitudinal dimension.The typical charge of an electron
bunch is in the range of 1 nC.
For many research activities a light source that is able to resolve objects on an atomic level
would be favorable, e.g., in molecular biology. Wavelengths of X-ray radiation are in the range
of the diameter of an atom (10−10 m) such that X-ray radiation is suitable for the desired exper-
iments. However, conventional X-ray sources cannot provide X-ray pulses with a sufficiently
short pulse length. This has the effect that e.g., single biomolecules are destroyed by the high
energy of the radiation. Moreover, the resolution of conventionally produced X-ray radiation is
limited by the broadness of its spectrum. Therefore, laser light is used for a variety of exper-
iments because it can be better focused compared to other light sources, it is monochromatic,
and very short pulses can be produced, [1], [2]. At the GermanElectron Synchrotron (DESY)
in Hamburg the X-ray Free Electron Laser research project XFEL is conducted. The goal of
the project is to build a Free Electron Laser operating in theX-ray wavelength range by the
year 2014, [3]. A prototype test facility for the XFEL has been developed over the last years
with theFreeElectronLaserHamburg FLASH. This accelerator was basically a project of the
TESLA collaboration which developed the superconducting acceleration technology at DESY.
Within the years the accelerator was consistently extendedby means of additional modules, and
finally with the undulator development expanded to a user light source. With a higher number
of modules the increased energy of the particles leads to shorter wavelengths down to 6 nm. The
generation of light from the accelerated particles is a verycomplex physical process which is
very simplified introduced . The electrons are forced to follow a slalom course in so-calledun-
dulators, e.g., an arrangement of dipole magnets, leading to the generation of laser light through
Self Amplified SpontaneousEmission (SASE) with extremely high intensity and quality. Am-
plification of the radiation is exponential, since concentrated bunches of N electrons do not emit
N times the radiation of an electron, butN2, [2]. This process is driven by an electron beam
demanding an extremely constant energy provided by the particle accelerator. The acceleration
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CHAPTER 1. INTRODUCTION

is based on electromagnetic radio frequency (RF) fields, which must be stabilized to a high de-
gree of precision. Achieving high amplitude and phase precision to ensure small variations on
the RF field is important in order to accelerate electrons to consistent energy. There is partic-
ularly for the so-called injector linac, which is the accelerator subsystem in front of the bunch
compressing section. Beam energy variation here leads to arrival-time jitter of the bunch, which
has to be avoided. The requirements on the RF field regulationare derived from the necessary
compression properties, [2].

• The field amplitude must be within 0.01% (rms) of the reference value.

• The field phase must not differ from the reference value by more than 0.01◦ (rms).

Future experimental conditions may require even more demanding control objectives. A digital
RF field control system is used to provide reference trackingand disturbance rejection. Due
to limitations regarding the cryogenic system, responsible for maintain superconductivity, the
accelerator is operated in a pulsed mode. The RF fields are brought to the requested level,
before the electron bunches arrive and subsequently tuned off again.
Prior to this project, RF fields where controlled by a decentralized proportional controller aided
by a pre-determined feedforward drive only. This work describes controller enhancements that
complement on-going hardware development. To find a sufficient control concept the knowl-
edge about the underlying plant is essential, gained by system identification. Therefore the basic
task of this work is defined as:

• Application of a model-based controller design method, forregulation of RF accelerating
fields in superconducting cavities.

To achieve this, the system information must be generated, amodel estimated, and the required
controllers have to be designed. This work can be consideredfrom two perspectives: the control
theory objectives, and real plant implementation. The control theory objectives can be summa-
rized as follows:

1. Develop an appropriate model of the system applying standard subspace identification
methods for linear time invariant systems, using input/output data only, i.e. black box
model.

2. Estimate the feedback controller parameters which improve the closed-loop field regula-
tion compared to the proportional controller used so far.

3. Apply an iterative learning controller that operates pulse-to-pulse on the feedforward
drive.

4. Run both controller types together to combine the advantages of individual controllers to
achieve improvements on the field regulation and suppress repetitive disturbances.

Black box models, which are widely used in engineering are used to describe the system dy-
namics, rather than white box models with physical parameters that are standard in particle
physics. A sufficiently accurate estimated open-loop modelof the system is necessary to design

2



CHAPTER 1. INTRODUCTION

a controller that meets the required closed-loop objectives. The disturbance characteristics in
this system demand a combined controller concept composingboth feedback and feedforward
controllers.
As an upgrade of the current feedback controller a multivariable higher-order controller is de-
signed usingH∞ loop shaping methods, [40], [41]. The narrow bandwidth of the system and
the limited available power leads to constraints on the maximum disturbance rejection. Fast
transients, which are introduced by the particle beam cannot be consequently suppressed by the
feedback controller alone.
Fortunately they are predictable and repeatable from one pulse to the next, such that an iter-
ative learning controller can be used to optimize the feedforward signal. This pulse-to-pulse
adaptation concept is widely used in repetitive controllertask, e.g., robots and automation
lines, [49], [63].
As has been introduced previously, the plant is a user facility which has various objectives
beside the control theory. The machine operators perspective on the controller implementation
can be summarized by the following questions.

1. How can the estimated controllers be implemented on the machine?

2. Do these concepts influence the reliability and operability of this machine?

3. What are the time costs to have this model-based approach?Are the improvements on the
field regulation sufficient to justify the higher complexityof this controller?

4. Does an improvement of the field regulation show further improvements on the beam
performance?

The controller needs to be ”aware” of this objectives especially since the cavities need to be
operated close to physical limits in order to fulfill the requirements of the machine. Both,
control theory and implementation perspective are considered in the following whereas the
machine operation demands higher priority due to the application character of this work.
The contribution of this work is a tested and reliable procedure to a model based controller
design, which achieves the previously defined requirementsfor the RF field control. The model
of the plant is estimated using a fixed procedure of data acquisition, processing and model
validation. The dynamics of the most important disturbances are classified and distinguished
according to the possible suppression strategy. Unpredictable disturbances can be addressed
by the output feedback controller, whereas repetitive fieldexcursions are ideally suppressed
by feedforward adaptations. A mixed sensitivity design andan iterative learning controller
are implemented and tested respectively. Measurements with the electron beam are presented,
showing that ideal field regulation does not necessary implybest beam conditions, which is
finally the control objective.
In this case often the notation beam and field stability is used, meaning invariance of properties
like amplitude or energy, whereas from a control perspective a system is either stable or unsta-
ble. Restrictions due to hardware realization boundaries are taken into account. The combined
application has been tested and technical expertise is considered for permanent application. To
show the applicability of this model based approach, tests on different accelerator systems have
been made. The controller design method can be used even withother systems if a model can be

3



CHAPTER 1. INTRODUCTION

found, and the application provides necessary testing conditions. Finally a concept is presented
which will be used for the permanent application on the real plant.
This thesis is organized as follows. In Chapter 2 the RF control system is explained, briefly
introducing the corresponding subsystems and focusing on the specifics of the field measure-
ments and according to the digitalization process. The disturbances influencing the field to be
controlled are classified to the regulation concepts to be applied. Existing models as well as the
black-box system identification approach are discussed in Chapter 3. The steps for estimating
a system model specially for this plant from measured data are discussed. In Chapter 4 the
estimated models are used to design the feedback controller. Here the concept of the parameter
estimation methods is discussed and the best field regulation performance achieved with theH∞
loop shaping design method is illustrated. In Chapter 5 the principle of iterative learning con-
trol for pulse-to-pulse compensation of repetitive disturbances like beam-loading is introduced.
Also described is the integration of feedback and feedforward controllers for simultaneously
compensating beam-loading effects and suppressing unpredictable disturbances. Finally the
implementation for routine user operation is discussed in Chapter 6. Further ideas about the en-
hancement of the model-based design method are presented, including beam information which
are expected to give improvements of the achievable field andbeam performance.
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Chapter 2

RF control at FLASH

TheFree ElectronLaser in Hamburg (FLASH) at DESY is an accelerator facility which pro-
vides to users a brilliant laser light in the range of the ultra violet spectrum. Furthermore the
planned XFEL will be equipped with the technology developedat FLASH. This marks FLASH
as a prototype test facility, a main advantage for the research activities. Typical FEL users are
interdisciplinary scientist in biology, chemistry and material science. The continuing enhance-
ments of this machine, allow its users to have best experimental conditions. An overview of the
facility can be seen in Fig. 2.1.

Figure 2.1: Schematic view of the FLASH facility with the main components of the injector,
accelerating structures, and the undulator section, [5]

Free electrons are generated in the RF gun. A pulsed laser is focussed on a cathode that emits
the particles by means of the photo effect with a defined repetition rate. These bunches are
accelerated by a 1.5 - cell normal conducting cavity to an energy of about 5 MeV. The first su-
perconducting acceleration moduleACC1increases the energy to 127 MeV by electromagnetic
field gradients of 12−24 MV/m. Next the bunch compressor reduces the longitudinalspace of
the electron bunch to increase the peak current of the bunch up to 2.5 kA. After this modulation
the electrons are further accelerated to approximately 1 GeV. This series of acceleration mod-
ules is intersperced by different kinds of magnets for deflection and focussing of the electron
beam. Further measurement devices such as cameras are installed for diagnose purpose. Finally
the undulators, which are essentially a gallery of cascadedalternating dipoles, force the electron
beam to oscillate transversally, causing then to emit photons via synchrotron radiation. This re-
sults in a pulsed laser of variable wavelength, the latter depending on the electron beam energy,
and may be as low as 7 nm. This laser light is transferred to theuser experiments, whereas the
residual electron beam is dumped after isolation.

5



2.1. LLRF-SYSTEM CHAPTER 2. RF CONTROL AT FLASH

In the following, only the first cryomoduleACC1and its associated control system are consid-
ered. Nevertheless, the introduced concepts can also be applied to the other modules and even
for other control systems, as will be shown later in this thesis. The measurements were made
at ACC1 because at the beginning of the work only this module was equipped with the digital
control system. Further, the location before the first bunchcompressor has advantages in terms
of measurement possibilities which are discussed later in this chapter.
The LLRF-System is introduced in Sec. 2.1, including descriptions of the configuration of the
energy transport, field detection, and data processing system used for field regulation in FLASH.
The main sources of disturbances are discussed in Sec. 2.2, the influence on the field regulation
described, and they are classified with respect to the compensation concept. Lastly in this
chapter the existing models are discussed in Sec. 2.3 beforeintroducing the novel modeling
procedure in the next chapter.

2.1 LLRF-System

TheLow LevelRadioFrequency (LLRF) system is responsible for regulation of theaccelerat-
ing field in the cavities used for a particle accelerator. This includes the generation of control
signals, timing and synchronization, signal acquisition and digital signal processing. The ideal
operation scenario is for the machine operator to set the desired acceleration parameters such as
energy gain, and the LLRF system then provides the corresponding acceleration field inside the
cavities with best achievable accuracy. This demands on theone hand a reliable and suitable
control performance and on the other hand a very precise and complex hardware for signal and
data transportation and processing. The structure of the currently implemented LLRF control
system is shown in Fig. 2.2.
The LLRF system can be divided into analog and digital sections, as indicated in the figure.
From the control point of view, the analog part is the plant tobe controlled, while the digital
part includes the controller and the corresponding data acquisition system. The basis of this
work is with the controller.
Specific components of the plant will be introduced later in this section, but first the digital
signals presented in the figure are defined:

• Output signalsyI , yQ: Measured sum of the RF field voltage vectors of the eight cavities

• Reference signalsrI , rQ: Reference signals

• Control error signals eI , eQ: Deviations of the measured output signals from the refer-
ence signals

• Control signalsuc,I, uc,Q: Controller output signals

• Feedforward signals fI , fQ: Open-loop control signals

• Input signals uI , uQ: Control signals of the digital control system which are applied to
the vector modulator

6
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Figure 2.2: Schematic view of the current LLRF control system. The different subsystems are
described in the following text, while an overview of the control signals is given in the list
below.

The signals are defined in term of the realI (in-phase) and imaginaryQ (quadrature) part of
the field vector. Rather than of controlling amplitude and phase, the controller processes the
decoupled components of I and Q. A typical pattern of the signals in open-loop operation can
be found in Fig. 2.3.
This single pulse repeats at a 5Hz rate. The pulse is divided into different phases in time which
will be discussed in the following section.

2.1.1 Pulsed operation mode

The accelerating modules (cavities) are made from a niobiumalloy, which is a superconductor
at liquid helium temperatures. Even at these temperatures,however, power is still dissipated
and the thermal losses must be removed by the cooling system in order to keep the cavities
superconducting. The dissipated power depends on the acceleration field and the quality factor
of the cavity. The cryogenic system is not able to sustain thethermal losses in continuous
(CW) operation, which forces the system to be operated in a pulsed mode. The field inside
the accelerator cavities has to be kept constant once the required amplitude for the appropriate
energy gain of the electrons has been reached at the end of theso-calledfilling phase. During
the flat top phasethe electron beam is injected into the accelerator. When theelectron beam
has passed, the RF field is turned off and the field amplitude decays until the next pulse starts.
This duty cycle reduces the dissipated power to a level that is within the cooling capacity of the
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Figure 2.3: Open-loop response to usual feedforward signals, given in theI ,Q representation
used for data processing inside the controller

cryogenic system. The typical shape of the pulsed mode is shown in Fig. 2.4.
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Figure 2.4: RF pulses in superconducting cavities, definingthe period of beam acceleration

This figure shows the amplitude of the desired envelope of theRF field for two consecutive RF
pulses as a function of time. The resonance frequency of the cavities is f0 = 1.3 GHz, but the
envelope of the RF is sufficient for field control since field changes are much slower than the
resonance oscillations, [9].
In this work several frequency notations are used for description of ranges of interest. Therefore,
in the following table an overview about the different time notations used is given:
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notation frequency range description

bunch-to-bunch 0.1−3 MHz repetition frequency between two subsequent
bunches which depends on experimental set-
tings

intra-pulse 1 MHz the RF sampling frequency which determines
the time between two sampling instants

pulse-to-pulse 1−10 Hz repetition frequency of two subsequent pulses,
mainly important for changes in control tables

long-term < 0.1 Hz drifts due to environmental changes such as
temperature or mechanical oscillations

The time variations are derived from different operation modes to be set by the user. For ex-
ample, the bunch-to-bunch frequency is often changed basedon the needs of each user experi-
ment. For the normal operation, the filling phase is usually set tot = 500µs and the flat top time
t ≤ 800µs depending on the number of bunches to be accelerated withina pulse. The maximum
number of bunches is 2400 assuming a bunch repetition rate of3 MHz.
Having summarized the digital signals in the LLRF system, the basic analog subsystems of the
LLRF station are explained in the following section.

2.1.2 Drive signal chain

The digital signals generated by the control system are converted to analog signals inDigital
AnalogConverters (DAC). In the chain, the control signals are amplified and transferred to the
cavity. Therefore, the real and imaginary field vectorsuI anduQ have to modulate the cavity
resonance frequency of 1.3 GHz, using a vector modulator. The demanded reference frequency
is generated in the so-called master oscillator, providingfurther signals synchronized to this
reference. Details are omitted here but can be found in [6]. This processed RF signal must be
amplified to drive the system with the demanded power necessary to accelerate the beam. Two
preamplifiers and one so-called klystron generates this power amplification, and a waveguide
system distributes the RF power to the cavity couplers. The basic functionality of both systems
is introduced in the following.

Klystron and waveguide system

A klystron is a large amplifier often used in radio frequency applications where high-frequency
power signals are demanded, like radar system or accelerators. The basic principle is to convert
a DC electron beam into RF power by bunching processes. This electron beam is generated in
a cathode and accelerated by high voltage electrodes. Subsequently the electron beam passes
through a cavity which is driven by a high-frequency field. This electromagnetic field introduces
an energy profile on the electron beam, such that some electrons are accelerated and others
are decelerated depending on the field direction. This leadsto different traveling times of the
electrons and subsequently a bunching process (density modulation). These bunches induce
electromagnetic fields in a second resonator, which can be coupled out.
Currently the considered system to be controlled, consistsof 8 cavities which will be increased
to 32 cavities controlled by one high power klystron only. Therefore operations close to power
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limits cannot be neglected, which is aligned with saturation effects and nonlinear behavior. In
measurements presented here, the 8 cavity control does not reach this levels and input/output
power linearity can be assumed. The bandwidth of the klystron used is about 6 MHz, which is
sufficiently large for this application.
The output power is distributed to the cavities in waveguides, which is a power transmission
line to carry almost lossless electromagnetic waves especially in the microwave and optical
frequency range. Finally the RF power is coupled to the cavities by coaxial couplers, which are
a very sensitive part in this chain. It is possible to influence the wave propagation by a tuning
mechanism that the amplitude and phase of the incoming wave.This is necessary to adjust the
matching between the waveguide and the cavities inside the cryomodule.

2.1.3 Cryomodule

The cavities are housed in cryomodules, along with and various measurement and supply equip-
ment such as field probes, piezo sensors and motor tuners. Themain purpose of this module
is to carry several temperature layers including cryogenicsupply pipes isolating the supercon-
ducting cavity from the environment. The type of cryomoduletype used for FLASH is about
12 meters long and hosts 8 cavities enclosed by liquid helium.

Cavity

The cavities are superconducting electromagnetic resonators composed ofNiobiummaterial,
which has the physical properties to conduct almost lossless high currents at temperatures of
about 2 K. These currents are generated by the high electromagnetic fields inside the cavities
used for particle acceleration. Due to superconductivity the cavity has a high quality factorQ
defined as:

Q= 2π f0
W

Pdiss
, (2.1)

whereW is the stored energy andPdiss the dissipated power. The quality factor is very high in
a superconducting resonator, e.g. approximatelyQ= 1010 for Tesla type cavities. The vacuum
inside the cavities minimizes collisions between the accelerated particles and residual atoms.
One resonators consist of nine cells of special geometry as shown in Fig. 2.5, [7].

Figure 2.5: View of a 9 cell tesla type cavity with couplers [7]
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Each cavity hosts 9 fundamental modes having electrical field vectors in direction of the cavity
axis. The so-calledπ-mode is excited by the resonance frequency off0 = 1.3 GHz, whereas
all other modes are unwanted. Energy from the klystron is propagating from the power coupler
through the weakly coupled cells, creating a standing electromagnetic wave in this structure.
Slight changes of the geometry have significant effects on the resonance frequency. This is
exploited in the frequency tuning process where stepper motors are used to distort the cavity.
The π-mode is of special interest, with respect to the electricalfield component on axis. The
field amplitude of this mode is equal in all cells, but has the opposite sign from one subsequent
cell to the next, [8]. On the cavity axis it is observed as a sine wave with a period of 2 cells
with the maximum amplitude in the center of each cell in the longitudinal direction. For beam
acceleration, this provides a field gradient in direction oftransition when the particles enter
the first cell. As the beam travels to the next cell, the electric field direction reverses, and the
particles are accelerated in that cell. This pattern is further repeated over the full cavity length.
Wave propagation and the relativistic electron velocityv ≈ c are balanced which is important
for a constant acceleration.

Beam operation

The electrons being accelerated are relativistic, so the increase in their velocity is negligible,
already being close to the speed of light. The energy consumption however is significant. This
energy gain is provided in the real part of the complex field vector, given as:

Vacc(t) =Vcav·cosϕb =Vcav·cos(ωtb) , (2.2)

with the beam phaseϕb with respect to the phase of the cavity field vectorVcav, [9]. On crest
operation is determined when the beam passes the cell duringthe time the electric field has its
maximum amplitude, whereas off-crest operation is done to introduce an energy profile along
the bunch which is necessary for the bunch compression procedure. In this case the beam phase
deviates from the field phase by about 5−10 degrees. Thinking about a sine wave, the beam
traverses the cell not when the field is at its maximum, but on the rising edge. The bunches pass
trough the bunch compressor, which is a chicane in the beam pipe comprising a series of dipole
magnets, that reduces the longitudinal dimension of the electron bunch. An energy profile over
the bunch leads to variable deflections in the dipole magnetsand corresponding traveling paths.
All particles in the bunch have the same velocity, which finally results by the different traveling
time to compression. This system is very susceptible to energy variations which translate to an
unwanted arrival-time jitter. Requirements for the field regulation performance are derived from
the arrival-time stability requirements given by the machine users. How to accurately provide
the demanded RF field is discussed in the following.

2.1.4 Field detection and processing

For appropriate field regulation it is first necessary to measure the actual field in the cavity,
which is done directly by field probes at the edge of the last cell as it can be seen in Fig. 2.5
(pick up). For data processing, the analog signals have to betransmitted over long distances
from the accelerator tunnel to the computation devices. This makes the RF signals susceptible
to environmental influences, e.g. temperature changes or crosstalk. Furthermore, latencies are

11



2.1. LLRF-SYSTEM CHAPTER 2. RF CONTROL AT FLASH

introduced by the traveling time, and this might limit gainsin the digital control loop. Once the
data are transmitted to the regulation system they are processed.

IQ-sampling scheme

For data processing, the analog signals have to be digitized, which is usually done by sam-
pling the signals with a sufficiently high sampling frequency. TheAnalog toDigital Converters
(ADC) available on the market at the time of system implementation were not sufficiently fast
to directly sampling the RF field. Today the development in this technology allows to overcome
this drawback. Nevertheless the sampling method introduced next is still applied, using a mod-
ulation concept to convert the high-frequency signals downto an intermediate frequency (IF), in
a so-called downconverter. This IF is sampled with a specialmethod named IQ-sampling, [10]
where original radio frequency of 1.3 GHz is mixed with an additional frequency contribution
shifted by about 250 kHz as it is shown in Fig. 2.6.

I

Q

t s[ ]m

t s[ ]m

2

p

2

p
-

2

p

2

p
-

2ms

MO 1.3 GHzVM

LO 1.3 Ghz

+ 250 kHz

RF 1.3 GHz

IF

A
D

C
I

Q

Figure 2.6: Downconversion of the RF signals with time step changes of IQ, sampling and
frequency distribution

This local oscillator frequency is generated by the vector modulator. The modulation in this
case is done by step changes for the I and Q channel as shown in Fig. 2.6, [11]. After mul-
tiplying the IF with the measured RF, the resulting high-frequency term is filtered out so only
the low-frequency part remains. The phase and amplitude information is now transferred to the
intermediate frequency which can be sampled by the ADC as it is shown in Fig. 2.7.
The field information is computed by sampling the steps of thedownconverter output as sketched
in Fig. 2.7. After the step transition, which can be adjustedby a variable delay, the values are
sampled at 81 MHz and averaged, as shown in the figure. The fieldvector components are de-
termined in series ofI ,Q,−I ,−Q, and further rotated for every sampling instant of about 90◦.
With the sampling time of 1 MHz, within one period exactly 4 values are calculated. Effec-
tively every 2µs a new pair of I,Q values is generated, whereas the sampling frequency of 1µs
implies getting a new data pair every sampling instant. Thiscan be provided by computing the
new vector from one step back value, and rotating it of about 90◦. This procedure is possible
because of the very narrow bandwidth of the cavity, where thefield changes are expected to
vanish between two sampling steps. This sampling method is very sensitive to the generation
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Figure 2.7: Schematic illustration of the IQ sampling and data averaging method, having the
downconverted IF frequency.

of the intermediate frequency steps, e.g the step heights vary which leads to non-perfect cir-
cles in the IQ planes and therefore wrong calculation of the field vector. The digital IQ data
generation and all digital processing operations are done within anField ProgrammableGate
Array (FPGA) placed on the so-called Simcon (Simulator andController) board. As the name
suggests, this board can be used either as the controller platform or as a simulator for testing
controller applications. A side view picture of this board can be seen in Fig. 2.8.
The FPGA has the advantage that the controller structure as well as new applications are easily
realized by reprogramming this devise accordingly. The internal clock rate of the FPGA is
81 MHz, which is sufficient to allow averaging of 16 values each sample in the IQ detection
scheme shown in Fig. 2.7. The latency introduced by this detection algorithm is about 2µs.
Further processing steps in the pipeline take about 500 ns. Therefore the overall input-output
delay sums up to 3 sampling steps measuring the input output response with the sampling
instants. For detailed information it is referred to [12]. As already introduced in Sec. 2.1.2
it is not one cavity field vector but the sum of several cavities data is used for regulation. This
processing step is discussed next.

Vector sum calculation and calibration

The klystron is one of the most expensive devices in the accelerator system. Costs need to be
minimized to keep new linear accelerators like the XFEL affordable. Supplying every single
cavity with one klystron is much more expensive, then havingone large RF source for several
cavities. For the XFEL it is planned to have 32 cavities, installed in 4 cryomodules driven
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Figure 2.8: Picture of the Simcon DSP board used currently for LLRF control including ADCs,
DACs, DSP, Virtex FPGA and optical links

by one 10 MW klystron. The disadvantage is that because single cavities are not individually
controllable, the system is under-determined. It is assumed that all cavities have the same
physical behavior, so it is possible to sum up all individually field contributions which are also
seen by the electron beam. The vector sum represents the amount of energy the particle gains
as it would be accelerated in one module with the same amount of energy. Certainly summing
up the individually field vectors averages over noise contribution from the field sensors, ideally
leading to more accurate field measurements if the noise contributions are uncorrelated. The
improvement in accuracy is

√
N, with N the number of cavities. The vector sum calculation is

done in the FPGA on one controller board for 8 cavities, partial sums are build when controlling
more cavities and further combined. Therefore the real and imaginary field vector components
are summed up. Before the summation a calibration of the individual components has to be
done, e.g. compensating for different cable length. Without this calibration the measured field
vector differs from the real field vector resulting in a regulation error. For this calibration
there exists a rotation matrix that scales the amplitude androtates the phase of the individually
measured field vector. Calibration errors cause the measured vector sum differ from the actual
vector sum seen by the beam, which significantly impacts quality of field regulation. In Fig. 2.9
a pattern of the actual and measured vector sum is sketched.

Currently the calibration is done by measuring the field decay introduced by the electron beam
passing the cavities. The charged particles are a stable current which generates with the shunt
impedance of the cavity a voltage with opposite direction tothe stored field voltage. Assuming
all cavities have equal impedances this voltage must be equal in all cavities. The regulation has
to be turned off and the cavities are only operated by the open-loop control signals. Calibration
coefficients are derived by differences in the individual field decay measurements. Therefore
the individual field vectors are rotated and scaled to a defined reference cavity. Details about
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Figure 2.9: Sketch of the basic idea of vector sum calibration with measurement and estimation
errors

this procedure can be found in [13]. Finally the generation of the control signals is introduced
briefly.

Controller tables

The controller output is generated in the FPGA from tables that define the values for everyone
of the 2048 sample points in one pulse. As illustrated in Fig.2.2 the vector sum is computed
and then subtracted from the setpoint table. The resulting field deviation is further multiplied
with gain tables, that define the gain factor for each sampling step. Currently this table is kept
constant during the filling and flat top phase, although scheduling the gain factor to improve the
field regulation is intended.
The controller used for normal operation is a decentralizedproportional feedback, that controls
the two vector components individually. Later in this work this controller is replaced by a mul-
tivariable controller. Finally the open-loop control signals are added to the controller output,
generating a driving signal which leads the plant to reach almost the reference trajectory or
setpoint. The feedback controller is used to compensate small field deviations around this oper-
ation point. The disturbances leading to this imperfections in the system response are discussed
next.

2.2 Disturbances

As is typical for a real system in presence of a disturbed environment, influences to the con-
trolled system cannot be neglected. This disturbances can come from various sources and can
be categorized according to the strategy of suppression. The following diagram shows the clas-
sification in two subgroups, namely repetitive and non-repetitive disturbances. This breakdown
was chosen according to the possible regulation concepts, namely feedforward and feedback
control. The repetitive components in this case are predictable and can be compensated by the
feedforward signal to the system, updated between two pulses. Non-repetitive disturbances on
the other hand cannot be foreseen. The influences must be compensated by the feedback con-
troller which acts within a pulse. These non repetitive disturbances are mainly caused by noise
sources from the measurement equipment, digitalization process and also actuator imperfec-
tions. In the following, three main disturbance contributions are distinguished, all of which will
recur within this work when discussing the controller performances.
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Disturbances

RepetitiveNon-repetitive

Microphonics

Measurement noise

Actuator noise

Digitalization errors

Lorentz force detuning

Electron beam

Transition overshoots

Residual control errors

2.2.1 Microphonics

Microphonics are mechanical vibrations of the system hardware that couple to the cavity, lead-
ing to small oscillations which change the cavity geometry.Accelerator components such as
cooling systems and vacuum pumps, or man-made sources such as road traffic or environmental
ground motion are sources of mechanical vibrations. The high quality factor of the cavity makes
it very sensitive to vibrations, which shift its eigenfrequency by≈ 300 Hz/µm. An example
plot of the shifted resonance peak can be seen in Fig. 2.10.

Figure 2.10: Resonance curve displacement of the cavity dueto microphonic vibrations. The
maximum achievable output voltage is given as function of the excitation frequency.

The microphonic oscillation in this figure is simplified constituted as a sinusoidal oscillation of:

∆ω(t) = A∆ f sin(2π fmt+φ) , (2.3)

with the microphonic amplitudeA∆ f and frequency offm. These vibration frequencies are
typically in a range up to a few hundred hertz, which in pulsedoperation appears as fluctuations
from pulse-to-pulse. The amplitude or resonance frequencychange for this type of cavities is
typically σA∆ f ≈ 6 Hz, [14]. The small changes in the resonance frequency havea strong impact
on the field, because the RF drive frequency remains unchanged. Imperfect matching between
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the antenna and the module leads to a lower field amplitude which must be compensated by
the feedback controller. Beside the increased power, thesefluctuation are undesirable because
they cause residual field errors visible as pulse-to-pulse fluctuations on the vector sum if not
perfectly compensated. To keep these effects small the cavities are mechanically stiffened in
order ro passively suppress the effects. Further there are proposals to actively compensate the
microphonic oscillations, by a mechanical feedback loop, [15] and [16].

2.2.2 Lorentz force detuning

In contrast to microphonic vibrations, the so-called Lorentz force detuning (LFD) is treated as
a repetitive disturbance, even thought the detuning effectis also caused by deformations of the
cavity. In this case, however, the electromagnetic field inside the cavity acts on the thin cavity
walls and the resulting electromagnetic forces are sufficient to change the cavity geometry. This
process is sketched in Fig. 2.11, [17].

Outward pressure

at the equator

Inward pressure

at the iris

(a) pressure directions (b) deformation simulation

Figure 2.11: Influences of geometric deformations to the cavity. The resonance frequency is
sensitive to deformations in the accelerating modules.

Compared to the microphonic deformations, this effect leads to stronger resonance frequency
deviation. Instead of vibration around the resonance frequency, the detuning represents a con-
stant drift of the cavity eigenfrequency. If the RF field doesnot change from pulse-to-pulse,
the deformations will show almost the same behavior. Influences such as the LFD are well
understood and further predictable. Studies on this topic can be found in [18] and [19]. If the
system would not operated in pulsed mode, the detuning wouldreach a final steady state when
the introduced deformations and the rigidity of the cavity are in balance. In this case one could
simply detune the cavity by the RF field induced frequency shift. For the pulsed operation
mode only the transient response is measurable, since steady state is not reached before the RF
is turned off at the end of the flat top. Deformations are disappeared before the next pulse starts,
so the effect is repeated with the next pulse. A measurement using deformation sensors (piezos)
is shown in Fig. 2.12, giving the transient detuning response.
Unfortunately this measurement could not be correlated with the field measurement data. Only
a relative behavior is detectable, showing that the deformation increases with field gradient
in the cavity as postulated. A simulation example on this topic is given in Sec. 2.3.2. From
Fig. 2.12, one can observe that the pulse is started at the sampling instant of about 2000 and
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Figure 2.12: Measurements of detuning by piezo detectors for two different gradients as func-
tion of time. Due to synchronization issues these data cannot be correlated with measured field
information.

the pulse stopped at the maximum amplitude at about 2800. Onecan see that the oscillations
continue, which can be ascribed to mechanical modes of the cavity.
Effects of this detuning process can be seen from Fig. 2.3, where the open-loop system response
is measured. The significant deviation of the field from the setpoint is caused by the LFD, vi-
sualized in the IQ plot. In Fig. 2.13 the impact in the amplitude and phase representation is
also shown. This means that the field inside the cavity can only be kept constant if the input
power is increased. Otherwise the field amplitude decreasesand the phase drifts away from the
setpoint. For practical application the cavities are pre-detuned such that the detuning effect is
minimized during the flat top region so as to keep the deviation minimal during beam accelera-
tion, although this also increases the required power in thefilling phase. Passive compensation
is done by stiffening rings that enhance the rigidity. The cavity walls have to be kept thin due to
thermal reasons and material costs. Active LFD compensation is currently under developments
and first test show the benefit in much reduced detuning.

2.2.3 Beam-loading

The most serious disturbance to the RF field comes from the electron beam itself. Due to
the interaction with the RF field, the energy for the beam acceleration is transferred from the
field to the beam, which must be ascribed by the RF field regulation. In this case the beam-
loading can be seen as a disturbance, whereas the beam is the actual value to be controlled
and further used as independent measurement for the qualityof regulation. Characteristic of
this disturbance source is determined by the charge, repetition rate, quantity and phase of the
particle beam. Usually these parameters remain unchanged during operation which means this
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can be classified as a repetitive disturbance source. Small variations, e.g. in the charge from the
electron gun are negligible. The effect of this beam-loading can be seen from Fig. 2.13, where
the feedback loop is already closed.
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Figure 2.13: Effects of beam-loading with a particle beam of30 bunches and a charge of 3 nC.
The proportional feedback controller closes the loop!

It can be easily observed that the feedback controller is notable to sufficiently compensate the
beam-loading effect. In addition this disturbance causes asteady state error until the beam
is turned off. If the beam properties are not changed this large field drop is predictable as is
illustrated in Fig. 2.13, where the measurement points for several pulses are overlayed as blue
dots.
As a result it can be claimed that the design of a feedback controller alone will not be able to
suppress all disturbances, rather the addition of pre compensation by an appropriate feedfor-
ward signal could significantly reduce the remaining control error. To design this combined
controller, first a system model is needed. Before introducing the procedure of system identifi-
cation, the existing models are outlined in the following.

2.3 Existing models

Existing models are derived from physical considerations of the different subcomponents in
the plant. Therefore several assumptions have been made, which are briefly discussed when
introducing the models. In the next chapter a system modeling procedure will be discussed

19



2.3. EXISTING MODELS CHAPTER 2. RF CONTROL AT FLASH

where characteristics of the physical models are auxiliary, e.g. for prior assumptions or model
verification. The dominant contribution to the system dynamics is certainly the cavity, due to
the small bandwidth compared to other subsystems in the plant. Therefore the physical model
is based on this subsystem.

2.3.1 Cavity model

The derivation of the cavity model has been given in several works like [9], [11], [13], and there-
fore need not be repeated here. Rather the focus is more on thecharacteristics of this model.
As already introduced in Sec. 2.1.3, the cavity is an electromagnetic resonator, which allows
the propagation of standing electromagnetic waves for a resonance frequency of 1.3 GHz, de-
termined by its geometry. The electromagnetic field is weakly coupled from cell to cell. As an
equivalent representation, a coupled LCR circuit as sketched in Fig. 2.14 is used.

Figure 2.14: Equivalent circuit diagram for the 9 cell cavity, showing the coupling between the
cells.[9]

Solving the differential equation, which can be derived from this circuit representation leads
finally to the state space representation of the field envelope, after removing the high-frequency
oscillations. The remain transient behavior is desired as given in Eqn. 2.4, [9].

(
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V̇Q

)

=

(

−ω1/2 −∆ω(t)
∆ω(t) −ω1/2
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)(

II
IQ

)

, (2.4)

with the shunt impedance of the cavity defined as:

RL =

(

r
Q

)

QL . (2.5)

The cavity voltage is given as~V in terms of the real and imaginary field component and the driv-
ing current as~I . For the TESLA type cavities considered in this work the physical parameters
in the state space representation are:

Symbol Value Unit Description

Ql 3 ·106 / loaded quality factor
ω0 2π ·3 ·109 1/s resonance frequency
∆ω(t) ω0−ω(t) 1/s detuning frequency
ω1/2 ≈ 2π ·216.7 1/s half bandwidth
r
Q 1024 Ω

m normalized shunt impedance
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It is easy to observe that within this representation there is a fixed structure in the system matri-
ces. The terms on the diagonal elements are equal for the realand imaginary field component.
This is obvious from physical considerations and the detection algorithm, where the field com-
ponents are only representation of a 90◦ rotated field vector. Unless the field detection algorithm
introduces some errors the components must not differ in itsbehavior. Later it will be shown
that this diagonal structure has significant influence on themodeling procedure. Additionally
it can be observed that the detuning effects described in Sec. 2.2 assign the coupling between
the two field vector components. Time dependency is caused bythe microphonic oscillations
as well as transients introduced by the LFD. There exist a model describing the effect of the
lorentz force detuning, which is discussed next.

2.3.2 Detuning model

A mechanical model is used to describe the time varying detuning ∆ω(t) as function of the
accelerating electric fieldEacc, as previously introduced in [17]. This second-order modelrelies
on mechanical modes in the cavity which can be described as:

∆ω̈(t)+
1

τm
∆ω̇(t)+ω2

m∆ω(t) = ω2
m∆ωT −2πKω2

m ·E2
acc(t) , (2.6)

with τm the time constant of the damping andωm the resonance frequency of the mechanical
oscillation. Additional pre-detuning of the resonance frequency is represented by∆ωT . In
Fig. 2.15 the detuning curves are simulated with a typical parameter set for field gradients.
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Figure 2.15: Simulated detuning curves for different field gradients as function of time

The mechanical model and physical state space representation of Eqn. 2.4 have been investi-
gated and studied in numerical simulations withMatlab Simulink. Furthermore as mentioned
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in the description of the Simcon board, it can be used as controller and simulator, where the
simulator is based on the combined model introduced here. This model, however, is both non-
linear and time varying, which would place high demands on the modeling process discussed
in the next chapter. To overcome this drawback, a first approach in this thesis is to use a linear
time invariant model approximation to determine the sufficiency for the controller design. The
integration of the mechanical model into the cavity model, was further investigated in [26].

2.3.3 Summary

In this chapter the LLRF system was introduced along with themain subcomponents that are
necessary for the operation of a single LLRF station in an accelerator complex. Further, pulsed
operation mode was explained with the consequences for fieldregulation tasks. As a main
topic, the sources of possible disturbances have been classified according to the suppression
strategy to be discussed later. Three main contributions tofield imperfections were emphasized
in terms of their physical origin. Finally, existing systemmodels were outlined, with respect
to assumptions to be made in the system identification procedure. It is claimed that the cavity
dominates the system behavior, which allows effects from other subcomponents to be neglected
in the modeling procedure. Nevertheless the plant is modeled as the whole chain between
controller outputuI ,uQ and the computed vector sum controller inputyI ,yQ.
For all measurements presented in the following chapter thecontrol system introduced here has
been used. Additionally a duplicate of this system has been installed in parallel by splitting the
field probes. Field detection and vector sum calculations use this parallel system. The main
advantage was the possibility of running setup procedures prior the real measurements, signif-
icantly improving efficiency of the the actual experimentaltime. Further it allows observation
of the regulation system with an parallel measurement equipment out of the feedback loop.
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Chapter 3

System Modeling

This chapter will focus on the mathematical representationof the RF system and components
that were described in the previous chapter. For most control design methods it is essential
to have a model of the system representing the static and dynamic behavior, which can be
generalized according to the usage and application.

There are three possible methods to determine such a model. First the so-calledWhite Box
model, where it is assumed that the physical behavior is exactly known. The model is found
by describing the system by a set of differential equations containing physical laws such as
conservation of energy or electric losses. The physical system model given in Sec. 2.3 was
determined by this method. In general the behavior of real plants are not fully understood,
hence a second category of models is needed, where it is assumed that the physical context
is known but the parameters or states of this system have to bedetermined. Estimating these
variables by experiments and fitting them to the given set of differential equations is the basis
of Grey Box models. For the cavity system of Sec. 2.3 this would mean that the parameters like
ω1/2 are estimated, e.g. by measuring the loaded quality factorQL. Some considerations of
methods for determining such physical parameters can be found in [26]. The assumption here
is that the system dynamics is dominated by the small bandwidth of the cavity.

Black box modelsare often used to describe systems which behaviors are not well understood,
and as the name presumes, there only is a linearity assumption about the internal system dy-
namics of the plant. The only possibility of characterizingthe system is by its input-output
behavior in mathematical notation. The states do not necessarily have a physical interpretation
but they have a conceptual relevance. The plant output can bepredicted by simulation with the
black box model and defined input signals. Here this method was chosen to find an appropriate
system identification method which not only relies on the cavity dynamics, but also on the sur-
rounding environment which might influence the system. Therefore various experiments have
been performed to model the system which will be described indetail in the following.

The chapter is organized as follows: first, in Sec. 3.1, the system structure is described ; then in
Sec. 3.2, the identification steps and method of modeling aredescribed in detail; Sec. 3.3 covers
results from measurement on the real plant, leading to the models and conclusions in Sec. 3.4
that are used in later chapters for controller design.
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3.1 System considerations

Like every other system, this plant has individual characteristics to be considered before pro-
cessing parameter identification. It is know that the dynamics are dominated by the cavity
compared to the other subsystems in the black box, e.g. klystron, couplers and measurement
devices. The subsystems are shown in Fig. 2.2, where the input to the plant is defined as the
controller output to the DAC, and the system output will be the computed vectorsum. The vec-
tor components are given in terms ofI (in-phase) andQ (quadrature) of the field vector. It is
possible to measure not just the sum but every single cavity vector, however it is not possible to
control every single cavity, so the system is underdetermined. Hence, the input-output behavior
must be defined.

3.1.1 Model representation

Having two inputs and outputs to the system, it is defined as a multivariable input, multivariable
output (MIMO) system, which is represented in state space notation as:

ẋ(t) = Acx(t)+Bcu(t) , (3.1)

y(t) =Cx(t)+Du(t) , (3.2)

with the state vectorx∈Rn, the control inputu∈Rm, the output vectory∈Rl and the constant
system matrixAc ∈Rn×n, input matrixBc ∈Rn×m, output matrixC∈Rl×n and the feedthrough
matrix D ∈ Rl×m. For physically realizable systems the matrixD is usually a zero matrix.
The data generation and storage is done at discrete samplinginstances, so the model will be a
discrete time model.

Discrete time model

In most modern control applications digital controllers are implemented and it is convenient
to use discrete time models. The continuous time state spacerepresentation Sec. 3.1.1 can be
transformed to a discrete time representation by computingthe discrete time system matrixAc

and input matrixBc as:

A= eAcT , B=
∫ T

0
eAt Bcdt, (3.3)

whereT denotes the sampling time. This leads to the state space model:

x(k+1) = Ax(k)+Bu(k) , (3.4)

y(k) =Cx(k)+Du(k) , k= 0,1, . . .N (3.5)

wherek denotes the discrete sampling instants andN is the maximum number of instants.
FLASH is operated in pulsed mode, with each pulse containing2048 sample points (limited
by buffer size inside the electronics). The continuous timeand discrete time models can be
converted easily using MATLABs commandsc2d andd2c respectively. For controller design
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both types of models are used and therefore mentioned here. For linear time-invariant models,
parametersA,B,C,D are constant matrices of appropriate dimensions. Some assumptions have
to be made in order to use this specific type of model.

3.1.2 Assumptions

In general for real plants, the dynamics is rather complex and influenced by the individual char-
acteristic of the system. Although it is not necessary (and often not wanted) to model all details,
an approximation can be sufficient to characterize the model. Using some basic assumptions,
the system can be described in a very simple way such that well-understood system identifi-
cation procedures can be applied. Here linear time invariant (LTI) models should be used for
the system description, provided the system fulfills the twoproperties oflinearity and time-
invariancewith good approximation. For most physical systems these conditions are fulfilled.

System linearity and time invariance

From physical considerations about the real plant, it is known that especially the klystron in the
actuator part is the main source of nonlinearities, so when operating close to saturation limits
as it is planned, the identification and modeling proceduresmust be adapted. Furthermore the
measurement part of the control system also shows nonlinearities, e.g. if the ADC is operated
in compression. Under typical system operation using a moderate feedback gain, the system is
driven around the operation point, so it can be assumed that the linearity assumption is true.The
time variance must be distinguished for both, pulse-to-pulse and intra-pulse variations. From
the physical model, it is known that the detuning effect is a time variant parameter changing
during the pulse. Also it is known that from pulse-to-pulse,microphonic effects have an impact,
allowing the system to vary frequently. Furthermore unpredictable long-term drifts might be
observed that are a consequence of temperature changes. Allthese effects are assumed to be
negligible in this model representation. It has to be shown that these assumptions can be made
for unchanged system conditions such as pulse length or fieldgradient. Beside the definition of
an LTI system, further typical system properties are pointed out in the following.

3.1.3 Plant characteristics

In addition to define the prerequisite assumptions, it is also necessary to mention some specifics
of the underlying system. The identification can be improvedif prior knowledge of the physical
description is taken into account. Furthermore, model validation can be performed by verifying
whether typical behavior can be recovered using the estimated model.
While introducing the system, it was claimed that this consists of a 2×2 MIMO system, where
the inputs and outputs are the real and imaginary part of the complex field vector. From a
physical point of view it is the difference between the vector of the incoming electromagnetic
wave and the measured vector inside the cavity. This means that in this special MIMO system,
the diagonal elements must model the same physical behavior. This assumption presumes that
the measured system data are representing a plant without measurement errors from the data
acquisition. This is in general not the case for a real plant,although the noise contributions
should be small compared to the system response.
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Furthermore detuning effects can be found in the cross coupling elements of the MIMO sys-
tem. As a consequence of the detuning effect, a constant input power results in an increasing
amplitude of the output channel I, whereas the amplitude of Qdecreases, as shown in Fig. 2.3.
This cross coupling effect will be modeled as a constant detuning factor. Further, it will be
shown that a detuning slope must be removed from the data. During normal system operation,
the cavity is initially slightly detuned in order to compensate the detuning effect within a pulse
to get a constant flat top.
Compared to the diagonal elements in this model, the cross coupling components have less im-
pact on the system response because the detuning effects areless significant then the system
bandwidth. A plausibility check can be made by checking if the system is diagonal dominant.
This assumes the system is appropriately calibrated, whichcan easily be checked when rotating
the measured field vector by 90 degrees in the calibration matrices, in which case the IQ de-
tection would interpret the channels as swapped. Both amplitude and phase must be calibrated
before closing the feedback loop.
A typical system response can be seen in Fig. 2.3, where the usual feedforward signal is ap-
plied. It is easy to visualize that the system in mainly dominated by the small bandwidth of the
cavity. The system has a time constant of about 700µs which is in range of a typical flat top
duration. The open-loop system response does not reach steady state conditions within a pulse!
Consequently, the open-loop control signal uses a higher input power during the cavity fill time
and then set lower at the beginning of the flat-top to the levelthat gives a steady state field.
The challenge in this case is to find a controller which increases the bandwidth of this system
in order that the system is able to react on disturbance influences. The black box modeling
procedure will now be discussed in detail.

3.2 General identification procedure

Estimating the model parameters is done by using the following general sequence of steps that
take into account the properties and physical limitations of the system.

1. Find an appropriate excitation signal: This signal or sequence of several signals must
be able to excite all system dynamics that need to be modeled.

2. Postprocess the measured data sets:Trends and means from the observed data must be
removed in order to model the actual excited system around the operating point. Averag-
ing is a possible method to suppress measurement noise from the signal, while filtering,
shifting data sequences or removing outliers might be necessary to have a suitable data
set for the identification process.

3. Assign model structure and identification method:The complexity and kind of model
must be defined before identification. In this case a black boxmodel in state space repre-
sentation has been chosen, the variable to be determined is left to the order of the model.

4. Choose identification algorithm and estimate model:This was described previously.The
data sets are prepared to estimate the chosen model.
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5. Validate the model: The validation process should verify whether an adequate model
could be found, and the reliability of the model is examined by comparing with measured
system data not used in the identification, or by comparing with physical known param-
eters of the system. Comparisons can also be made with other established models of the
system.

It is planned that a semi-automated routine for system identification will be implemented on the
real plant. A fixed procedure has to be developed in order to estimate the model frequently, for
example in cases when the operation point has changed. This is also necessary because of the
limited time available for studies and application development. During this work, experience led
to slight modifications to the identification procedure thatsolved modeling issues and allowed to
further improve the model estimation. As an example, determination of an adequate excitation
signal has been found over several iterations that converged on the following set of data input
signals.

3.2.1 Choice of excitation signals

One of the most critical steps in system identification is to find an appropriate excitation signal
that excites all relevant modes of the model. The ”richness”of a signal can be described in
term of persistently exciting,[20]. The signals used for excitation are discussed later in this
section. Considering characteristics one can find terms of conditions like, the amplitude must
be sufficiently large that the system response can be detected in presence of measurement noise
but small enough that linearity assumptions hold around theoperation point. For excitation
in the high-frequency range this aspect is more crucial, dueto the known narrow bandwidth
of the system. High-frequency dynamics in this case might behard to detect due to the noise
contributions in the field detection process. These considerations can be summarized as follows:

• Appropriate amplitudes for a good signal to noise ratio and nonlinearities prevention

• Persistent excitation of the system to detect all dynamics modes of the system

Taking all these considerations into account, the characteristics of the signal can be derived.
Beside the type of signal used for identification there are also limitations on the data acquisition
and pulse duration. It has been outlined that one pulses consists ofN = 2048 samples, whereas
the time duration of excitation is limited to the flat top area. The maximum flat top time is given
as about 800µs, which is short time period given the system time-constant. Additionally tran-
sient effects have to be removed in the beginning of the flat top introduced by the feedforward
step at the filling to flat top transition, hence the first samples in the flat top are not used for
excitation. The maximum number of possible identification samples per pulse has been chosen
for the experiments toN = 750 (compare Fig. 3.3). Given a sampling time ofT = 1µs, the
lower bound of the maximum possible input frequency is defined. The excitation will be added
to the given feedforward tables during the flat top time, allowing to study the system response
at the operation point. Nevertheless after applying the excitation signal, several pulses can be
recorded until the excitation is turned off again. Due to theshort pulse duration, long-term mea-
surements cannot be done since the system does not reach a steady state within a pulse, which
has drawbacks for the identification of very low-frequency characteristics. When presenting the
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identified models in Sec. 4.3, effects regarding these limitations will be discussed. The kinds of
excitation signals used for the identification are introduced in the following section, while the
final choice will be discussed when measurement results are presented in Sec. 4.3.

Random excitation signals

Perfect white noise signals are generally not realizable for identification experiments. Limited
system requirements and length of data sets restrict the bandwidth of possible input signals.
Excitation sequences with comparable properties must be found. This forces the usage of so-
calledpseudorandombinary sequences (PRBS) for identification. This signal can be obtained
from linear shift registers producing an uncorrelated sequence that repeats after a certain amount
of steps. Another possibility is using chirped sinusoidal input signals for excitation.

u(t) =
d

∑
k=1

akcos(ωkt +φk) (3.6)

Here it is feasible to have a wide band of excitation amplitudes compared to the identifica-
tion using PRBS signals, where the input amplitude is variedby switching betweenumin and
umax. The bandwidth used here is determined by a priory knowledgeof the system dynamics.
Nevertheless the excitation bandwidth should not be to low to detect some unknown dynamics
especially in the higher frequency range. The generated signal is mean free and must fulfill con-
ditions which can be found in [20]. Both signal types can be found by free available algorithms
or using theSystem Identification Toolbox of Matlab, [22].
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Figure 3.1: Excitation with sinusoidal random signals during flat top for the I and Q channel
simultaneously. The signal amplitude is kept to about 1/3 of the operating point to have an
good signal to noise ratio without exciting the system too far from the usual operating point
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During the measurements it turned out that exciting both channels (I and Q) at the same time
as shown in Fig. 3.1 might lead to modeling difficulties (see.Sec 3.3.2). Applying the excita-
tion signals on both channels in consecutive pulses leads toimprovements in this case, as it is
described in the following.

Combining channels

By this method two experiments are used to excite both input channels of the system separately.
It is known that the system dynamics of both channels are theoretically equal. Therefore it
would be possible to excite in a first step the I-channel and measure the response in both output
channels. In the second step this experiment is repeated with excitation on the Q-channel. For
each of these two identification sequences, it is possible toidentify two SIMO (single input,
multiple output) models. This overcomes the drawback that cross-coupling components are
over-estimated, if both channels are excited simultaneously by uncorrelated input signals.The
two identified SIMO models can be merged to a single model by combination of the estimated
system matricesA,B,C as follows:

A=

[

A1 0
0 A2

]

, B=

[

B1 0
0 B2

]

, C=
[

C1 C2
]

, (3.7)

where the subscripts 1 and 2 assign the individual model parameters. The combined system
matricesA,B,C contain of the individual system matrices and zero matricesof appropriate di-
mensions. Individual estimated SIMO models must have the same system order. It turned out
that this method leads to modeling improvements as shown in Sec. 3.3.2. Previously, the diago-
nal dominance, known from physical consideration, was not reflected in the estimated models if
the excitations has been applied on both channels simultaneously. Distribution of this separate
excitation on both channel within a pulse is not feasible dueto the limited pulse duration and
variable detuning characteristics within a pulse. Taking into account the assumptions made in
Sec. 3.1.2, equal experimental conditions are given for both excitation channels. Additionally
this method implies a possible validation procedure. Knowing that both channels are supposed
to have nearly the same behavior, it can easily be detected either if the modeling process or the
system data itself might be corrupted. An example of PRBS excitation can be seen in Fig. 3.2.
By conducting several excitation experiments over consecutive pulses, it is possible to extend
the identification process and merge the input/output data,as it is described in the following.

Sequence merging

Having a limited pulse length makes it feasible to apply methods of merging different sets of
input/output data into a joint set. For the pulsed operation, it is fast and easy to conduct several
experiments, even with different kinds of excitation. In this case the plant is excited in different
frequency ranges as it can be seen in Fig. 3.3. After carryingall experiments, the data sets are
appended in series by Matlabs identification toolbox [22].
In addition, it is possible to combine different kind of excitation signals, such as PRBS and
chirped sine-waves, allowing to test different frequency ranges with wider or smaller bands,
for example to detect sharp resonance peaks like the8

9π-mode that are known from theory.
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Figure 3.2: Example of the excitation signal used for Identification. Only one input channel is
excited with an PRBS signal. The same input is used for the second input channel in order to
have same identification conditions in both channels

Measurements show that only exciting the system for one pulse over a broad band does not lead
to find this peak, even when increasing the model order. Usageof several small band excitations
around the assumed resonance frequency and combining thesemeasurements with other low-
frequency excitations might lead to an appropriate model that spans all significant modes of the
system. A priori knowledge of the plant about possible resonance peaks is necessary to excite
around this assumed peak in an appropriate way, so the systemwas excited with sinusoidal
oscillations of constant frequency.

Sinusoidal excitation of constant frequency

Excitation with sinusoidal oscillations of constant frequency does not fulfill the criterium of
persistent excitation, but doing so might be beneficial for detection of resonance peaks. So
far, it has not been possible to use random signals to detect dynamics of the additional modes
described in [8]. It is assumed this is because the noise contribution of the field detection
system is crossfading these signals. An example of constantsinusoidal input signals is shown
in Fig. 3.4.
By sweeping the frequency of the sinusoidal signal and measuring the response it should be
possible to detect resonance peaks in the measured output. These tests have been made in open-
loop and closed-loop operation with the proportional feedback controller for various gains. If
the feedback loop is closed, cross coupling cannot be prevented due to the coupling betweenI
andQ signals. This method has only be applied to find resonance peaks which might be present
in the plant. It was not intended to use this method for identification only, but to gain informa-
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Figure 3.3: Example data set of different excitation signals used for merging different experi-
ments. In the upper plot the time domain data, and in the lowerplot the corresponding frequency
spectrum is displayed.

tion about the system and improving the ordinary identification signals introduced before. The
results of this method are discussed in Sec. 3.3.5.

3.2.2 Processing identification data

As step two of the identification process, the data must be pre-processed in order to provide
sufficient data sets to generate the model. Possible and necessary pre-processing tasks can
be found in [20]. Usually data that have been recorded duringthe excitation is not used for
the identification process directly, for example because corrupted data sets or outliers must be
removed. For each excitation signal, typically 20 system responses were recorded. Advantages
about this will be discussed in this chapter. For the following considerations all methods are
described for a single dataset. The system responses can be found as the mapping of input to
output channels as discrete time transfer function matrix

[

yI (z)
yQ(z)

]

=

[

G11(z) G12(z)
G21(z) G22(z)

][

uI (z)
uQ(z)

]

. (3.8)

Although the pre-processing steps presented in the following have been applied to all mapping
directions, the examples are discussed for the channelG11 only, without loss of generality.
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Figure 3.4: Example for the used sinusoidal excitation signals. The various frequency are
snapshots of consecutive experiments.

Trends and means

Offsets and drifts in measurement data are quit common and must be removed before identi-
fication. Another possibility, but not applied in the following, is to have a disturbance model,
which is estimated and representing such influences, [20]. Usually drifts are generated by the
system itself or caused by the surrounding environment.
In the following, three ways of processing the measurement data are shown and the advantages
regarding the modeling is discussed. From Fig. 2.3 it is easyto observe that the open-loop
system response for a constant feedforward during the flat top is strongly influenced by the
detuning characteristic introduced in Sec. 2.2.2. To remove this constant offset introduced by
the operation point, is to subtract the mean value by:

ỹ(t) = y(t)− ȳ(t) , (3.9)

whereỹ is the detrended system output ofy(t) with the mean value of ¯y(t). Generally for the
operation point measured here, ¯y 6= 0 holds. Detuning effects can be seen as an bias or slope
during the flat top, which is to be removed by a linear trend instead of subtracting the mean
value only. Even more generally, a fitting polynomial can be found as:

p(t) =
n

∑
i=0

ai t
i = a0+a1 t+ ...an tn , (3.10)

of ordern andai (i = 0, ...,n) weighting coefficients. In case of a linear trendn= 1 has to be
chosen and the data can be fitted by least square methods. FromFig. 3.5 it is clearly visible that
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neither the subtraction of the mean value nor a removal of linear trends would be sufficient to
detrend the detuning effect and its influence on the field.
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Figure 3.5: Comparison of the used detrend methods for preprocessing the data for identifi-
cation. In (a) the data and the fits are shown before removing the detuning effect, in (b) the
identification data after removing the trends is shown

The curve is superiorly detrended by subtracting a higher-order polynomial from the measured
data setymeas. Detuning effects cause a time-varying equilibria comparable with a polynomial
of 3rd order, (n = 3) and are removed before identification because it is not a forced response
to the excitation signal.

From Fig. 3.5 (b) it can be seen that compared to the linear detrend, the polynomial fit (y3) leads
to an almost constant and mean free system response for the identification data.

Finally a last possibility is introduced, which turned out to be the most effective because it
was less sensitive to disturbances that occurred while taking measurement data. Often the data
sets for identification are corrupted by errors out of the digital measurement equipment. As
an example, crosstalk on the signals caused by other parts ofthe accelerator system have been
observed. This results in jumps of the measurement signals (see. Fig. 2.13), which are known to
be independent of the subsystem dynamics. Detected as an repetitive disturbance source, it can
be easily removed by measuring the unexcited system response before applying the excitation
signals. Averaging over several pulses or lowpass filteringmight reduce stochastic noise contri-
bution. The unexcited system response can be found in Fig. 3.5 (a) asyp, and is subtracted like
the detrending operation introduced previously. In comparison to the 3rd order polynomial fit
no significant differences can be found, but this last methodturned out to be most reliable and
gives best fitting results. This becomes clear if linear behavior is assumed, so subtracting the
normal system response to the feedforward should provide the system response to the excitation
alone. Further considerations of this method of removing trends from disturbances can be found
in the appendix A.1.
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Averaging and time shifts

Measurement noise is generally unavoidable under real conditions. The detection equipment,
sampling quantization and signal processing show a large variety of noise aspects. Usually it
is possible to filter the data, e.g. with lowpass filters. The data sets are available offline so
lag-free filters can be used. Most of the stochastic disturbances are in the high-frequency range,
but filtering cannot be used for preprocessing due to possible higher frequency dynamics. In
addition PRBS input signals have to be filtered as well. Another possibility is to average over
several pulses when recording the excitation response

ŷ(t) =
1
n

n

∑
k=1

yk(t) , (3.11)

whereŷ(t) is the mean output signal of the same experiment output overn pulses. Ifn→ ∞ the
stochastic error is ideally removed. In practice, a large number of measurements can be made
by recording several pulses as already introduced. In Fig. 3.6, an example of the measured data
(red dots) and the corresponding mean value is given.
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Figure 3.6: Measured data samples for the cross coupling elements show a spread regarding to
noise and microphonic effects of the system. The excitationsequence remains unchanged, so
the mean of the output signals gives the response in the low-frequency range of the system

In this case with one specific input signal, the system response is measured. This decreases mea-
surement imperfections, which are introduced by, e.g., microphonics as described in Sec. 3.2.3.
These pulse-to-pulse fluctuations are also removed by averaging.
The last and significant step in pre-processing is the treatment of system delays. Inspecting the
system response in Fig. 3.7 a time delay oftd = 4µs can be estimated.
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Figure 3.7: Measured system delay using open-loop identification data. The data sets of input
u (only one channel shown) and the output channelsy will be shifted in time to compensate this
delay effect for the identification, preventing increased model order

Due to the processing steps and the field detection algorithm, a delay of about 2− 4µs are
introduced as described in Sec. 2.1.4. Delays are treated instate space models

[

x1(k+1)
x2(k+1)

]

=

[

0 1
0 0

][

x1(k)
x2(k)

]

+

[

0
k1

]

u(k)

y(k) =
[

1 0
]

[

x1(k)
x2(k)

] , (3.12)

by introducing additional states that behave like a shift register, as given in (3.12), where the
response is stored in one state and further processed in the next sample step. This leads to an
increased order in the model parameter estimation, which introduces higher complexity to the
controller synthesis. For an estimated delay oftd = 4µs, the system order is increased ton+4.
The identification data are modified by shifting the output data abouty(k− td) = y(k) while
leaving the input data unchanged to compensate the time delay. These delay effects have to be
taken into account when designing the controller, as discussed in chapter 4 and chapter 5.
Having summarized the pre-processing steps, the identification algorithm is outlined in the next
Section, where it is assumed that the identification data is already pre-processed and is available
as detrended input and output data sequences.

3.2.3 Subspace identification

The third step in the procedures is to estimate the model parameters using a state space model.
Standard identification procedures for linear time invariant (LTI) models can be chosen to es-
timate black box models at specific setpoints, even though itis known that additional external
disturbances and non-linearities in the actuator system are relevant when operating over a broad
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range of operation setpoints. Using LTI models is advantageous because standard controller
design methods can be used for design of the feedback and feedforward controllers. The suit-
ability of this class of models for representing the system dynamics has to be studied. In future
applications, it might be necessary to extend the models, but for this work the identified models
are restricted to LTI systems.
In the following, the subspace identification methodN4SID (Numerical algorithms forState
SpaceSubspaceSystemIdentification), provided by Matlab System Identification Toolbox [22]
is used to estimate the parametersA,B,C,D for the black box state space model. The advantage
of subspace methods is that they do not make use of any optimization procedures. The system
matrices are obtained by solving algebraic equations. For further information about subspace
identification methods the reader is referred to [20], [21],and [23].
After this definition the system characteristics, data preprocessing steps and the identification
algorithm, the measurement results from the identificationprocess are now presented, where all
the measurements were done on a real plant over an extended period of time, during which there
was significant development of the data generation and acquisition processes. This development
is reflected in the results presented.

3.3 Measurement results

As previously stated, the objective of black box system identification is to find a system de-
scription that describes the static and dynamic system behavior for a large number of sources.
In general, distinctions can be made between deterministicand stochastic signals and between
open-loop and closed-loop models. In the case of unstable systems, only closed-loop models
can be identified. Fortunately, for this application, the system is open-loop stable, so identifi-
cation can be performed either in closed-loop or open-loop,depending on the necessary system
representation for the controller design. The generalizedblock diagram of a closed-loop system
is shown in Fig. 3.8.

C (z) G (z) y0

er

-

f d

n
y

Figure 3.8: Block diagram of the closed-loop system with f asthe feedforward input and d and n
as plant disturbance and measurement noise configuration respectively. The reference trajectory
is denoted as r, which gives by subtracting the measured system output y the control error e.
The undisturbed outputy0 is representing the field seen by the electron beam, which cannot be
measured directly.

The two open-loop input signals f are provided by the feedforward tables as described in
Sec. 3.2.1, which are scaled such that in open-loop mode, theamplitude and phase of the field
gradient is already approaching the desired values, as illustrated in the example in Fig. 2.3.
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Rather than using calibrated physical units, the system responses are presented in the notation
of bits, which vary during the individual results. Therefore the various measurement results are
not directly comparable by absolute bit values. Furthermore, because of the frequent usage, the
definition of on and off-diagonal elements is introduced. On-diagonal elements are the parts
of the transfer function that define coupling between equivalent vector components, such as
uI → yI . Off-diagonal elements in this notation are the couplings between I and Q.
The quality of the plant model is evaluated by comparing the simulated output with the mea-
sured output. This first comparison was made with the same setof input signals that were
used for the identification. All other validations where performed with different data sets for
identification and validation.

3.3.1 Model validation

Validating the estimated models is necessary in order to answer the question whether the model
can be used for controller design. There are several methodsavailable, namely:

• Cross validation with unused experiment data:Validation is performed using a dif-
ferent input/ouput dataset than was used during the identification procedure. The model
should give an acceptable validation with this data so as to check whether the dynamics
belong to the system or were caused by particular artifacts of the dataset. Furthermore
data from excitations of different frequency ranges can be checked.

• Comparing different models: Compare models of different identification experiments
e.g. frequency ranges, experiment times and system changes. Comparisons can be
done for different properties, such as pole-zero locations, frequency and time-domain
responses. The models should not vary more than an acceptable level to verify the usabil-
ity.

In the following, some examples from estimated system models are presented. It should be
clear from the ordering of the data how the modeling procedure has developed as experience
was gained with the plant. Particular aspects of the data pre-processing and their influence on
the model are discussed for each case. Limitations of the detectable system characteristics are
outlined, and solutions for improving the models will be introduced. To begin, the open-loop
modeling results are shown.

3.3.2 Open-loop modeling

The measurements presented in the following are examples from the large number of data that
were recorded during this work. For the design of the feedback controller an open-loop model
of the system is necessary. The system characteristics require preprocessing steps like detrend-
ing and averaging previously introduced. It is known, that the open-loop system is effected by
the detuning, leading to strong trends to be removed as described in Sec. 3.2.2. It turned out
that the subtraction of the un-excited system response (seeFig. 3.5yp) leads to best fits of de-
tuning effect and further some unexpected behavior, e.g. disturbances introduced by crosstalk.
This method is further applied for the rest of the presented results. In addition it is known that
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especially in open-loop operation the system is fluctuatingfrom pulse-to-pulse due to micro-
phonics. Averaging as introduced in Sec. 3.2.2 over severalpulses reduces these field variations
adequately and therefore is applied in the following. An example of a cross validation data set
for used open-loop models can be seen in Fig. 3.9.
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Figure 3.9: Cross validation data example of a third order open-loop model with excitation
PRBS signals in both channels simultaneously

It is evident that this third order model is sufficient to represent the dominant system dynamics.
Having a low order model, the controller synthesis complexity can be reduced. Several model
orders have been tested, whereas increasing the order leadsto introducing additional complex
pole pairs on the subharmonic elements of the IQ sampling scheme described in Sec.2.1.4. The
field detection leads to sampling steps residuals on the measured signals which are interpreted
as harmonic oscillations. This is not caused by the excitation signals and therefore not part of
the estimated model, but an outcome from the digitalizationprocess.
From theory and step response measurements, the diagonal dominance of the system can be
seen, i.e. the gain fromuI → yI is much stronger thenuI → yQ.

Overestimation

Physical consideration indicate that the dynamic behavioris ideally equal for both channels, if
assuming that the field detection is perfect. If the on-diagonal elements of the model do not
represent this, then the model parameter estimation is corrupted, something that can be easily
checked by observing the bode plot of the model. The identification procedure of exciting both
channels independently turned out to improve the model quality in this case. In addition, tests
have been made to excite the two input channels distributed over the flat top region, which
leads to bad results because the detuning effects have a stronger impact at the end of the flat
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top then at the beginning [28]. In addition, due to the very limited flat top time it is not feasible
to further reduce the possible excitation bandwidth by splitting for both channels. Further it
could be observed that the estimated parameters strongly depend on the pre-processing step of
detrending, where slight fitting errors lead to strong differences in the estimated static gains
of the model. Subtracting the open-loop system response from the excitation response turned
out to be the best method to keep this modeling error small. The fitted polynomials vary from
pulse-to-pulse, which further leads to strong model variation in the static gains. As an example
cross validation of the estimated model with the combined excitation method can be found in
Fig. 3.10.
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Figure 3.10: Cross validation of a 4th order open-loop system model identified with the combi-
nation method of partially excited channels

It can be observed from the cross validation that the estimated open-loop model gives a good
representation of the measured system response in all channels. Also the off-diagonal elements
are appropriately modeled, even with higher relative noiselevels on the identification data. The
response amplitude is almost 10 times smaller in these channels. From this figure, the assumed
diagonal dominance as well as a similar dynamic behavior canbe easily studied. A comparison
between the different channels of the model can further be found in the bode plot given by
Fig 3.11.
The diagonal dominance of the system is apparent and also thechannels look similar in their
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Figure 3.11: Bode plot of a 4th order open-loop system model identified with the combination
method of partially excited channels

frequency behavior. The main difference comes from phase information in the off-diagonal
elements where one channel is rotated by 180 degrees in phase. Here it can be seen that the
identified model has strong similarities to the physical model (see Sec. 2.3.1) which has the
diagonal dependencies.

3.3.3 Closed-loop modeling

Beside the open-loop model, it is further necessary to have also a sufficient description of the
closed-loop dynamics in order to design the feed-forward controller that is discussed in chap-
ter 5. The closed-loop model can be found either by combiningthe open-loop model with
the model of the feedback controller, or through direct identification of the closed-loop model.
Direct identification was chosen because it gives the possibility of identifying system character-
istics not identified in the open-loop model. The estimationhas been done by the same method
and procedures as used for the open-loop identification. With references to Fig. 3.8, the exci-
tation signal was again applied on the system inputf , whileC(z) 6= 0. This is the feedforward
input signal that will be used and subsequently optimized bythe feedforward controller dur-
ing normal operation. The closed-loop model dynamics represent the transfer function from
f → y as applied for the controller. When changing the feedback controller it is necessary to
update this closed-loop model. The feedforward controlleris assisting the feedback controller
and therefore relies on the closed-loop system dynamics. Knowing that the excitation signal
is superimposed by the feedback controller, equal conditions can be found for excitation and
normal plant operation.
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The stronger impact of the cross coupling elements are easily visible when comparing the
closed-loop measured data amplitudes in Fig. 3.12 with the open-loop response shown in Fig. 3.10.
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Figure 3.12: Cross validation of a 4th order closed-loop (proportional feedback gain 40) system
model identified with the combination method of partially excited channels

The feedback controller leads to a stronger impact on the off-diagonal elements. The system
response to excitation signals is faster due to the increased closed-loop bandwidth. The valida-
tion data set gives a sufficient model fit in the dominating frequency range. Influences to the
higher frequency dynamics are discussed later. Here the dominating lowpass-characteristic and
diagonal dominance as seen by the open-loop model can also beidentified. The off diagonal
elements show almost the same dynamic behavior, in contrastto the open-loop model given in
Fig. 3.13.
Here it can be seen why it is important that the feedback controller has also cross term compo-
nents like the MIMO controller. High-frequency dynamics are stronger coupled over the cross
term components that arise from the feedback. For further discussion on the controller design
see chapter 4.
In summary, it can be seen that the procedure for identifyingopen-loop and closed-loop models
is sufficient to find good models for design of feedforward andfeedback controllers. The same
methods can be used for both design procedures. Taking data over a small number of pulses
works very reliably. This makes the method useable during normal operation of the machine,
where excitation signals could be applied for short times generating the system responses used
as identification data, and all design procedures are performed offline. It can be seen that the
system model does not change significant over time if no calibration changes or significant
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Figure 3.13: Bode plot of a 4 th order closed-loop system model identified with the combination
method of partially excited channels

operation mode changes are performed. Validating the new model with old ones is possible and
has been done.
An important aspect not discussed so far is the impact of an overall system delay from applying
the excitation to the measured response. The dependencies and the resulting considerations to
be made are discussed in the following.

3.3.4 System delay

As discussed in Sec. 3.2.2 there is a small time delay in the system response because of the
long cables and from algorithms for the field detection, which add up to an input-output delay
of about 3µs that must be taken into account when identifying the systemmodel. It is well
known that delays can lead to instabilities in closed-loop system. Furthermore, the closed-loop
system might become unstable for particular time delays because of the additional modes, [8].
There is a significant improvement from removing the system delay from the datasets during
pre-processing. With the delay compensation a significant improvement of the model fit can be
achieved by having the same model order as shown in Fig. 3.14.
It is clear, therefore, that removing the system delay has a big influence on the later controller
design procedure. Detecting the effective delay time from feedforward input to the measured
output of the system will give a hint on possible shifting in feedforward tables to get the wanted
response to the dedicated time. Additional measurements associated with delay compensation
can be found in the Appendix A.1.
In this Section, it was shown how the processing methods influence the quality of identified
black box models. Next, ideas are presented for modeling notonly slow dynamics, but also any
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(a) yI = f (uI )
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(b) yQ = f (uI )
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(c) yI = f (uQ)
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Figure 3.14: Comparison between the delay compensated model (1) and uncompensated model
(2). Both models have equal order 3, and the system delay was detected to be 4µs.

high-frequency dynamics that might be present.

3.3.5 Model extensions by higher frequency dynamics

It can be seen that the models identified so far are dominated by the cavities lowpass charac-
teristics. Knowledge of the physical plant suggests there are also higher-frequency dynamics
coming from the coupled-cavity modes. Unfortunately, identification of these higher frequency
dynamics is difficult because measurement noise cannot be lowpass filtered. Averaging would
suppress the high-frequency dynamics if there are phase shifts over several pulses. Conse-
quently, another way has to be found to extract this information so the model can be extended
to include high-frequency dynamics.

One possible approach is to excite the plant with steady-state sinusoidal excitation signals, as
will be described in the next Section.
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Response to sinusoidal inputs

For controller design it is important to know if there are anyspecific frequency ranges where
the system contains modes that destabilize the closed-loopsystem. It was found by broad
band excitation, that the system does not show these modes, even though there are known to
exist from physical considerations and closed-loop operation with high gains. Subsequently,
additional tests were performed where the system was excited during the flat top region by
using sinusoidal input signals (see Fig. 3.4) in a given frequency range. To illustrate the effect of
resonances in the system, the time domain system output is shown for the sinusoidal excitation
with frequencies on and off the resonance frequency in Fig. 3.15. Here it is clearly visible why
the continuous frequency excitation is necessary to identify this mode. After some transient
time the oscillations reach an amplitude which is measurable. This method allows to detect
several resonance peaks when sweeping through a defined frequency range.
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Figure 3.15: Time domain response with and without excitation on resonance

One possible explanation for not detecting these resonancepeaks with the original excitation
signal, even with a small excitation bandwidth is that the effect was small compared to the noise
level, because of the weak input power to this mode and the transition time until the oscillations
are visible. To find this peak, sine-waves were used to excitethe system at particular frequen-
cies and over the whole flat top. Having measured system responses over all the excitation
frequencies, several resonances can be easily identified, as shown in Fig. 3.16.
The plot shown in Fig. 3.16 was generated by taking the frequency spectra of the input signal
and output signal for the given frequency point and subtraction of the input and output signal
in logarithmic scale. In the figure several resonance peaks can be observed. The first resonance
peak is assumed to be the aliased component of the8

9π-mode. The considerations leading to
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Figure 3.16: System response to sinusoidal excitation signal sweeping frequency in the I-
channel. The responses are given for both channels, showingresonance peaks at approx.
174 kHz and 212 kHz.

this assumption are sketched in Fig. 3.17.
This special mode can be found about 825 MHz below the carrierfrequency of 1.3 GHz. In
order to prevent aliasing effects, it is usual to filter analog signals prior to sampling using a so-
called anti-aliasing filter. Additionally, the well known Shannon theorem must be fulfilled, [27].
For a sampling frequency of 1 MHz, signals above 500 kHz wouldideally be filtered out before
sampling. In this application however, the field detection procedure discussed in Sec. 2.1.4 does
not allow the use of anti-aliasing filters since the I and Q components of the field are detected
in steps so the filter would smooth the steps for I and Q, havingnegative effects to the field
detection.
The fundamental modes are aliased in this case to the measured frequency range as sketched in
Fig. 3.17. Therefore the estimated controllers must not excite especially this mode due to the
fact of causing oscillations in the control system.
It is worth noting that changing the intermediate frequencywould also influence these aspects,
as would the use of other sampling schemes, such as direct sampling with fast ADCs. The
considerations done here can be applied for any other field detection procedures, whereas the
model especially in the high-frequency range will probablyshow different behavior as given
here. Detection of these resonance peaks turned out to be challenging. Recent measurement
results however turned out to give possible solutions to this issue. Further details can be found
in [29].
Having made these measurements once, one can find out whetheror not the resonances are
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Figure 3.17: Example of aliasing effect of the fundamental modes. The table on the right shows
the estimated aliased frequencyfal in the nyquist band while aliased on the baseband sampling
and there higher harmonic components.

changing over time. Usually they stay the same and can be found just by sweeping around this
bandwidth to get the information. Alternatively, checkingthe validity of the old model could be
included in maintenance procedures for the system, so as to verify that the previous controller
is still applicable. Furthermore it is possible to limit thefrequency from PRBS signals to this
range, and applying identification methods used so far.
In the following section, we will discuss incorporating knowledge of significant resonance peaks
into the system model and then into the controller design.

Combining system responses

Having found these resonance peaks in the system, the model can be extended by this knowledge
to give a better approximation of the high-frequency systemdynamics. This leads to a better
prediction of stability boundaries for closed-loop operation.
As a first possible solution, tests were made to see whether the different identification data sets
could be merged into a single representation of both, the excitation with PRBS signals and
excitation with sinusoids of constant frequency. This system will show a significant increased
order due to the sharp resonance peaks and their corresponding model. Furthermore, there is
a significantly higher computation time because of the largenumber of data sets needed to
take into account every single frequency excitation. For offline generation of the model this
would be acceptable, but it would be unsuitable for frequently model updates during normal
user operation, for example if the operation point is changed.
Averaging data from several measurements turns out to have negative influence on the resonance
modeling because the emerging oscillations are time shifted over a series of pulses and are
therefore canceled out by averaging. In Fig. 3.18 bode plotsof the identified model are shown.
It can be seen that the resonance peak extends the lowpass characteristic of the model at the
frequencies identified by the sinusoidal sweeping in the diagonal componentI → I . In the off-
diagonal element this characteristic can not be found, whereas the resonance peaks are at the
same frequency.
This method seems to have some beneficial effects in the higher frequency range but also a
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Figure 3.18: Bode diagram of a 12th order model identified by combination of PRBS excited
and sinusoidal response data for excitation in the I channel, [29]

drawback when considering the low-frequency response in the off-diagonal element. Knowing
the specific peaks, it is also possible to use the functionn4sidof the identification toolbox to
define the frequency areas of interest to improve the modeling. The excitation signals must
have an appropriate bandwidth as discussed before. Sweeping over the whole frequency range
to identify the critical points is no longer necessary whichalso reduces the time for generating
measurement data. In the last Section this recent results are given.

3.4 Model and conclusion

It has been seen that system identification is a challenging procedure that demands a priori
knowledge of the system characteristics. An appropriate excitation signal is the most important
key because dynamics that have not been excited are not measured and therefore cannot be
modeled. Various signals have been tested in order to find an appropriate input sequence, and
it turned out that the combination of several input signals with different frequency ranges is
the most effective. Due to the high Q-factor of the cavity, the system bandwidth is very low,
which has a strong influence on the identification procedures. In all models it is possible to
determine the lowpass-characteristic that dominates the system dynamics, while knowledge of
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the other fundamental modes in the system and the aliasing effect has lead to a more detailed
study of the high-frequency behavior. Some preprocessing steps are not applicable and the
identification procedure must be adapted to generate the necessary data sets. Just increasing the
model order and using broad band excitation does not necessary lead to a good model quality.
Modeling errors in the static gains turned out to be stronglydepended on the detrending method
applied. The short identification period and the corresponding low system bandwidth leads to
modeling difficulties especially in the low-frequency range. The combined channel excitation
for the two input channels turned out to improve the quality of the model, especially in the
off diagonal elements of the system. All tested methods for excitation and preprocessing are
summarized in Tab. 3.1. The ratings given for the individualmethods can be taken as guideline
on which methods might be used in the permanent plant system identification procedure. Taking
into account all these factors, it was possible to identify amodel that has a bode plot given in
Fig. 3.19.
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Figure 3.19: Bode Amplitude diagram of a 11th order model identified by weighted and merged
PRBS excited, averaged parameter combined system responses. The mean of both correspond-
ing channels is taken to get the equal behavior in the system dynamics. The resonance peak at
174kHz (aliased mode) can be identified in the black box model, [29]

This plot shows the recently developed system model that incorporates all the expertise gained
during the modeling steps described before. Here the respective coupling elements are forced
to show same behavior as known from the physical descriptionof the system.

Comparison to physical description

One can easily observe that this model shown in Fig. 3.19 is similar to the physical model
of the cavity given in Sec. 2.3.1. The diagonal dominance is modeled well and the high and
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low-frequency dynamics show the expected behavior of the cavity as observed after the digital-
ization process. The first resonance peak at about 174kHz is assumed to be the aliased8

9π-mode
as discussed before. The second sharp peak at about 250kHz isascribed to be an influence by
the sampling frequency of 1MHz. As mentioned the identification was forced to get the same
behavior for the corresponding elements of I and Q in the MIMOsystem. From the physical
point of view these elements must show the same behavior except some disturbances are present
in the field detection algorithm. The phase shift of 90 degrees should not have any influence
on the dynamic behavior in the system, furthermore the field detection algorithm mixes these
channels when computing the components in the controller discussed in Sec. 2.1.4. This is also
true for the cross coupling components, whereas the phase isrotated by 180 degrees in one
channel. When modeling the system these considerations must taken into account and addi-
tionally they are helpful to validate the model. Because theidentification was done only during
the flat top time, data detrending must be done with care as wasdiscussed previously as well
as the combination of the consecutively identified channels. Comparing the bandwidth of the
physical and identified model, is is clearly visible that thelow pass characteristic is dominant.
Especially when keeping the model order very small one can compare both state space repre-
sentation in a good way. Nevertheless LTI black box models have advantages compared to the
physical model, especially when considering the gained expertise for future identification tasks.
Independent validation of these claims would be performed once a different sampling scheme
is used for data processing. For further modeling, it is alsopossible to try a given structure in
the identified model, which is known as grey box model. Recentresults on this topic can be
found in [29]. Beside this, some more thoughts about the system modeling are done in the final
paragraph.

Further ideas

The model discussed so far is only valid under the given assumptions and the current machine
setup and will probably change in the future due to system upgrades, different hardware setups
or field detection algorithms. The system model must be adapted to take this changes into
account. It is also planned to operate the whole system on a higher gradient which means the
klystron will be closer to saturation. The linearity assumptions must be revised in this case and
the model might be valuable for limited area around the operation point. Additionally piezo
sensors and actuators will be used to reduce the cavity detuning during the pulse. This will have
a strong impact on the system dynamics which have to be taken into account. Furthermore these
actuators can be used to support the feedback control loop that will extend the current MIMO
system structure by adding channels that provide coupling between field and detuning.
Finally it has to be taken into account that the field regulation can be considered as an actuator
for the real object to be controlled, the electron beam. Development in the beam measurement
devices allows information to be gathered directly about the quality of field regulation by mea-
suring beam imperfections. RF fields and electron beam acceleration depending on each other,
which opens the door to further improvements by changing thecontrol structure in a way that
beam measurements are incorporated in the inner FPGA loop orthe outer ILC loop.
The combination of RF, mechanical systems on the cavity and beam information must be
merged in an appropriate system model to show these dependencies in the general case of a
MIMO system. This is the only way of designing a controller which allows to handle different
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actuators and sensors to an optimal beam regulation, a reliable feedback system with control
loops are defined together in a full closed-loop system description.

Table 3.1: Overview of tested identification procedures

method rating description

PRBS ++ The signals are easy to realize by standard methods.
Bandwidth and amplitude can be chosen regarding
experimental conditions.

chirped sinusoidal excitation + The signals are easy to realize by standard methods.
Bandwidth and time varying amplitude can be chosen
regarding experimental conditions.

const. sinusoidal excitation o Method is only used for resonance peak detection and
not directly for system identification. Improved the
plant knowledge and choice of identification signals.

combining channels ++ Prevents the overestimation of the cross coupling
terms. Additional validation method by comparing
the different channels

sequence merging + Broad band excitation can be realized by different
narrow band regions. Combination of different ex-
citation signals.

linear trends - - Not sufficient for detrending due to higher-order de-
tuning effect. Estimated models give non sufficient
validation results.

polynomial trends + Good fit to detuning effects. Leads to almost mean
free excitation response.

unexcited system response ++ Best fit to detuning effects andfurther disturbance in-
fluences. Data mean and trend free due to removal of
unexcited system response.

averaging + Removing of stochastic noise contributions andout-
liers. Noise model cannot be estimated from the data.

time shift ++ Model order can be decrease. Cross validation data
set show significant improved fit. Must be considered
during controller design.
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Chapter 4

Feedback Control

Disturbances such as those introduced in Sec. 2.2 are commonin real systems. In order to
achieve disturbance rejection and good reference trackinga feedback controller is used. The
RF field control task can be defined as keeping the measured vector sum on the given setpoint
trajectory during the RF pulse. For this task the feedback controller is assisted by a pulsed feed-
forward drive waveform that has constant shape and that forces the system to almost achieve
the reference trajectory. Residual small excursions, especially pulse-to-pulse fluctuations, must
be regulated by the feedback controller. To date, two independent proportional feedback con-
trollers have been used to regulate in-phase and quadrature(I and Q) components of the RF
field vector sum, but the performance has been inadequate to meet the requirements defined
in Sec. 1. This work introduces a multi-variable higher-order feedback controller to improve
the regulation performance. The necessary controller parameters have been estimated and the
controller has been tested on the plant (the FLASH accelerator).
It is known from chapter 3 that the plant has a very narrow open-loop bandwidth and dynamics
that have a similar timescale to the RF pulse length. The controller must be designed to suffi-
ciently increase the system closed-loop bandwidth in orderto achieve fast disturbance rejection
without destabilizing the closed-loop system and while minimizing amplification of measure-
ment noise. It is already known that the closed-loop bandwidth cannot be sufficiently increased
to suppress high-frequency disturbance contributions. Fortunately, disturbances such as tran-
sient beam-loading effects are repetitive from pulse-to-pulse and can be compensated using the
feedforward controller. Disturbances are correspondingly classified as listed in Sec. 2.2. The
main objective of the feedback controller in this case will be to minimize the pulse-to-pulse
fluctuations of the measured vector sum.
The controller parameters have been estimated using the well known mixed sensitivity design
method, [30], [32], [33]. This model-based design method allows the parameters of the fixed-
order controller to be estimated using theH∞ norm that has the benefit of being robust against
model uncertainties. Presented here are results from measurements taken on real accelerator
systems using this controller design method.
This chapter is organized as follows: In Sec. 4.1, the structural implementation of the feed-
back controller will be introduced, giving particular consideration to the system constraints; the
controller design procedure is discussed in Sec. 4.2 and measurement results from tests on the
plant will be presented in Sec. 4.3. Finally, further steps in the controller design will be given
in Sec. 4.4.
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4.1 Controller implementation

In the present system, independent proportional controllers are used for in-phase and quadrature
terms, with the proportional gain being the only tunable parameter. The controller is imple-
mented as a digital control system inside an embedded FPGA, with each 2ms RF pulse being
managed as a separate event. Each RF pulse is treated asN = 2048 sampling steps that are
processed in real time, after which the data acquisition is turned off until the next pulse. Be-
tween RF pulses it is possible to apply changes to the controltables. For each sampling step
within the RF pulse, there exists a single proportional factor (gain table) that is a function of the
feedback gain and a calibration constant. The relevant value in the gain table is multiplied with
the control errore and then added to the feed-forward signal. While this gain table makes it in
principle possible to implement a time-varying gain over the duration of the pulse, to-date only
a single stable gain factor has been used.
The feedback controller maps the control erroreI andeQ to the controller outputuI anduQ as
follows:

[

uI (z)
uQ(z)

]

= K(z)

[

eI (z)
eQ(z)

]

, (4.1)

with K(z) the feedback controller. For the separate I/Q proportionalcontrollers,K(z) simplifies
to K as:

K = Kp

[

1 0
0 1

]

, (4.2)

whereKp is the proportional gain factor to be chosen. The feedback controller must appro-
priately compensate the vector sum field error, which can be distinguished in the fluctuations
both from one pulse to the next and within each individual pulse. Usually the reference sig-
nal remains unchanged for several pulses, so the fluctuations measured from pulse-to-pulse are
caused by measurement noise, input disturbances and by microphonics inside the system, as
discussed in Sec. 2.2.

4.1.1 Limitations of the closed-loop system

As described in chapter 3 the system response is dominated bythe lowpass characteristic of
the cavity. Additional resonance peaks can also be observed, and these have a strong impact
on the closed-loop stability. Delays caused by the digitization process have a further impact
on the closed-loop stability. The combined impact of these factors is to significantly reduce
the range of achievable feedback controllers. Reference tracking is improved by increasing the
feedback gain to give a higher closed-loop bandwidth and faster system response. Unfortunately
this also amplifies the regulator response to measurement noise, which is then injected into
the system. Resonance peaks in the system significantly reduce the gain margin over that of a
simple lowpass filter. For example, the so-called8

9π-mode frequently can destabilize the system
in closed-loop operation. The destabilization effect is dependent on the overall loop delay. For
further details the reader is referred to [8]. The gain margin can be further reduced by the phase
lag caused by the digitization loop delay.
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It is important to note that, ultimately the parameter to be controlled is the energy gained by
the electron beam as it passes through the cavity, which is the result of the cavity RF voltage
at the instant the electron beam passes through. This means that not all electron bunches will
have the same energy gain if the cavity field fluctuates from pulse-to-pulse or within the pulse.
The primary goal is therefore to keep these energy fluctuations as small as possible. Indeed,
RF cavity field regulation tolerances are derived from the maximum allowable energy devia-
tions. The electron bunch energy fluctuations will be minimized by stabilizing the measured
cavity vector sum, provided the measured vector sum exactlyrepresents the actual vector sum.
Unfortunately, it is not possible to exactly measure the real vector sum because of calibration
errors, measurement noise, and because of errors in the digitalization process. This leads to the
statement:

• A perfect RF field regulation does not necessary lead to a perfectly stabilized beam ac-
celeration!

During this work, only the measured cavity field informationcould be used for feedback regu-
lation, while beam-based measurements were used to validate the measured vector sum control
performance. Later measurements showed that the field regulation could be improved by using
both, beam information and the cavity vector sum in the feedback regulation.
For a proportional controller the residual error is reducedby the gain factor. Fig. 4.1 shows the
measured beam energy stability as a function of the feedbackgain.
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Figure 4.1: Relative pulse-to-pulse fluctuation of the electron beam as function of the propor-
tional feedback gain, measured with the synchrotron radiation camera (4BC2DOWN)

It can be observed, that there exists an optimal feedback gain to minimize the measured beam
energy fluctuation. By increasing the feedback gain, the bandwidth of this closed-loop system
increases. This further results in feeding measurement noise back to the system input, which in
this case results in an increased beam energy fluctuation. For further details refer to [35].
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The question is whether or not a controller can be found that reduces beam energy fluctuation,
keeps the system stable, and is robust against measurement noise. Performance of the inde-
pendent in-phase and quadrature proportional feedback controllers is limited in part because
there are cross-coupling components between the real and imaginary part of the field vector as
a result of detuning effects. Since this cross-coupling should be taken into account in the feed-
back controller design, a multiple input / multiple output (MIMO) controller (comp. Fig. 4.2)
is introduced as an upgrade to the existing controller, [36]. Considerations of the controller
structural implementation will be discussed in the following section.

K11

K21

K22

K12

eI

eQ

uI

uQ

Figure 4.2: Schematic view of the multiple input, multiple output (MIMO) implementation in
the feedback controller. Within the decentralized controller the cross coupling componentsK21

andK12 vanishes.

4.1.2 Structural design

The necessary low latency response in the control loop can only be achieved by implementation
of the feedback controller in a digital platform based on an FPGA. In case of the proportional
feedback controller the implementation is very simple. Conversely, the MIMO controller sig-
nificantly expands the computations to be processed, in partbecause it must implement the
cross-coupling dynamic terms. Due to memory limitations inthe FPGA, each channel of the
MIMO controller is restricted to second-order terms. The MIMO controller implementation is
represented in Eqn. 4.1 as a 2×2 matrix:

K(z) =

(

K11(z) K21(z)
K12(z) K22(z)

)

, (4.3)

with the elements

Ki j (z) = ki j
ai j ·z−2+bi j ·z−1+1
ci j ·z−2+di j ·z−1+1

. (4.4)

This is a second-order digital IIR-filter having 5 free parameters per channel that must be deter-
mined by the user. The block diagram in Fig. 4.3 represents one channel of the IIR filter as it is
implemented on the FPGA.
The data processing is done in binary fixed-point arithmetic, so additional scaling factors must
be applied by bit shifts in the processing units. If now the parameters are able to be chosen arbi-
trary it is necessary to implement the computation with a high accuracy to prevent overflowing
and precision losses. Once an appropriate set of achievableparameters has been found it might
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Figure 4.3: Block diagram of one coupling element in the MIMOfeedback controller. This
infinite impulse response filter has 5 free parameters to choose in the feedback controller.

be possible to reduce the computation effort and therefore also the required memory size for the
implementation.
Currently the MIMO controller is implemented in series withthe proportional feedback, which
means that the amplification of the corrected signals are scaled at the output of the MIMO con-
troller. This has a practical benefit during testing of new controller parameters, because it allows
the gain to be reduced for the initial testing and hence protect the system against unexpected
problems. The measurement results presented in Sec. 4.3 will show this gain dependency. The
gain tables define sample-by-sample scaling factors frome to u and hence allow gain schedul-
ing during the pulse. This may be particularly applicable during the initial filling time and the
transition from filling to the flat top phase because it can prevent large control error correction
outputs resulting from steep transitions in the reference table. This topic is further considered
in Sec. 4.4. During these studies, however, the gains were kept constant within a pulse.

4.2 Controller Design

The large variety of possible design methods is limited because of the necessity to retain
the same controller structure as is presently implemented.Consequently, an output feedback
scheme was selected rather than using schemes such as state feedback or observer-based con-
trollers. The design parameters for the feedback controller are determined by the well known
mixed sensitivity orH∞ design method. In the following only the basic functionality of this de-
sign method is outlined. Eventually, it is intended to automate a fixed procedure for determining
the 20 controller parameters.

4.2.1 Standard feedback loop

Generally a control system is described by the standard feedback loop, sketched Fig. 4.4 with
C(s) the feedback controller andG(s) the plant transfer function. The referencer defines the
trajectory of the desired system response from which the measured system outputy is subtracted
to generate the control errore. The error is processed in the controller to generate an system
control inputu.
Real measurements are usually influenced by system disturbancesd and measurement noisen.
Within this feedback loop, several transfer functions can be found, depending on the desired
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C (s) G (s) y0

er

-

d

n
y

Figure 4.4: Standard feedback loop with ControllerC(s) and PlantG(s) and the signals r,e,u,d,y
and n denoting the reference, error, plant input, output disturbance, system output and measure-
ment noise contributions respectively.

input/output definition. ”In the following, two basic transfer functions necessary for the mixed-
sensitivity design are emphasized.

System functions

The transfer function from the disturbance input to the system outputd → y is called thesensi-
tivity functionS(s) of the closed-loop system,

S(s) = (I +G(s)C(s))−1 . (4.5)

In addition one can find another transfer function referred to the complementary sensitivity
functionT(S):

T(s) = (I +G(s)C(s))−1G(s)C(s) , (4.6)

which is the transfer function from the reference inputr to the system outputy, and is also the
transfer function for the noise inputn to the system outputy. Inspecting both transfer function,
it is clear that:

S( jω)+T( jω) = I ∀ω . (4.7)

Design objectives can be formulated in terms of these transfer functions, given as follows:

• perfect tracking: The controller should ideally keep the measured system output on the
reference trajectory, which implies thatT(s) = I .

• disturbance rejection: Real systems are generally disturbed by environmental influence
which is given as the disturbance contribution. This disturbances should have ideally no
impact on the measured output, demanding thatS(s) = 0.

• noise rejection: Usually when generating measurements the data are noise corrupted by
measurement equipment. Due to the system feedback this contribution is applied again
to the control loop which influences the system output. Ideally the output is not affected
by the noise, demanding thatT(s) = 0.

Clearly, the design objective of noise rejection conflicts with the first two objectives, so it fol-
lows that a controller must be found which tracks the reference trajectory well but without
feeding measurement noise back into the system. An additional constraint comes from the fact
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that the actuators of the system have limited power, meaningthat the plant inputu is physi-
cally limited. This becomes clear when considering reference tracking, which is not possible
for arbitrary high frequencies, e.g. jumps in the referencesignal which cannot be followed
perfectly.
The mixed sensitivity design method is used to fulfill these objectives, and this is discussed in
the next section.

4.2.2 Generalized plant and weighting filters

In modern control theory, the so-called generalized plant is often used in the controller design
process. In the block diagram in Fig. 4.5, the generalized plant comprises the elements inside
the dotted lines. Usually disturbance and noise contributions are defined as external inputs, but
in this case the desired (reference) output is given as the system input. The fictitious system
outputszS andzT are filtered through so-called weighting filtersWS andWT .

r

G(s)

K(s)

WS(s)

WT (s)

u

zT

zS

y e

Figure 4.5: Block diagram of the generalized plant with the plant model G, the controller K and
weighting filtersWS andWT . The input and output signals are the system reference inputr and
the fictitious plant outputzS andzT

The general idea of the weighting filtersWS andWT is to obtain a desired closed-loop behavior.
Using these filtered output signals, it is possible to shape the sensitivity and complementary
sensitivity functions using theH∞ norm. Following [32] the shaping filters for the MIMO case
usually are chosen to be diagonal as:

WS(s) =

(

wS(s) 0
0 wS(s)

)

; WT(s) =

(

wT(s) 0
0 wT(s)

)

(4.8)

with wS(s) andwT(s) being scalar weighting filters for each system output. From Sec. 3.4 it is
known that the two channels I and Q are phase rotated vectors having almost the same dynamic
behavior, so it follows that the matrix of weighing filters can be diagonal, as given in Eqn. 4.8.
The closed-loop transfer function is then defined as:

(

zS

zT

)

=

(

WS(s)S(s)
WT(s)T(s)

)

r . (4.9)

The requirements on the closed-loop system can be achieved by designing the weighting filters
such that the resulting closed-loop transfer functions fulfill the H∞ constraints, as [32]:

57



4.2. CONTROLLER DESIGN CHAPTER 4. FEEDBACK CONTROL

sup
ω σ

[(

WS( jw)S( jw)
WT( jw)T( jw)

)]

< 1 , (4.10)

usually theH∞ norm is minimized:

min
K

∥

∥

∥

∥

(

WSS
WTT

)
∥

∥

∥

∥

∞
. (4.11)

Using the weighting filters, boundaries for the closed-looptransfer functions are defined. Al-
gorithms solving this problem will be discussed in Sec. 4.2.3. However appropriate filters must
be designed first, which is discussed in the following section.

Design of weighting filters

Determining appropriate weighting filters that define the optimal controller demands a reliable
model and a-priori knowledge of the closed-loop requirements. During the measurements it
turned out that the application of a second-order filter gives the possibility to test especially
influences of corner frequency and gains within the filters. Keeping the weights simple reduces
the number of tunable parameters to a small number, which is practical for implementation.
Nevertheless for future projects and with the more advancedsystem model this filters will prob-
ably become more complex, especially in the frequency rangewhere resonant modes are as-
sumed. Currently these modes are effectively suppressed bythe roll-off at higher frequencies
of −40 dB/dec. The transfer function of the weighting filters aregiven as:

wS(s) =
1

MS

(s+ωS1)(s+ωS2)

(s+ωS3)(s+ωS4)
, (4.12)

and

wT(s) =
1

MT

(s+ωT1)(s+ωT2)

(s+ωT3)(s+ωT4)
, (4.13)

where usually the poles and zeros are chosen asωS1 = ωS2, etc. to have a steeper roll-off. An
example plot is shown in Fig. 4.6, where also the correspondingS(s) andT(s) are computed for
the closed-loop system.
For comparison with the proportional controller, the closed-loop sensitivity and complementary
sensitivity are plotted (grey). Having this comparison it is possible to estimate the improvement
due to the MIMO controller by inspecting the defined weighting filters. The shaping filterWT

influences the rejection of noise and step response overshoots, by limiting the roll-off frequency
and maximum singular value ofT(s). Further the shaping filterWS is used to determine the
closed-loop bandwidth and to achieve steady-state accuracy. It is obvious that due to the de-
pendencies of both transfer functions, arbitrary shapes cannot be achieved. There are certain
limitations due to the fixed-order of the MIMO controller.

4.2.3 Fixed-order controller

The structure of the controller has already been discussed in Sec. 4.1.2. Due to hardware limita-
tions in the FPGA, the controller terms are restricted to order two, which also limits the number
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Figure 4.6: Singular value plots of the shaping filters andS(s) andT(s) of an example designed
controller in comparison with the P controller.

of parameters to be determined. However there are no restrictions on the order of the plant
model that is required for the mixed sensitivity design, which is typically chosen to be higher
than that of the controller. This requires application of analgorithm that solves the problem of
Eqn.4.11.

Usually inH∞ controller design methods it is necessary to have the same order for the model
and the controller. However the so-called HIFOO algorithm can solve fixed-order stabilization
and local optimization problems based on techniques like quasi Newton updating and gradient
sampling methods, [40]. In practical application this algorithm demands as input values the
above-described generalized plant along with the defined weighting filters. The algorithm starts
the searching method with 3 arbitrary sets of parameters, using a gradient-based search method
to find the optimal set within the given constraints. Furtherdetails about the search procedure
can be found in [41], [42]. Rather than using arbitrary starting values, the computation time can
be decreased by starting with parameters from a previous design system model. The weighting
factors in the controller design are chosen such that theH∞ norm is fulfilled and the desired
closed-loop performance is achieved.

It is practical to begin the design process with ”weak” weighting filters such that a set of use-
ful controller parameters can be easily found. Design constraints are subsequently tightened in
order to achieve a higher closed-loop performance. For the permanent implementation of this
design method for the real plant, a standard procedure should be defined in order to automate
this. For example if the model has been changed over time or because of different machine set-
tings, it might be necessary to update the controller parameters. In addition it is necessary to to
convert the computed continuous-time controllers to a set of discrete-time values before upload-
ing them to the plant. For the realization of this design method, Matlab has been used, but for
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permanent implementation it might be necessary to convert this to plant specific programming
language. In the following the measurements are presented for the controller implementation
on an example set of controllers.

4.3 Measurement Results

A large variety of the designed controllers have been testedon the real plant, but because of
limited access to the plant, many tests had to be performed offline using data from previous
runs. Furthermore interfaces and procedures have to be worked out in order to apply the design
parameters to the real plant. It was necessary to gain experience for estimation of the applica-
bility of the controllers, e.g. judging by simulations the performance or the correct settings of
the weighting filters. A major improvement was the implementation of a copy of the control
system (the so-called development system), installed in parallel to the real one. This system
was used for controller development and for preparing future studies. A second benefit of the
development system is that it can be used as an external independent observer to measure the
controller performance. In addition, electron beam diagnostics provided another independent
measurement of controller performance.
Before showing the actual measurements, difficulties associated with limited testing time and
susceptibility to incorrect controller settings will be discussed and methods of evaluating con-
troller performance will be introduced.

4.3.1 Controller application test

For a complex machine such as considered here, the conditions are limited by the physical
bounds of the plant and the need to protect the plant from potentially serious damage or equip-
ment down times. For example, an unstable controller might lead to high gradients in the
cavities, yielding to quenches in the machine. In this case superconductivity tends to break
down and the cryogenic system, raises an interlock for the whole machine until this subsystem
recovers, which might take hours. To prevent these scenarios, it is necessary to find an appro-
priate way of testing the designed controllers. Closing of the feedback loop is done by smoothly
increasing a proportional gain factor in order to detect possible instability. In the measurement
results presented in Sec. 4.3.3, this gain sweep is further used for controller comparison.
Furthermore it was tested if the simulations can be used to optimize the weighting filters con-
cerning the performance tests on the real plant, which has been discussed in detail in [37]
and [44]. Concerning the idea of having a frequent controller update by changes in the sys-
tem or large setpoint variations, it is necessary to developa reliable procedure of the controller
parameter estimation, based on the new model of the plant (see Sec. 6.2).

4.3.2 Performance definition

To characterize the controller performance, measurement criteria must be defined that distin-
guish between the two controller design objectives. The requirements defining the deviation of
the measured RF field from the reference trajectory during the flat top. This is also described
as the field stability as it was introduced in chapter 1. It is known that the measured vector sum
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signal is corrupted by measurement noise contributions. Soif only the rms value of the field
error is taken, it is not fully representing the field error inside the cavity. Nevertheless large
imperfections are penalized during the analysis by the rms error caused by instabilities or large
field excursions. The relative rms amplitude variation(∆A/A)rms can be measured as:

〈

∆A
A

〉

rms
=

1
rA

√

1
N

N

∑
n=1

(yA(n)− rA(n))
2 , (4.14)

and for the rms phase variation(∆P)rms as:

〈∆P〉rms=

√

1
N

N

∑
n=1

(yP(n)− rP(n))
2 . (4.15)

HereyA(n) andyP(n) denotes the measured vector sum for the sampling instantn in amplitude
and phase respectively. If only extracting the flat top region, the summation is given from 1
to the flat top lengthN. This has to be shifted about the filling time if the whole pulse length
is considered. The reference trajectory is similarly defined, although it is assumed that the
reference is constant during the flat top, withra(n) = ra as given in Eqn. 4.14. For normal
operation it is often the case that the amplitude and phase measurement show slopes over the
long flat top due to detuning effects. When the entire flat top is taken into account in the
computations, the data must be detrended before computing the rms error. Usually it is possible
with an optimal feedforward signal to keep the field almost flat during the pulse, as it will be
discussed in chapter 5.
The second criterion is related to the long-term invarianceof the vector sum. Often the machine
is running in a single bunch mode, meaning that during a pulseonly one bunch is accelerated.
In these cases, the flatness of the RF field within a pulse is notrelevant, but variations from
pulse-to-pulse still must be minimized. Therefore, a method is needed to quantify the pulse-
to-pulse variation. Equivalent to using rms as a measurement of stability during a pulse, the
relative pulse-to-pulse amplitude variation(∆A/A)p2p can be measured as:

〈

∆A
A

〉
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=

1
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√
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1
M

M
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(

1
N

N

∑
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(yA(n,k)− rA(n,k))

)2

, (4.16)

and for the pulse-to-pulse phase variation(∆P)p2p as:

〈∆P〉p2p =

√

√

√

√

1
M

M

∑
k=1

(

1
n

n

∑
t=1

(yP(n,k)− rP(n,k))

)2

, (4.17)

whereyA(n,k) denotes the measured amplitude vector sum for the sampling instantn and the
pulsek. The phase notation is defined similarly. In contrast to the rms variation defined pre-
viously, pulse-to-pulse variations are measured using only the mean value of the vector-sum in
order to reduce the high-frequency contributions to the field error during the flat top.
In the following, three example controllers are presented to give an overview of the performance
improvement using a MIMO controller instead of the proportional feedback controller.
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4.3.3 Controller comparison example

Rather than presenting results from the large variety of controllers tested, three examples have
been chosen to demonstrate the performance improvements achieved using the complex higher-
order controller. To allow a comparison, the model used for estimation of the controller param-
eters has been retained. The variance of the controllers is given by the weighting filters used
in the design process. As an example four different controllers are compared, which are the
usual proportional feedback plus three designed controllers differing due to different bandwidth
used in the shaping filters of Eqn. 4.12, where 2π fs = ws1 = ws2. Typically, a gain sweep was
performed in order to determine the optimal controller setting, meaning that the proportional
gain is incrementally increased and the field error measured. For comparison with the estimated
MIMO controllers presented now, the gain factors were initially scaled down and subsequently
increased to the designed proportional gain factor. Furthermore it has to be mentioned that al-
though I and Q are the controlled field components, for the determination of the field regulation
quality, the amplitude and phase are taken and therefore also presented in Fig. 4.7.
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Figure 4.7: Comparison of the rms stability during the flat top for three different MIMO con-
trollers and the proportional feedback as function of the feedback gain.

It can be clearly seen that the rms field stability for amplitude and phase does not significantly
differ for all controllers. The minimum achievable value isdetermined by the residual influences
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from the measurement noise. The single dots denote individual measurements, while the lines
represent the mean over 20 pulses.
When the proportional gain is increased, the closed-loop bandwidth also increases, leading to
growing field excursions as can be seen from Fig. 4.7. These field excursions are caused by the
feedback of measurement noise in the system. Further, the8

9π-mode leads to growing oscil-
lations (see Fig. 3.15), until the closed-loop system gets unstable. To this point, the designed
MIMO controllers do not show significant improvements in therms error since high-frequency
measurement noise dominates the field error signal.
The second controller task was to reduce the pulse-to-pulsefluctuations of the measured RF
field. Measurement results of the pulse-to-pulse fluctuations are shown in Fig. 4.8 for the same
controllers as in Fig. 4.7.
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Figure 4.8: Comparison of the pulse-to-pulse stability of the mean flat-top for three different
MIMO controllers and the proportional feedback as functionof the feedback gain.

By contrast with the rms field stability, the pulse-to-pulsestability shows significant differences
for the compared controllers. The gain sweeping range for the proportional controller is smaller
then for the MIMO controllers. During the measurements, higher gains have not been tested
because the vector sum started to build up oscillations and tended to get unstable. It is easy to
observe that the MIMO controller with the shaping filter corner frequencyfs = 3.5 kHz gives
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the smallest relative amplitude error for small gains, whereas the proportional controller has
the worst amplitude stability. For the phase, the errors areless significant but show the same
behavior. In this case the improvements due to the higher-order controllers compared to the
proportional feedback controller are easily visible. Further it can be seen that increasingfs also
enhances the performance especially for lower gains. As a consequence of the measured rms
stability given in Fig. 4.7 the last (black) estimated controller is used with a proportional gain
factor at about 40−50 (half the gain as estimated by the design procedure).

Other measurements have been performed in addition to the measurements shown for these
three example controllers. A digest of measurements can be found in [37], [43] and [44]. The
conclusion is that the best improvements in pulse-to-pulsefluctuations come from the higher-
order controllers with higher low-frequency gain. Theoretically it would be possible to achieve
these reductions with the proportional controller as well,but the growing rms field error is
not acceptable. The steep roll off at the closed-loop bandwidth allows to achieve the noise
suppression in combination with the high low-frequency gain.

Verification with electron beam

The performance of the RF field regulation is measurable by studying the electron beam deflec-
tion in the bunch compression section (corresponding to beam energy), and hence it provides an
independent measure of RF field regulation in the up-stream accelerator module that was being
controlled by the MIMO controllers. For more details about the equipment and technique, the
reader is referred to [45], [46]. In Fig. 4.9 the results are shown as relative beam energy stability
vs relative pulse-to-pulse amplitude stability of the measured vector sum. In a similar way to
the field measurements presented in Sec. 4.3.3 a comparison between three designed controllers
and the proportional feedback controller is shown.

It can be seen that the controller with the lowest amplitude error does not have the best beam
stability measurement. This might be due to the discrepancybetween the measured vector
sum and the beam energy and the limited accuracy in the measurements. To investigate this
assumption, additional measurements would be required, but these have unfortunately not been
possible so far. Nevertheless, Fig. 4.9 shows that the designed controllers improve the beam
energy stability as well as the field amplitude stability. The controllerC3 has a mean∆E/E ≈
1.3 ·10−4 at ∆A/A≈ 4.4 ·10−5, which is below the requirements defined in chapter 1.

Nevertheless the improvements to the beam stability are notimmense compared to the pro-
portional controller as it might be expected. But with the model improvements introduced
in Sec. 3.4 it might be possible to enhance the controller as well. It turned out that the high-
frequency noise contributions are the main disturbance source to be suppressed by the controller.
This conclusion raises the question if a conservative lowpass filter in the feedback loop would
also fulfill the same requirements as the complex designed controllers. Tests have been made,
showing that with filtering only the achieved performance isnot comparable with the designed
controllers. So far the presented data are derived from the theACC1system as the main exam-
ined plant. In the next section, a brief account of the designapplied to a different system will
be discussed.
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Figure 4.9: Relative beam stability as function of the measured relative vector sum amplitude
error. The points give the actual measurement whereas the crosses give the standard deviation
of the points for beam and amplitude stability

4.3.4 Measurements from the3.9 GHz module

At the time of writing, a new “third harmonic” 3.9 GHz accelerating cavity is being installed
at FLASH immediately downstream of theACC1accelerating cavities in order to linearize the
longitudinal phase space of the electron beam. With the appropriate relative phase and ampli-
tude settings the performance of the FEL is improved. For details the reader is referred to [47]
and [48]. From the perspective of controller design, there are some differences in the third-
harmonic system compared with the other modules, for example, some changes are necessary
to the cavity field probe signal chain because of the higher RFfrequency. The main difference,
however, is the system dynamics because the cavities have a higher bandwidth due to the lower
QL ≈ 1.3 · 106. Nevertheless, the same process is used to design the model based controller,
albeit with different input parameters, meaning that the system model was estimated according
to the steps presented in Sec. 3.2 and the controller design according to Sec. 4.2. Analogous to
the estimated controllers in the previous section the measurements were done as a comparison
to the designated proportional controller. Unlike previous measurements, however, tests on the
third-harmonic cavities were performed in a high power RF test stand without beam (still suf-
ficient to measure RF regulation quality). The conditions for measuring the field stability were
kept unchanged, i.e. measurements of RF flat top and pulse-to-pulse stability used the same
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formulae given in Fig. 4.10 and Fig. 4.11.
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Figure 4.10: Comparison of the relative amplitude errors between the MIMO Controller and a
gain sweep with the proportional feedback controller. It can be observed that the proportional
feedback gains a better pulse-to-pulse stability with increasing the gain (marked as dots). This
unfortunately also increases the measured RMS error duringflat top. The MIMO controller
(marked as triangles) which has only one optimal gain, fulfills the pulse-to-pulse requirements
without increasing the rms error during flat top.

Sweeping the feedback gain of the proportional controller showed that the gain is limited by
the predicted8

9π-mode and the system is more sensitive at higher gains due to the wider cav-
ity bandwidth. The influence can be clearly seen by the flat topstability in the amplitude of
Fig. 4.10, where for high gains the rms error grows to unacceptable levels and beyond the levels
measured during open-loop operation. By way of comparison,the best performance achieved
using the MIMO-Controller is given as the points at gain 1. The actual values are given within
the figures for direct comparison. Here the improvement due to the MIMO controller is more
significant than in the case of the 1.3 GHz system. The smallest flat top error with the pro-
portional controller is achieved using a feedback gain between 0.5−2, but for this setting the
pulse-to-pulse stability is worse than with higher gains. In contrast, the MIMO controller com-
bines the two objectives in the best condition regarding to the field stability in amplitude and
phase. The improvements using the complex MIMO controller are mainly the result of higher
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Figure 4.11: Comparison of the phase errors between the MIMOController and a gain sweep
with the proportional feedback controller. It can be observed that the proportional feedback
gains a better pulse-to-pulse stability with increasing the gain. This unfortunately also increases
the measured rms error during flat top. The MIMO controller (marked as triangles) which has
only one optimal gain, fulfills the pulse-to-pulse requirements without increasing the RMS error
during flat top

gain in the low-frequency range and the lowpass characteristic of the controller, which filters
high-frequency noise and especially the frequency contributions from exciting other modes of
the system. Frequency spectra of the controller I and Q outputs are shown in Fig. 4.12, which
confirm that high-frequency noise is amplified by the controller for higher gains. The bode dia-
gram of the presented controller is given in the appendix Fig. A.7 and detrimental effects from
aliasing are discussed in detail in Sec. 3.3.5.

It is evident from the figure that the main differences between the two controllers are in the
frequency range above 40 kHz where the higher-order MIMO controller suppresses the signal
but the proportional controller adds peaks at about 50 kHz. This effect was also visible for
the 1.3 GHz system, but the disturbance suppression is more distinctive in the 3.9 GHz case
because of the higher bandwidth.
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Figure 4.12: Comparison of the spectral components of the controller output between the
MIMO and P-Controller at the gain with highest pulse-to-pulse stability (compare with
Fig. 4.10). Due to the bandwidth limitation in the MIMO, is the output at frequencies above
40 kHz suppressed compared to the output of the P-Controller

4.4 Conclusion and suggestions

Experience from the feedback controller design can be summarized through the following state-
ments.

1. A model based feedback controller design was tested successfully for two different kinds
of RF feedback systems on a real plant.

2. The second-order MIMO controller improves the field regulation of theACC1system to
an amplitude stability of≈ 5 ·10−5 and a phase stability of≈ 0.003◦ for pulse-to-pulse
fluctuations. The flat top rms stability does not show significant improvements.

3. The best achieved pulse-to-pulse beam energy stability with the designed controller was
measured at≈ 1.3 ·10−4

4. For the 3.9 GHz system, the improvement in RF field regulation is in the order of 10 over
the proportional feedback controller!

Such results could be achieved even with the simple lowpass system model and a corresponding
simple weighting filters, and it is anticipated that furtherimprovements in regulation would be
achieved by using a more complex plant model and a higher-order controller.
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The main conclusions to be drawn from the designed controllers is that the primary source of
instability is excitation of system modes other than the fundamental from high-frequency noise
injected into the system by the controller, which means thatincreasing the proportional con-
troller gain to achieve stable pulse-to-pulse conditions has a negative impact on the flat top rms
error by inducing oscillations. In addition, the digitalization process and corresponding alias-
ing effects lead to oscillations of the89π-mode whose influence on the driving signal cannot
be neglected. Discrepancies between the measured vector sum and the vector sum seen by the
beam and their influence on the RF feedback system are not yet fully understood since mea-
surements of the electron beam energy show that perfect RF field regulation does not necessary
lead to a perfect beam energy stability. Rather it could be observed that, for long-term mea-
surements, the detected and regulated vector sum can be keptstable, but the observer system
detects drifts which are correlated with the beam energy measurements and with changes in
humidity and temperature. Clearly reference tracking cannot be guaranteed even with a good
controller when feedback signals are measured inaccurately. Drift compensation applications
are currently under development. To overcome this drawbackit is essential to incorporate beam
energy measurements into the feedback controller. Currently this is achieved using an energy
control loop on top of the RF field control. In this implementation it cannot be guaranteed
that both control applications do not influence each other which might cause instabilities, but a
combined controller concept has to be developed such that the MIMO controller is extended in
order to incorporate beam information as well as the RF feedback. Further considerations on
this can be found in chapter 6.
In the next chapter, we will discuss suppression of predictable pulse-to-pulse disturbances using
a sophisticated pre-compensation on the feed-forward drive. Also discussed is the combina-
tion of this feedforward compensation with the feedback controller concept, which efficiently
achieves the required regulation performance.
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Chapter 5

Iterative learning control

The low bandwidth of the feedback loop and limitations on thegain of the feedback controller
lead to residual field errors that are not suppressible in closed-loop operation. Open-loop con-
trol, also known as feedforward, is used to bring the system closer to the reference trajec-
tory, thereby reducing the error for the feedback controller. In the present implementation, the
feedforward drive remains unchanged from pulse-to-pulse unless the machine operators apply
changes to the configuration. This lack of automation raisesthe question of whether or not the
feedforward can be better optimized with automated controlto further decrease the remaining
control error. Since repetitive disturbances are predictable, they can be suppressed by automatic
tuning of the feedforward drive.

Iterative learning control algorithms provide the necessary control theories to realize automatic
feedforward tuning. The principles of learning control algorithms were originally developed
to control processes akin to robots fulfilling circular pickand place tasks. Applications can
be found in [49], [50] and [51]. The routines are derived fromrepetitive operational proce-
dures where an unchanged reference trajectory is cycled forlong time. Predictable disturbance
sources arise from the physical properties like inertia which lead to control errors or slowing
down the operation speed. These influences can be suppressedby learning from previous errors
and using that information to optimize the control signals,[52].

The task for RF field regulation is analogous to the example ofthe robots. In the case of RF
control, the predefined setpoint trajectory has to be followed without deviation. Repetitive dis-
turbances as well as non-optimal initial feedforward settings cause deviations from the setpoint
trajectory and need to be minimized. Therefore, the ideas ofthis learning algorithm is trans-
ferred to this system and implemented to improve the RF field regulation.

This chapter is organized as follows. First, general properties of the iterative learning control
algorithms are introduced in Sec. 5.1. Disturbances which are expected to be suppressed are
summarized and some considerations about the implementation on the systems are mentioned.
Subsequently, the measurement results are presented in Sec. 5.2. This encompasses both open-
loop and closed-loop measurements with the proportional feedback controller. Afterwards, the
combination of the MIMO feedback controller and the ILC is given in Sec. 5.3. Regulation
performance for the RF field and the electron beam energy, as well as the long-term conver-
gence is discussed. Finally, the main results are summarized and considerations regarding the
implementation for regular machine operation are presented in Sec. 5.4.
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5.1 General properties

Iterative learning controllers (ILC) are used to control repetitive processes consisting of a num-
ber of trials, each representing the same procedure. Since the cavities to be controlled are
operated in pulsed mode, meaning that every specific time instance the same RF pulse is gener-
ated, the accelerating process is considered to be repetitive. Moreover, some of the disturbances
appearing during this operation are repetitive as well, andcan be predicted for upcoming pulses
as long as the operation conditions remain unchanged. Therefore, the application of the ILC
technique is considered to be feasible for the RF field control. In the following the general idea
of an ILC is presented.

5.1.1 Repetitive disturbance

An overview of the disturbance sources, including the main contributions of repetitive distur-
bances have been introduced in Sec. 2.2. These unavoidable disturbances are caused by the
properties of the plant, or due to the relation to the acceleration process like beam-loading ef-
fects. Additionally, there exists further contributions to the resulting field error. Several are
not fully compensated, or they are actually introduced by the feedback controller, e.g. transi-
tion overshoots due to closed-loop operation of the system.To summarize, the main sources of
repetitive field errors to be compensated by the iterative learning controller are as follows:

• Beam-loading effects during the flat top, including the beamturn-on transient, that can not
be compensated by the feedback controller due to the low bandwidth even in closed-loop
operation

• Lorentz force detuning, introducing slope on field phase andamplitude if not compen-
sated by active mechanical suppression (main open-loop control error contribution)

• Overshoot in phase during the transition from filling to flat top phase caused by the feed-
back controller and klystron phase jumps, due to switching the power to 1/4 from filling
to flat top

• Non-optimal feedforward configuration, especially in the flat top phase to keep the control
error small to the feedback controller

The first two items have been discussed in detail in previous sections, while the latter dis-
turbances are described here. The typical feedforward signal has a significant step transition
from the filling to the flat top phase. This feedforward trajectory was derived from the desired
cavity fill time and beam-loading compensation assumptionsmade when designing this ma-
chine, [9]. From control point of view, step transitions have strong impact on the system due to
their broadband excitation. Furthermore, additional drawbacks arise in this application largely
because of the klystron. The power ratio between filling and flat top in open-loop operation
is Pf illing ≈ 4 ·Pf lattop, and this step change in power causes changes in phase at the klystron
output. Both control channels are affected by this phase change due to the IQ control scheme.
The ILC should also compensate for deviations from the reference field trajectory during cavity
filling. For example applying a pre-detuning to the cavity, in order to keep effects of LFD small
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during the flat top has an impact on the cavity fill time, and hence change the trajectory during
the fill time. The impact of LFD on field errors are particularly evident at the end of the flat top
where detuning effects are strongest, which is easy to observe in Sec. 5.2.1.
Beam-loading effects contribute largest to field errors andare the most important disturbance
effect to be compensated. When the machine operates with several bunches in a single pulse, it
is generally the requirement that all bunches have the same acceleration voltage, leading to the
same energy gain for all bunches in the train. By extracting energy while passing through the
cavity, bunches introduce field errors that would cause subsequent bunches to have a smaller
acceleration gradient. This effect continues over the entire bunch train, which results in strong
differences of the accelerating voltage from the first to thelast bunch within this train, as illus-
trated in Fig. 2.13. The induced field error depends on the bunch repetition frequency and the
charge of the electrons. Especially for high charges and high repetition frequency, compensa-
tion of this beam-loading effects is necessary for machine operation. In Sec. 5.2.2 and Sec. 5.3
compensation of this effect using the ILC is presented.

5.1.2 Overview of iterative learning techniques

Various concepts for iterative learning control algorithms concerning the application to be used
can be found in the literature, e.g. a nice overview can be found in [53]. The idea is to take
information from previous trials to optimize the control inputs on the next trial. Clearly, only
repetitive disturbances can be suppressed through this learning process. In the general form, a
P-type iterative learning control algorithm can be writtenas, [54]:

uk+1(t) = Q(uk(t)+Lek(t)) , (5.1)

whereQ andL are filter matrices of accordant dimensions. The trial number is given byk,
whereas the sampling instant within a pulse is denoted byt. In this work only a P-type algorithm
is considered, although extension to a so-called D-type algorithms would be possible. Higher-
order algorithms consider additional previous trials as well as the most recent, [55]. Analog
to the feedback controller, the ILC can be seen as a pulse-to-pulse feedback, calculating and
updating the feedforward signal before the next pulse starts. To address more complex system
dynamics, model based algorithms can be found, which in simple cases generate an inverse of
the system modelL = G−1, where G denotes the plant, [56]. This requires exact knowledge
of system dynamics, something that is not generally the casefor real applications. Ideally the
errors will become progressively smaller from pulse-to-pulse so the feedforward changes will
approach zero, which means that the algorithm converges towards the optimal input signal. A
convergence criterion based on the norm of the control erroris given as:

‖ek‖→ 0 as k→ ∞,k∈ N , (5.2)

with ‖ek‖ the l2-norm of the control errore for the k-th trial. The procedure to determine the
filter coefficientsQ andL is the task for the algorithms. Several approaches can be found in
the literature, for example, [57] and [58]. Further a large variety of studies to application of
different kinds of algorithms can be found [59], [61] and [60]. In the following section, an
algorithm is proposed that is based on minimizing a quadratic cost function, see [64].
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5.1.3 Norm optimal iterative learning control

In this section, the basic derivative steps are outlined forthe proposed iterative learning con-
troller. Further details can be found in [64]. This model-based algorithm has been chosen
because it can achieve fast convergence with small computation effort between two subsequent
trials. Furthermore there is already a proposal for a fast version of the algorithm in [62], which
minimizes the computation effort between two trials by computing the necessary matrices be-
fore the iteration starts. The algorithm provides current trial feedback mechanisms combined
with feedforward of previous trial data by splitting the twodimensional dynamics into two
separate one dimensional dynamics, [64]. It is possible to realize this approach by separating
disturbance suppression between the feedback and feedforward controllers in the frequency do-
main. The allocation of controller actions is discussed later when introducing the update law.
Furthermore, since this algorithm is based on the system model, it is consistent with the model-
based design approach that has already been applied to the feedback design. The identified
state space model of the plant was introduced in Sec. 3.1.1, and is given by thee discrete time
state space matricesA,B,C. The control signals remain as they were described in the previous
chapter, and the basic ILC requirement is defined as:

lim
k→∞

yk(t) = r(t) , lim
k→∞

uk(t) = u∞(t) , (5.3)

whereyk andr is the measured system output at the trialk and the desired reference trajectory
respectively,uk is defined as the system input andu∞ is the learned control input. All discrete
time signals are given as a function of the sampling intervalt with t ∈ [0,N] (hereN = 2048)
sampling steps within a pulse. In order to be able to compute an optimal input signal, a criterion
has to be determined which defines the goal of the control taskand allocates the quality of the
input. This is done by minimizing the following minimum-norm optimization problem:

uk+1 = argmin
uk+1

{Jk+1(uk+1) : ek+1 = r −yk+1} , (5.4)

with the performance index

Jk+1(uk+1) =
1
2

M

∑
t=0

eT
k+1(t)W1(t)ek+1+[uk+1(t)−uk(t)]

TW2(t)[uk+1(t)−uk(t)] , (5.5)

whereek = (eI eQ)
T denotes the tracking error vector signal of the desired trajectory of thek th

trial, for the I and Q channel.
The quantitiesW1(t) andW2(t) define weighting matrices of appropriate dimensions withW1(t)≥
0 andW2(t)> 0 for all t. By selecting the matricesW1(t) andW2(t), the(k+1)th trial control
input is determined which reduces the tracking errore in an optimal way, while keeping the de-
viation from the control input used inkth trial small. The full derivation of the update equations
given in Tab.5.1 can be found in [64]. The basic idea is to convert a non-causal representation
by transforming the costate system used for the update equation into a causal system that can
be solved as introduced in [64]. In order to derive the updatematrices given in Tab.5.1 the well
known discrete time Riccati equation has to be solved.
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First level (before operation):

K(t) = ATK(t+1)A+CTW1(t +1)C
−[ATK(t+1)B · {BTK(t+1)B+W2(t +1)}−1

·BTK(t +1)A] ; K(N) = 0

α(t) = {I +K(t)BW−1
2 (t)BT}−1

β (t) = α(t)AT

γ(t) = α(t)CTW1(t +1)

ω(t) = W−1
2 (t)BT

λ (t) = (BTK(t)B+W2(t))−1BTK(t)A

Second level (between trials):

ξk+1(t) = β (t)ξk+1(t +1)+ γ(t)ek(t+1) ; ξk+1(N) = 0

Third level (between each sample interval):

uk+1(t) = uk(t)−λ (t){xk+1(t)−xk(t)}+ω(t)ξk+1(t)

Table 5.1: Summary of the control law used for the ILC, [66]

Both The Riccati gainK(t) and the the predictive update componentξk+1(t) are computed by
the backward computation, having instead of an initial, a final value asK(N) = 0 andξk+1(t) =
0, with N giving the final sampling instant. The solution has amajor drawback for practical
implementation due to the large amount of computational effort which has to be performed
between two trials. Therefore in [62] the so-calledFast–Norm–Optimal Iterative Learning
Controller (F–NOILC) was introduced which minimizes the computation effort between two
trials by offline calculations before the iterations have started. The update equations are given
in Tab. 5.1, where they are grouped in Levels according to where in the cycle the computations
must be performed. Figure 5.1 shows a sketch of the level definitions, as applied to the pulsed
operation in this application.

t

2nd level

1
s
t 

le
v

e
l

3rd level

Figure 5.1: Sketch of the level notation given in Tab. 5.1

The algorithm is divided into three levels, where the first level consists of computations that
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can be done before the adaptation starts, such as calculation of various matrices that remain
unchanged. In the second level are those components that arecomputed between two trials,
such as the calculation of the predictive component. The input signals with a state feedback
component are computed during the third level, which corresponds to the time available for
computations between each sample of a trial. The algorithm as is it presented in Tab. 5.1 can
not be implemented on this plant, since the full state knowledge as it is presumed here cannot
be provided. This and other practical limitations are discussed in the following.

5.1.4 Limitations for the real plant application

The algorithm introduced could not be realized without changing the existing fixed controller
structure that is implemented in an FPGA. This algorithm also assumes full state knowledge,
but it is claimed that this state feedback scheme can be replaced by an output feedback scheme,
specifically the MIMO feedback controller that was introduced in the previous chapter [64].
Observer-based methods might be suitable for future applications, but they are not considered
here.
For the first simulations and tests, the states were estimated offline using model based simula-
tions which turned out to be impractical for this application, [28]. It has been studied that the
measurements made on the plant showed best results when the state difference remained small
and therefore have been neglectful for the algorithm. It wasdecided to implement the ILC on
the plant without state feedback, meaning that the matrixλ = 0. This is rather a heuristic fix,
which turned out to be practical in the real application. Optimality proofs for the original algo-
rithm do not apply in this case. Nevertheless the application has been successfully tested and
for later examination either state estimation by observer-based methods or other ILC techniques
have to be tested, [29].
Substituting the state feedback for output feedback means that the third level computations of
Tab. 5.1 can be moved to the second level, and the computationcan be performed from pulse-
to-pulse, while intra-pulse feedback is done by the MIMO feedback controller. Consequently,
the update equation reduces to:

uk+1(t) = uk(t)+ω(t)ξk+1(t+1) , (5.6)

with the predictive componentξk+1 andω(t) computed as defined in Tab. 5.1. Therefore,ξ
has to be evaluated first due to the fact that this is a non-causal computation with a terminal
conditionξ (N) = 0. The update law requires only matrix multiplications, which is feasible
for real time applications and implementation, [63]. In order to combine the ILC algorithm
with feedback controller, the update equations must be computed from the closed-loop system
model rather than the open-loop plant model. The time scale is different for the two controllers,
because one is active when the other controller remains unchanged: the ILC acts on the feed-
forward input to the system between pulses and the feedback controller acts intra-pulse. The
end-boundary condition for the ILC forces the last sample ofthe feedforward control to remain
unchanged. From the overall system perspective, the field need only be controlled during the
flat top phase, and since the decay phase need not be controlled, the feedforward input and
the feedback are both turned off. As a result, it is sufficientto compute the update corrections
for just the flat top and filling timeN = t f illing + t f lattop− tstart, wheretstart is taken as starting
offset at the beginning of the filling phase. This starting offset is needed for practical reasons,
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because the control error is large at the begin of the filling phase ant it must not be compensated
either by the feedforward or feedback controllers. A typical starting time for the ILC has been
chosen to betstart = 250µs after the pulse starts, which is half of the filling time. Therequired
computation steps are listed below.

1. Computation of the matricesβ ,γ,ω depending on the state space system matrices, weight-
ing matricesW1 andW1 and the time span defined for the update.
( ⇒ this procedure has to be done once when initializing or restarting the update)

2. The control errorek(t) saved in the FPGA after the pulse, has to be readout by the control
system. The previous feedforward inputuk(t) is stored inside the memory.

3. Once the data is available, the predictive componentξk+1(t) is computed using the control
errorek.

4. The new control inputuk+1(t) is computed from the old feedforward inputuk(t) and
ξk+1(t).

5. The new controller input has to be uploaded to the FPGA before the next pulse starts. The
system will be operated with the new feedforward signal and items 2−5 are repeated.

Normally, one would expect that the feedforward tables are updated on consecutive pulses.
However, the present controller structure inside the FPGA is not able to do the calculations.
They have to be computed on a server that provides all tables to be processed inside the FPGA.
These tables are written in registers and transferred through the communication interfaces.
There is a fixed and limited time available for communicationand processing since the con-
troller must operate at a fixed pulse repetition frequency (5Hz presently). If the update is not
computed fast enough, old tables will be written and the update process will get out of step.
The choice of algorithm, processor performance, and speed of communication are all important
considerations if pulse-to-pulse adaption is required. Todetermine the convergence speed of
the algorithm, the iteration steps instead of pulses have been taken. This allows to be indepen-
dent of transmission time variations from one step to the next. Additional considerations for
the future permanent implementation are given in Sec. 5.3.4. First the measurement results are
presented in the following section.

5.2 Experimental results

The measurements are taken from the same plant as it was introduced in the previous chapters.
Usually the ILC would update the original feedforward tables every adaptation step. However,
by directly overwriting this tables, the influences to machine operation are significant, e.g. in
case of malfunctions the original tables are incompletely overwritten. Furthermore, by phase
or amplitude changes the original tables are set back leading to wrong adaptations. Introducing
additional correction tables that will be added to the original feedforward tables overcomes this
drawback. Therefore the algorithm is started always with initial zero vectoru0(t) = 0, whereas
the usual feedforward is left. In the following, the correction input is denoted asucorr. The
error data are readable after the pulse through the control system. All processing steps are done
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in Matlab. Due to the fact that the tests have been made not necessarily from pulse-to-pulse,
also several data sets could be taken to average the control error, keeping the high-frequency
noise small. The convergence speed is thereby described in the following by the number of
iteration steps. Next the ILC algorithm is presented as an open-loop adaptation and in addition
in closed-loop, which is more feasible for the usual operation, [43]. Closed-loop in this case
means the combination of the ILC with the proportional feedback. The combination with the
MIMO controller is presented afterwards in Sec. 5.3. The weighting matricesW1 andW2 have
been chosen in a way that the adaptation is fast enough without getting unstable. The possible
time dependency ofW1 andW2 as given by Tab. 5.1 has been tested, but for the following
presented results they are chosen as:

W1 = q× I , W2 = I , (5.7)

with q giving a scalar weighting factor. This scalar factor is intended to provide machine oper-
ators a ”tuning knob”, as it is discussed in Sec. 5.3.4. For the results presented in the following
a practicable setting has been found withq= 100.

5.2.1 Open-loop adaptation

For the first tests on the plant, adaptations in open-loop were done to check that the algorithm
is valid and that it gives results comparable to simulations, which have been shown to converge
even with adaptation of the beam-loading effects, [28]. Compensation of beam-loading was not
tested in open-loop operation due to operational limitations of the plant. Without the feedback
controller the risk of so-called beam losses is high and therefore the electron beam with less
charge and number of bunches can be turned on for short time only.
The main source of repetitive disturbance is the field imperfection due to LFD, which introduces
significant field errors, particularly at the end of the flat top where detuning effects are largest.
Whereas the field error must be as small as possible during thebeam transmission time only, the
feedback controller is compensating during the whole RF pulse. Large control errors demand-
ing strong feedback controller action for compensation. The goal for the ILC is to minimize the
control error, reducing the actuator gain given by the feedback controller. This allows to keep
the closed-loop bandwidth small in order to prevent oscillations. The open-loop measurements
presented here are the first measurements made with the ILC onthis plant. In this case, state
feedback was implemented in offline simulations, which was introduced to omit when combin-
ing the ILC with a feedback controller, [28]. The correctionof the lorentz-force-induced field
decay during the flat top is compensated, as can be seen in Fig.5.2.
The adaptation is done during a part time of the flat top for both channels only. One can easily
observe that the field error at the end of the flat top is alreadyhalved within one iteration step
for the I channel. Within only 10 iteration steps the updatesalmost converged and the measured
output has reached the reference trajectory during the flat top. The corresponding feedforward
tables to be adapted are given in Fig. 5.3. It can be seen that the final value at the end of the flat
top remains unchanged, which is related to the specifics of this algorithm.
Adaption during the flat top only turned out to be insufficient, because the residual overshoot at
the begin of the flat top is not compensated fast enough, so in the next measurements, the adap-
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Figure 5.2: Adaptation of the open-loop system response during flat top. Effect of LFD is
compensated within 10 iteration steps, [28].

tation was started during the filling time in order to keep thetransition excursions acceptable.
Additionally, it became evident that a better starting trajectory was achieved by replacing the
standard (not adapted) feedforward tables with the adaptedtables once the algorithm had con-
verged. This is of course only possible for consistent amplitude and phase settings. For machine
operation this method would allow to be faster and closer to the operation point without having
a permanent adaptation. Furthermore, studies were performed using the optimized feedforward
tables as the nominal feedforward and superimposing the excitation signals used for the system
identification. Thus it is possible to overcome the drawbackof complex detrending routines.
As an addition, further open-loop control experiments havebeen done on a different acceleration
facility to test the benefit of a model based approach. This system is rather complex to discuss
in detail, but the basic results are given in the appendix A.1. Comparable to the studies on a
different system for the feedback controller, this application shows the advantages concerning
the model based design approach.

5.2.2 Closed-loop adaptation

The first closed-loop measurements were made with the proportional feedback controller which
is permanently installed at the plant. Depending on the closed-loop conditions, the model has
to be updated if the feedback controller is changed. The parallel development of both control
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Figure 5.3: Corresponding input signals to Fig. 5.2, where the feedforward signals are adapted
during flat top, [28].

techniques demands some compromises regarding the measurement conditions. For ideal set-
ting of the feedback loop the proportional controller was typically operated with a feedback
gain of about 40, which turned out to be a good choice. After the parallel system was intro-
duced as described in Chp. 4 the implementation of the MIMO feedback was easier to realize
and therefore measurements with this controller in combination are presented as well, in the
following section. The essential benefit of operating the ILC on a closed-loop system is to test
real operating conditions. This disturbance source causesdifferent contributions then the LFD
which has adapted in the open-loop measurements. Whereas the detuning process results in
a low-frequency drift during the flat top, the beam is a high-frequency disturbance which has
a large amplitude. The machine is operated in a way that the first bunch of an electron beam
always occurs at the same sampling instant during the flat top, and measurement devices are
synchronized to this time, to facilitate analysis of bunch resolved measurements. The train is
distributed over the flat top according to the bunch-to-bunch repetition frequency and number of
bunches selected. The large disturbance impact is not compensated by the feedback controller
due to the limitation on the closed-loop bandwidth discussed in Sec. 2.2.3. Due to compensation
by the ILC it is claimed to have higher frequency control signals which might be sufficient to
suppress these effects. The adaption steps and the impact onthe field error is shown in Fig. 5.4.

Here the amplitude deviation introduced by the bunch is in maximum ∆A/A > 3.5 · 10−3 in
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Figure 5.4: Fitted curves of RF field amplitude changes due tofeedforward adaptation, com-
pensating effects of beam-loading. Dots represent the measurement points after 50 iterations
showing that only non repetitive fluctuations are left over

closed-loop operation with a feedback gain of 40. One can observe that the beam-loading
effects can be minimized within 10 pulses to an acceptable level and fully compensated within
50 iteration steps. It is important, from a machine operations perspective, to quickly compensate
large deviations over the train, so as to minimize transmission problems in the accelerator by
optical settings. The fine removal of residual field errors takes additional steps. In Fig. 5.4
the measurement points are given as the dots after having 50 iterations performed. The lines
represent the fitted curves of the measurement point for the earlier iteration steps. In this case the
first measurement point is given by the first bunch and only theimportant 250 sampling instants
during and after beam transmission are plotted. The minimumof the blue curve represents the
last bunch position in the train of 29 bunches at a charge of 1 nC, which is typical for current
operation. On crest acceleration leads to strong amplitudebeam-loading effects as it can be seen
from the figure. Therefore the phase information is left here. In Fig. 5.5 the relative amplitude
and phase error are given as function of the iteration steps,with the same beam conditions as
shown in the previous figure.
It can be seen that within 10 iterations, the main contributions to the field error are compensated
for both phase and amplitude. For the phase error, the minimum is almost reached after 25 iter-
ation steps whereas the relative amplitude error keeps getting smaller for the whole 50 iteration
steps. This is due to the fact that the main contributions to the amplitude field error comes from
beam-loading, while for phase, it is LFD. It can be seen that this application ultimately reaches
a relative amplitude stability of∆A/A < 0.01(rms) and phase stability of∆P < 0.025◦(rms),
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Figure 5.5: Norm of amplitude and phase error as function of the iteration steps. Main field
error contributions are caused by electron beam for amplitude and LFD for phase

both of which are close to the requirements defined in the introduction. This raises the question,
what would be the impact regarding the beam energy stability? Measurements of the beam are
discussed in the next section.

Beam energy measurements

The main objective for RF field regulation is to deliver stable energy gain to the electron beam
as needed for acceleration. Therefore it is necessary to clarify whether the compensation of
beam induced disturbances on the RF field is also observed on the electron beam. A study can
be made of whether or not perfect field regulation over the flattop is achieved after adaption,
also results in a flat energy profile over a bunch train. Consequently, an assessment can be made
of whether beam-based measurements must be taken into account for beam energy regulation,
e.g. by applying further corrections for the setpoint tables.
In Fig. 5.6 the beam energy profile is shown for a bunch train of30 bunches at a charge of 1 nC.
The different measurements are given as bunch resolved function with mean values and rms
spread given by the bars. To guide the eye the discrete bunches are connected by lines. The
iteration steps are identified by the arrow.
Before starting the ILC a broad energy spread over the bunch train can be observed. The energy
is normalized to the first bunch, leading to an energy difference between the first and last bunch
in the train ofdE/E > 4 ·10−3 before starting the adaptation. This is reduced todE/E < 5 ·
10−4, after feedforward adaptation. However, a small energy deviation is visible over the bunch
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Figure 5.6: Removing transient energy slope on a bunch traincaused by beam-loading effects
on the field amplitude. Iteration steps are marked by arrow direction

train that resembles a sinusoidal waveform, although this was observed to be less significant
in the field measurements. This residual error may be a resultof the limited accuracy of the
measurement equipment, but it also might be introduced by the ILC as a result of incorrect
field detection. Especially measurements with the parallelsystem have shown that accurate
field regulation does not necessary result a perfect field flatness. Therefore it turns out to be
necessary to include the beam information to the controller. Ideally by redefining the setpoint
tables based on the measured flatness of the energy profile over the bunch train. The ILC in
combination with the feedback controller is taking care to track this beam optimized reference
trajectory.

Fig. 5.7 shows the beam energy distribution over the bunch train versus iteration steps. The
plot illustrates the rapid adaptation that can be achieved,which is important for machine oper-
ations. The energy spread over the bunch train is given as therms deviation. It can be observed
that within 10− 20 iteration steps the energy deviation is significantly reduced, while some
additional steps are needed to further improve the energy deviation.

Pulse-to-pulse fluctuations still occur that are not compensated by this algorithm, which are
mainly associated with microphonics and measurement noise. These fluctuations are non-
repetitive and therefore compensated by the feedback controller. Integration of the MIMO
feedback controller and ILC are discussed in the following section.
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Figure 5.7: Convergence of energy spread over the bunch train after 40 iteration steps using
proportional feedback with the iterative leaning controller.

5.3 Combined controllers

It has been shown that the ILC adequately suppresses the repetitive disturbances in both, open-
loop and closed-loop operation. The previous chapter described improvements in pulse-to-pulse
fluctuations that were achieved using the MIMO feedback controller.
Now the combination of both controller types will be introduced to study the cooperation re-
garding the field control of the plant. Allocating disturbances to the two controller types based
on the frequency range, helps to overcome the drawbacks of each individual controllers. The
final implementation is shown in Fig. 5.8, which extends the present system shown in Fig. 2.2
by adding the ILC and MIMO feedback controller.The figure also indicates broadly which com-
ponents of the controllers are implemented in the FPGA, and which are implemented on other
platforms, such as using Matlab code or in DOOCS servers. Forthe measurement examples
presented here, the correction tables are not directly written into the FPGA but are computed
beforehand and added to the original feedforward tables. For the permanent implementation the
correction tables will have to be implemented inside the FPGA in order to allow fast interrup-
tion if exceptions occur. Additional notes to this statement can be found in Sec. 5.3.4. Several
steps must be followed in order to determine the combined controller parameters, which are:

1. System setup and estimation of the open-loop model. Validation of the model using
measurement data and previously estimated models.

2. Estimation of the MIMO controller parameters with a mixedsensitivity design solved
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Figure 5.8: Schematic view of the new LLRF control system. The ILC is updating correction
tables in the FPGA but calculated offline in a server. Inside the FPGA the MIMO feedback is
used for intra-pulse feedbacks

by HIFOO, and testing the controller applicability by offline simulations. Loading the
controller parameters to the system and closing the feedback loop. Check the performance
of the feedback controller and if necessary tune proportional gain factors.

3. Excitation of the the system to generate closed-loop system response data and estimation
of the closed-loop model. Validation of the model as done forthe open-loop model.

4. Using the closed-loop model for computation of the adaptation matrices depending on
system conditions (flat top time) and settings of the weighting matrices. Application of
the ILC and start of the iteration process to compensate remaining repetitive field errors.

5. Verify there is effective compensation of beam-loading effects and further repetitive dis-
turbances such as LFD and overshoots. Monitor the convergence speed and measure field
stability from pulse-to-pulse and during the flat top phase.

The above list describes the procedure as it was applied during the test presented here. For
future applications, it could be feasible to compute the closed-loop model from the open-loop
model and the estimated feedback controller parameters. This would allow to take the open-loop
model wide before measurements and do the feedforward adaption without having to estimate a
closed-loop model during operation. Excitation of the plant cannot be done during regular FEL
operation. Validation of the closed-loop model can be done with the online data taken during
operation. This is also discussed when considering the permanent implementation.
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5.3.1 Measurements with combined ILC and MIMO feedback controller

The presented measurements have been performed with one specific MIMO feedback controller.
It has been seen that the pulse-to-pulse fluctuations are minimized by the MIMO FB, and the
ILC is able to remove the major impact of beam-loading plus additional repetitive errors on the
acceleration field. To visualize the improvements, in Fig. 5.9 the field error during the flat top
is compared with open-loop measurements, closed-loop withthe MIMO feedback controller,
and the combination of MIMO feedback and iterative learningcontrol. All measurements have
been done at the same plant, but without the electron beam.
The residual control error is mainly determined by LFD and overshoots in the closed-loop mode.
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Figure 5.9: Comparison between open-loop measurements, the MIMO feedback and the MIMO
feedback controller + iterative learning control after 10 iteration steps. Measurement points are
given as dots, whereas the average is given in the solid linesmarked by colors

For open-loop operation, large deviations of the field errors can be observed during the flat
top, which is here at aboutt = 300µs. Single measurement points are given as dots in the
corresponding colors of the mean values labeled in the legend. Pulse-to-pulse fluctuations are
observable by the spread around the mean value. The calculated rms and peak to peak (p2p)
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errors are given as values inside the plot. This spread significantly reduces from open-loop to
closed-loop operation. Beside this, any fluctuations in theoffset can be reduced while applying
the feedback controller, as it is expected. Nevertheless, there remains a small slope in the ampli-
tude and phase field errors, even in closed-loop operation with the MIMO feedback controller.
Enabling the ILC removes this residual field error after several iteration steps. For illustration
only the last iteration step is drawn. Furthermore the overshoot at the beginning of the flat top
is also significantly reduced. Residual fluctuation are not fully suppressed, which is easier to
observe in the more detailed Fig. 5.10.
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Figure 5.10: Comparison between closed-loop measurementswith the proportional FB con-
troller (gain 40), the MIMO feedback and the MIMO feedback controller + iterative learning
control after 10 iteration steps. Measurement points are given as dots, whereas the average is
given in the solid lines marked by legend given colors

Here, closed-loop measurements with MIMO feedback (in red)and the MIMO + ILC (in green)
are compared with the closed-loop response of the original proportional feedback controller
(shown in blue). Combining the MIMO feedback with the ILC results in almost perfect field
regulation, except for the transient at the beginning of theflat top. It is the steep step transition
between filling and flat top that leads to the jumps in the control errors. This transition ideally
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should be smoothed so as to reduce the oscillation at the begin of the flat top. Clearly, the settling
time after the transition seen in Fig. 5.10 is much faster forthe MIMO controller then for the
proportional feedback. Furthermore, in the case of the proportional controller, the measured
plant output is deviating from the setpoint, as seen by the residual slope in the amplitude error
and a larger residual error on the phase. The slopes are smaller for the MIMO feedback but
are still not fully compensated. The overshoots at the beginning of the flat top as well as the
slope are then removed by the iterative learning controller. It can be seen that the performance
requirements listed in the introduction are fulfilled with this combined controller concept. The
pulse-to-pulse fluctuation (rms) are minimized to about∆A/A= 2 ·10−5 and∆P= 0.004◦ by
the feedback controller, whereas the field errors measured for the flat top are approximately
∆A/A< 1 ·10−4 and∆P< 0.001◦, when ignoring the overshoot in the beginning. To visualize
the distribution of the relative amplitude error during flattop, all measurement points are plotted
as a histogram in Fig. 5.11. The relative sample distribution is given as function of∆A/A for
different iteration steps.
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Figure 5.11: Distribution of the relative amplitude error∆A/A for all measurement point during
the flat top. The envelope of the histogram bars are given for the iteration steps.

The detailed distribution for iteration step 1 is shown by the bars and for better visualization,
the normal curve of distribution is fitted. For clarity, the bars have been omitted from all sub-
sequent steps. It is easy to observe that the mean value for the first iteration step is offset by
approximately∆A/A= 2 ·10−4. The standard deviation (FWHM1) of the first iteration step is
about 2σ = 2 ·10−4. With increasing iteration steps the mean value of this curve approaches 0
which denotes the suppression of steady state errors or effects like LFD. The standard deviation
is also decreasing. Already after 10 iteration steps the adaptation has almost converged and

1full width half max
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after additional 10 steps only minor changes can be observed. The standard deviation has been
decreased to∆A/A< 1 ·10−4, which is demanded by the requirements stated in the beginning.
The requirements defined as control objective are achieved while using the combined controller
concept.
For a permanent implementation additional considerationshave to be made, and these are dis-
cussed in Sec. 5.3.4. However, before discussing implementation, one further aspect must be
studied, namely whether the algorithm is stable over a long time once it has converged - some-
thing that is a common issue for iterative algorithms.

5.3.2 Long-term adaptation after convergence

For iterative algorithms, both the convergence speed and the long-term stability are important.
Latter is very important for operation of the accelerator, because the machine users do experi-
ments over large time periods. As a test, 1000 iteration steps have been made where in Fig. 5.12
some iteration steps have been sorted out. Machine conditions have not been changed during
this adaptation, e.g., no phase or gradient changes as well as the same beam conditions. The
figure gives the measured relative field error∆I/I and∆Q/Q instead of amplitude and phase
presented so far. The yellow dots mark the measurement points during the flat top for 5 pulses,
whereas the red dots give the mean values for every sampling instant of the flat top averaged
from these 5 pulses. The mean is given to emphasize the repetitive component which is over-
layed by additional measurement noise error, varying from pulse-to-pulse. The yellow ellipsoid
marks the region of the computed rms error of the measurementpoints and the red ellipsoid
the rms region of the mean values respectively. To give the control trajectory the required area
of convergence determined by the required amplitude and phase stability is also drawn. Due
to the phase settings in the machine the relative requirements in I are higher then for Q. In the
following the individual plots of Fig. 5.12 are discussed indetail.
In plot (a) the first iteration step is given. It is evident, that there is an offset control error for
all measurement points in the plot. This is mainly determined by the residual field error of the
closed-loop system. As has been previously mentioned, the feedback controller is not able to
compensate completely for these residual errors. This measurement was taken with beam that
was being accelerated on crest, and beam-loading effects can be seen as the horizontal branch
on the lower edge of the measurement points. The error is largely in the I channel because
when operating on crest, the electron beam couples to the real (in-phase) component of the
acceleration field, as introduced in Sec. 2.1.3. The two outliers to the right of the plot are
residual overshoot sampling instants from the beginning ofthe flat top, and the steep diagonal
tail is caused by the lorentz force detuning effects for the latter flat top region. It can be seen
that as the detuning increases, there is a corresponding increase in the error contribution to
Q. The width and location of the ellipsoids demonstrate the control error without applying
the ILC to adapt the feedforward signal, even when the feedback controller is acting. In plot
(b) the situation after 10 iteration steps is shown. The scalings on the axes are equal to plot
(a) to emphasize the improvements already after 10 iterations. For a pulse-to-pulse repetition
frequency of 5 Hz this would be within 2 seconds. It can be seenthat the LFD effects are
not fully compensated and that there are still two outliers to the right of the plot. However,
the offset of the center of the ellipsoid has been moved towards the required location, and the
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Figure 5.12: Deviation of measured field errors in IQ during flat top with MIMO FB and ILC
for long-term iterations. Structural development of ”cross” errors, caused by oscillation during
flat top
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spread of data-points has been reduced to an appropriate level. After 100 iteration steps the
requirement for the rms field error is achieved, as can be easily observed in plot (c). Some
measurement point are still outside the black area, but the main number of points is located
inside. In plot (d) the algorithm has converged and the residual errors are distributed equally
in the region. One can see that the centers of all ellipsoids are located approximately at origin,
where∆I/I = ∆Q/Q= 0. Additionally it can be seen that the measurement points (yellow) are
fixed to a mesh structure meaning that the points are around the discrete limit given by the fixed
points in the FPGA. Based on the data in plot (d), further improvements in the regulation would
be hard to realize. Unfortunately, it can be seen from plot (e) that after 400 iterations the data
points are moving away from the convergence area. It has to beremarked that the measurement
points are not equally distributed, rather a ”cross” seems to be drawn by the measurement points.
This assumption can be verified when studying the last plot inthis series (f), giving iteration
step 600. These two crossed diagonals raising the question what measurement point distribution
causes this final distribution? Obviously the measurement points cannot be derived from noise
contributions, therefore one would assume an equal distribution in the IQ plane. The cross is
likely caused by an oscillation distributed over the flat top. To prove this assumption in Fig. 5.13
the spectral distribution of the vector sum amplitude is given.
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Figure 5.13: Frequency spectrum of the measured vector sum amplitude. In the low-frequency
range are the magnitudes smaller after several iterations whereas after 900 iterations two reso-
nance peaks are observable

The amplitude spectrum is derived from the measurement points during flat top and normalized
to the maximum range of bits given in (decibel full scaledB(FS)). The frequency spectrum is
generated by a fast fourier transformation (FFT). The actual spectrum is given as the dashed
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opaque background, whereas the lines are drawn to guide the eye. The iteration steps are color
labeled. One can see that in the low-frequency range, the amplitude will be suppressed with
increasing number of iteration steps as it can be expected from Fig. 5.12. The green curve
represents the smallest achieved control error, since it has the lowest integrated spectral con-
tribution. In the higher frequency range> 1 kHz are no significant changes observable except
for iteration number 500 and 900, which are representing thedivergence cross section of the
previous figure. The assumed oscillations can be easily detected in this plot. There are two
resonance peaks, which seem to be mirrored at about 250 kHz. Comparing this with Fig. 3.16
shows the same resonance peaks. Therefore, it can be stated that the ILC seems to excite the
8
9π-mode, which could also be detected with the sinusoidal excitations have been made. The
first resonance peak here is also located at≈ 174 kHz. This effect is unwanted and has to
be overcome when implementing this to the plant. Unfortunately all measurements have been
made with the simple model of the system presented in Sec. 3.3.3. The resonance peak in the
measurements has not been included in the system model, as itwas presented in Sec. 3.4. It
is expected that with this improved system model, the excitation of these resonances can be
avoided. Test are currently under investigation which can be found in [29]. The significance for
the implementation and possible solutions are outlined in Sec. 5.3.4.

5.3.3 Beam energy spread for a bunch train

As has been discussed already, removing beam induced transients on the RF field must subse-
quently improve the beam energy distribution over a bunch train. It has been observed from
measurements that the correlation between the field flatnessand the beam energy distribution
over a bunch train is given only to a certain limitation. In Fig 5.14 the relative amplitude stability
and the beam energy relative to the first bunch are given as an bunch resolved measurement.
The residual wave which was visible in Fig. 5.6 is mostly removed in this plot. This has two
main reasons. First the bunch repetition frequency was only500 kHz during this measurement,
which lead to a longer disturbance impact with half of the amplitude, meaning the disturbance
was smaller. Additionally, the feedforward adaptation wascorrected by time shifting steps. It
was introduced in Sec. 3.3.4 that the measured system response can be detected with a time
delay oftd ≈ 2−4µs. Therefore, the control error is computed with a time delayof the same
value. While using the delay corrected system model, it is further necessary to compensate later
in the allied correction terms byucorr(t) = ucorr(t − τ). The same experiences have been made
while applying the feedforward correction term at a the PSI machine, as discussed in the Ap-
pendix A.1. The outcome is a much improved flatness of the electron beam energy distribution
as well improvements in the measured field amplitude. In thiscase, the large transition over the
first two bunches is not being compensated, and this is visible on the amplitude. Ideas exist to
simply remove first bunches in a train, but this demands fast kicker magnets which are currently
not applied. Even so, the achieved relative amplitude erroris in a range of∆A/A < 1 ·10−4

and also∆E/E < 1 ·10−4 over the bunch train for typical beam-loading conditions. Whereas
the large drop at the beginning of the bunch train is visible for both measurements, the small
fluctuations visible on the amplitude are not fully correlated with the electron beam energy.
Having collected all this expertise described herein, someconsideration must be given to ap-
plying this combined controller method for permanent usagein the plant.

92



CHAPTER 5. ITERATIVE LEARNING CONTROL 5.3. COMBINED CONTROLLERS

0 5 10 15 20 25 30
−8

−6

−4

−2

0

2
x 10

−4 Beam Energy (PMT)

bunch number

∆ 
E

 /
 E

 

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5
x 10

−3 Amplitude stability (ACC1)

bunch number

∆ 
A

 /
 A

 

Figure 5.14: Amplitude and beam energy stability for a bunchtrain of 30 bunches after feed-
forward adaptation with the ILC

5.3.4 Implementation considerations

For a user facility considered here a reliable system with high performance requirements is
required. Therefore, all new applications have to be testedcarefully before implementation,
and further must be embedded in a functional system without having negative influences re-
garding existing applications. This demands a smart exception handling for all applications.
As an example, the algorithm must be stopped if there is a malfunction in the underlying sys-
tem. Defining a list of exceptions and developing tasks to be performed demands experience
with the operating system and knowledge of typical operation routines used in the machine. In
case of learning algorithms the framework for exception handling could be applied to different
algorithms that might be tested in the future. Another pointof consideration is the communi-
cation interface to the machine operators. Interaction points have to be predefined and those
identified that might remain unchanged, such as the setting of the weighting matricesW1 and
W2. For the tests presented, the matrices have been chosen in a way that the convergence speed
was sufficient without having overshoots in the correction tables from pulse-to-pulse. It might
be possible to provide the users a tuning knob which allows tochange the weighting factor q.
This would have a comparable effect to a learning gain, whichideally can be tuned between
convergence speed and reliability depending on the conditions for current operation. Therefore
additional test must be made which show the practicability of this proposal. It is further to be
thought if the weighting functions are defined as time depending matrices, to emphasize special
regions of strong suppression like the filling, flat top transition. Simulations have been made
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and can be found in [28].
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Figure 5.15: Simulation of the influence of the weighting matrices for the sum of of residual
control errors for a trail∑etrial , [28]

For tuning processes in the machine, it might be necessary tochange phase and amplitude fre-
quently by small variations. It could be verified that setpoints changes do not lead to effect
the ILC. Additionally, it might be possible to take the optimized feedforward signal as a start-
ing point for normal operation. Furthermore, it has turned out that in the case of long-term
adaptations, the algorithm is critical to avoid resonance peaks building up. It is assumed that
this is caused by the special mode of the system which has not been considered in the model
used for the measurements. In Sec. 3.4 an advanced model was introduced, which was recently
developed but could not be tested with the ILC. It is assumed that when having modeled this
resonance peak, the learning controller will not excite thesystem in this frequency range. To
prove these assumptions tests on the plant must be performed. As an optional solution for
the implementation, it would be possible to define thresholds to detect when the algorithm has
converged, and the adaptation would then be stopped until the control error grew above this
threshold. Meanwhile, the correction term would be filteredin order to generate a new starting
correction signal. This is only a heuristic solution. Another issue which has not been discussed
so far, but has been turned out to be most critical for this learning algorithms is a sudden disap-
pearance of the electron beam driven by the so-called machine protection system (MPS). This
is a machine safety system that cuts the beam if there are complications is other machine sub-
systems, e.g. focussing issues or radiation alarms. The compensation of the beam-loading leads
in this case to increases of the field amplitude, which might further result in unacceptable field
gradients that could harm the machine. Consideration and possible solutions to this problem
are discussed in Sec. 6.2. Finally the pulse-to-pulse adaptation in combination with the com-
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munication interface has to be considered. The results thathave been presented were made
with Matlab based routines. For permanent application thiscommunication interface has to be
transported to a server-based functionality that is supported by the operation systems. The com-
putations that have to be made between two pulses are limitedto matrix multiplications, which
are easy to realize. With the additional exception routinesit has to be tested if the computations
can be performed fast enough to allow a pulse-to-pulse adaptation or if it is necessary to reduce
the update rate.

5.4 Summary

In this chapter an iterative learning controller approach to optimize the feedforward input to the
system was introduced. The variety of disturbances was outlined which are not compensated by
the feedback controller. It could be seen that the limited closed-loop bandwidth of the system
does not allow to compensate high-frequency effects like beam-loading from the electron beam.
The repetitive appearance of this disturbance source can besuppressed by changing the feedfor-
ward control signals. Following a short overview of possible iterative learning techniques, the
F-NOILC algorithm used for this application has been introduced. Limitations of the system to
be controlled demand a modified version of this algorithm, taking into account the intra-pulse
feedbacks that have been realized with the previously introduced MIMO feedback controller.
Measurements are presented that were made in open-loop and in closed-loop operation using
the proportional feedback controller. Compensation of beam-loading effects significantly im-
prove the RF field flatness. This has been shown by measuring the beam energy spread over a
bunch train, which has been decreased by a factor of 10. To achieve remarkable results only 10
iteration steps are needed. As the major point in this thesisthe combined controller concept of
ILC and MIMO feedback was tested in real application. It can be seen that improvements to the
current controller implementation are significant. The requirements for the residual control er-
ror can be achieved using this combined controller implementation for pulse-to-pulse as well as
for the flat top field error. This marks a major improvement to the presently used controller algo-
rithm. Studies have been made on the long-term stability, showing that after a large number of
iteration steps oscillations tend to build up, which can be traced back to general system charac-
teristics. Finally, some considerations have been made concerning the permanent usage of this
controller concept for the real plant to be controlled. Currently, there are other iterative learning
controller concepts under investigation, which will be tested and compared with the presented
results [29]. With the enhanced system model, it is assumed to optimize the learning algorithm
in order to minimize residual control errors. Further, incorporating beam measurements will
improve the achievable beam regulation performance by gaining additional information about
the real control value. The number of sensors in the system would be increased but the control
signals remain as the real and imaginary part of the field vector.
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Chapter 6

Conclusion and Outlook

In this thesis, a procedure was introduced for the design of amodel-based controller for pulsed
radio frequency fields in superconducting accelerating modules, where high performance is an
essential requirement for free electron lasers and relatedaccelerator system. A suitable black-
box system model of the plant dynamics has been identified using subspace identification meth-
ods that generate an LTI state-space model from system response data only. Special excitation
methods were used to characterize higher-frequency resonance peaks that come from physical
properties of the system. The validated models are then usedfor designing the controllers re-
quired to stabilize the system against disturbances that are an inherent characteristic of system
operation.
A combined controller concept has been developed that takesinto account both disturbance
characteristics and system limitations, with a significantimprovement in field regulation from
that of the original controller. There are two components tothe combined controller: a MIMO
feedback controller that suppresses non-repetitive and low-frequency field errors; and an itera-
tive learning controller applied feedforward drive that pre-compensates predictable and repet-
itive disturbances, most notably caused by beam-loading. The very narrow bandwidth of the
system permits the MIMO controller to suppress high-frequency disturbances occurring within
the pulse with reasonable control effort.
This concept of splitting the compensation across controller types is essential for meeting re-
quirements, and the resulting performance is significantlybetter than previously achieved with
a single controller. A mixed sensitivity approach with the fixed-order controller design method
HIFOO can be used to determine the feedback controller parameters. It has been shown that the
feedforward controller is able to minimize repetitive fielderrors with minor adaptation steps,
and it is particularly effective for compensation of beam-loading effects.
The outcome of this work is a model-based controller approach to RF field control that meets
the required level of performance.

6.1 Achieved goals

Objectives of this work were outlined in the introduction. In subsequent chapters, additional
perspectives were covered that addressed the machine operators. Listed below are the main
achievements and experiences with respect to the itemization given in chapter 1.
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1. It was shown that a model of the plant was identified by applying standard subspace iden-
tification methods for LTI systems. The input/output data generation and preprocessing
steps were classified and tested in dedicated routines. Advanced detrending routines for
pre-processing the measurement data turned out to have large influences on the model.
It was shown that essential system dynamics can be modeled using a simple 3rd order
model. It was subsequently shown that the model quality could be improved by taking
into account resonance peaks that were most likely caused byaliased from higher fre-
quencies. Recent modeling results give hints how to improvethis procedure in order to
further improve the model-based designs.

2. Feedback controller parameters have been estimated using a semi automated procedure
and the resulting controller designs have improved the fieldregulation relative to the
original decentralized feedback controller. The mixed-sensitivity design allowed control
parameters to be determined that improve the pulse-to-pulse field regulation by about a
factor five. This model-based approach has been further tested on a new module that has
been installed in the facility.

3. Iterative learning controllers were shown to successfully suppress repetitive disturbances
to a remarkable level in amplitude and phase. Requirements on the flat top have been
achieved both with and without presence of the electron beam, which provides the most
significant source of disturbance. Furthermore the iterative learning controller has been
tested on an additional application with comparable successful results.

4. Finally it has been shown that it is possible to realize thecombination of both controllers
on the plant, and that the combination meets requirements for field stability pulse-to-pulse
and intra-pulse. The different time scale makes it possiblefor the two controllers to be
active without influencing each other. It is expected that the performance will be further
improved once the newest system models have been estimated.

While the performance requirements have been achieved and fundamental questions answered,
experience from this work has raised additional questions that should be the subject of future
studies, allowing this work to be built on for future application and tests. Additionally, the
machine operators perspective is essential. Finally, all components of this work should be
realized for the permanent machine operation that is so important for the goals of this work.
These components are as follows.

1. All data transfer, evaluation and processing tasks are done with Matlab, while the feed-
back controller is implemented in the FPGA in order to achieve the real-time performance
necessary for intra-pulse field control. It is intended to convert the Matlab routines as far
as possible to programming languages used for the current operation system allowing a
structured implementation. For the ILC it is intended to have a real time pulse-to-pulse
adaption which demands a platform transfer for the data processing. The whole approach
must be embedded in the present system used for operation.

2. Throughout the tests, no significant negative impacts on the reliability of the machine
were observed. The setup of the controller parameters as well as the identification method
requires additional machine time, which limits how often the updates can be done. Oper-
ability must be tested once there is a permanent implementation.
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3. The use of an automatic routine for estimating the system model and designing the con-
troller parameters reduces the required machine time to only a few pulses for exciting the
system and measuring its response. Most calculations can beperformed offline and there-
fore do not impact machine operation. The higher complexityof the feedback controller
is justified by the achievable performance improvements. Controller parameters must be
established before operation and only updated if found to benecessary.

4. It has been shown that the achieved improvements in the field regulation also have a
positive effect on the beam energy spread and profile. It was also shown that RF field
regulation alone is not sufficient to perfectly control the electron beam and consequently,
further improvements should be achieved by including the available beam information,
e.g. by optimized desired beam trajectories. Some details can be found in Sec.6.3.

In summary it has been shown that many issues associated withmachine operations can be
addressed. The proposed approach will, however, need to be in routine operation over some
period of time in order to confirm reliability. In addition tothe results presented here, tests
have been performed on other accelerator systems using the model based approach and MIMO
feedback and iterative learning controllers, hence demonstrating that the model based controller
design methods can be used, provided the model describes thesystem sufficiently. For example,
the MIMO feedback controller delivered very precise field control on the 3rd harmonic system,
although these results need to be proven with the electron beam after the system is installed
in the accelerator. Expertise gained from the modeling procedure shows the approach offers
the highest possibilities for improvements that will stillfurther enhance the quality of RF field
control. All considerations made so far can be applied trough an implementation framework
which is briefly outlined in the following.

6.2 Future applications

The measurements presented in the thesis are only an extractof all the results obtained. It
has been always the goal to to implement this system for routine operation which demands
many other complex considerations to be taking into account. In order to achieve the reliability
and operability required by machine operations, the degreeof automation and the use of fixed
routines becomes a crucial factor, especially because of the greater complexity and from an
increasing number of subsystems.
An example application to be automated is the system identification procedure that validates
and if necessary updates the system model, which occasionally varies due to changes in the
operation point, such as for significant gradient changes where the detuning effects vary. In
Fig. 6.1 is sketched how a permanent validation of the model from measurement data could
detect changes in the system behavior.
Should the system response vary from the simulated response, a possible malfunction in the
plant can be detected. Otherwise, if the system behaves as expected, the model has to be up-
dated. This proposal is just one example of possible routines, that might use the model-based
approach.
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Figure 6.1: Idea of a frequently updated system model depending on current system status and
operation point changes

Algorithms such as the ILC tested in this work might be substituted by different approached
which are currently under development. For this purpose it is necessary to keep the framework
of the implementation modular. The control of 32 cavities will lead to further considerations
which might contain nonlinear modeling approaches. Changes in the controller structure might
be explored, for example to use observer-based feedback.
At this point, the combined controller concept still needs to be implemented. Considerations of
how the combined controller could be fully integrated in FLASH operations are outlined in the
following.

Planned system integration

Ideas for the possible implementation have already been introduced in the individual chapters.
Beside integration to permanent operation, additional routines must be developed to deal with
unexpected events. The tools used for the measurements are based on an Matlab environment,
and these have to be converted to the operation system.
The implementation of the MIMO feedback controller is less of a concern because the FPGA
realization already exist. Communication from the operating system to the parameter registers
can be tested offline ahead of time. In case of problems, the proportional controller used so
far can easily be realized by special setting of the controller parameters. On the other hand,
implementation of the ILC is more complex for two major reasons. First of all the algorithm
convergence is important. Once the algorithm has been enabled it should ideally converge fast,
and once the control error is small enough, the adaptation should be halted so meaning the feed-
forward signal remains unchanged. It has been shown that stability problems can occur after
many iterations. Triggering the algorithm based on the magnitude of the control error might
be a sufficient practical solution. Furthermore, the machine protection system introduces com-
plications not mentioned so far. It has been shown that especially the operation of long bunch
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trains demands a very effective exception handling, for example, the ILC should ideally react
synchronously with fast beam cuts and if necessary scale back the correction terms to the feed-
forward, or simply not apply them. Unfortunately this synchronization cannot be guaranteed
due to the spontaneous appearance of bunch train cuts. Furthermore the computed correction
term is ideally stored to have a fast adaptation when the train is recurring, preventing the re-
currence of this cutting effect. A proposal for the beam-loading compensation in two stages,
namely coarse and fine is illustrated along with additional proposals in Fig. 6.2.
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Figure 6.2: Implementation proposal for the RF table generation and control signal computation
from sources of driving signal components

The control signals applied to the plant are combined as sketched in Fig. 6.2 are described in
the following.

1. Using the MIMO feedback controller for intra-pulse RF feedbacks. Together with a
smooth ramping of the proportional gain factor during the filling time, preventing un-
necessary large control signals which are occasionally harmful to RF hardware. The
controller parameters are estimated previously and updated if necessary.

2. Nominal feedforward tables, used as open-loop control signals will be applied. The transi-
tion from filling to flat top phase and the first sampling instants for the filling are smoothed
compared the previous tables.

3. For coarse beam-loading compensation, the user settingsand current system status are
used to generate a simple feedforward correction table, that compensate main contribu-
tions from the electron beam induced field deviation. Directconnection to the machine
protection system allows application of the compensation synchronized to the current
beam settings (fast exception handling).

4. The iterative learning controller is the used for fine adaptation of repetitive control er-
rors such as LFD and the residual beam disturbances, from thethe coarse beam-loading
compensation.
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5. Limitations and threshold values to prevent unusual settings in the tables before applying
control signals to the system. Mainly as additional exception to protect against unforseen
events.

Coarse compensation of beam-loading effects can be realized using a rectangular feedforward
addition whose shape is depending on beam parameters such ascharge and number of bunches.
This adaptation must be synchronized to the system responsible for the beam generation. The
advantage is that main field deviations generated by the electron beam are synchronously com-
pensated to the beam arrival. If a bunch train is shortened, for example by the machine protec-
tion system, then the coarse compensation is synchronouslytruncated. This prevents exceeding
of physical limitations of the cavity, due to bounded maximum gradients. The residual control
error from the coarse adaption is compensated by the iterative learning controller, which per-
forms fine compensation of beam-loading effects in order to the relative small energy variations
over a bunch train. Additionally, it has turned out that the steep transition from filling to the flat
top phase lead to large control errors. A smooth transition is needed to reduce the overshoots
introduced by the feedback controller at the beginning of the flat top phase. Further improve-
ment is expected by introducing a time-depending proportional gain for the feedback controller,
especially at the begin of the filling phase, where the control error is large but is not necessary to
be compensated. This can be realized by ramping the feedbackgain as it is sketched in Fig. 6.2.
It is also necessary to apply limitations to the controller output, in order to protect the system
of controller malfunctions. As an enhancement to this proposal it is intended to integrate beam
based information in the RF field control. Some consideration are given in the following.

6.3 Beam based feedbacks

It is planned to integrate beam based information into the field regulation process, and the
required sensors are being developed and tested at the plant. Simply adding an additional feed-
back loop is not feasible without previously studying the influence of cascaded feedback loops
that are connected to same actuators, especially since the number of sensor will increase, but
the number of actuators remain unchanged.
An additional issue is the different vector components to beconsidered. Whereas the RF field
is controlled in the IQ space, the beam information is provided in terms of amplitude and phase.
Both descriptions can be transformed among each other, although this would demand additional
processing steps. For first tests of the beam based feedback approach, where the feedback signal
from the beam diagnostics was applied to the amplitude in theRF feedback loop, while the
phase was controlled by the RF itself. This demanded a special implementation of the controller
structure that is not discussed here. For the MIMO feedback loop however both controller
channels are coupled by the cross terms in the controller, and this cannot be implemented in a
simple division.
Furthermore it is not feasible to control RF fields from beam information only. For example after
startup of the system the RF fields must be stabilized first before the beam can be turned on.
The solution might be found in the combination of both feedback loops in one controller. The
results and experience gained with the MIMO feedback controller established a good basis. It is
conceivable to extend the multivariable-input, output controller to a 4×2 system by including
the beam information as two additional inputs. This would require enhancements of both the
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model and the feedback controller itself. The mixed sensitivity design would be a possible
method to estimate the necessary controller parameters as it has been shown in this thesis.
Certainly the weighting filters would have to be extended anda good tradeoff between beam
and field contribution to the control signals would have to befound. An issue not detached
from this idea is the small bandwidth of the cavity, which caneasily be observed by the slow
transient effect in the beginning of a bunch train. However pulse-to-pulse fluctuations visible
on the beam would lead to an improvement for the regulation.
An additional possibility is to measure repetitive imperfections in the energy profile for a bunch
train. It has already been shown that an ideally flat measuredvector sum does not necessary
lead to a correspondingly flat energy profile along the bunch train. Measuring deviations in
the energy profile can be used to optimize the setpoint table for the RF field regulation. The
feedback controller and the ILC take care of minimizing the control error with respect to the
optimized setpoint trajectory. Measurement errors can be minimized by having an additional
information about the assumed real vector sum measured by the electron beam. It has to be
shown in measurements how this approach could improve the actual field regulation.
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Appendix A

Additional results

A.1 Measurements from PSI

Beside the studies that have been done on the FLASH facility,the Paul Scherer Institut (PSI)
offered the possibility to test the model based iterative learning control algorithm on an electron
gun control system. These measurements have not been presented before, due to the different
system characteristics. The system assembly is comparableto the control system presented for
FLASH. A normal conducting cavity has a much lower quality factor which leads to a significant
higher bandwidth in the system. Nevertheless the model based ILC approach presented should
be able to control this system as it was claimed in this thesis. The application is of further
interest, due to the normal conducting electron gun which isinstalled at DESY too.
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Figure A.1: Measured System response to usual input signals

The system is intended to be operated in open-loop and pulsedmode. This requires to find opti-
mal open-loop control signals, achieving the intended constant output trajectory. By applying a
rectangular pulse as starting trajectory, the following system response can be observed as shown
in Fig. A.1. This repetitive oscillation visible as the klystron output is applied to the modulator
which generates the necessary high voltage drive for the klystron. The control objective is to
adapt the modulator driving signalsuI anduQ such that the klystron outputyI andyQ are flat
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during the pulse. A reference trajectory does not exist and has to be defined as constant during
the flat top computed from the mean values ofyI andyQ. The application of an iterative leaning
controller is feasible to suppress this strongly repetitive field imbalances. The determination of
the controller is done analog to the procedure discussed in this thesis. Therefore an open-loop
model of the system has to be estimated from response data generated by excitation of the sys-
tem. An example for the system response is shown in Fig. A.2, which gives a comparison of
the system outputsyI andyQ with and without excitation signals.
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Figure A.2: Comparison of the system response with and without excitation signal.

The measurement points are given as the blue dots and the meanvalue as the red line. Excitation
signals are applied within the shadowed area. It can be seen that the operation point is strong
disturbed, which makes it necessary to remove this trends bysubtracting the unexcited response
from the data, as it has been shown in Sec. 3.2.2. After this subtraction the system response to
the excitation signal can be seen in Fig. A.3.
The system response delay has been marked and is removed by shifting the data sets before
identification. For the later adaptation done by the ILC thisdelay has to be taken into account,
in order to apply the correction signals shifted to the measured error. Having the model, update
matrices of the ILC algorithm can be computed and the controller is applied to the system input.
In Fig. A.4 and Fig. A.5 the adapted system input and the corresponding responses are shown. It
can be seen that within 10 iteration steps the input signal has almost converged and the measured
system output is liberated from the repetitive disturbanceeffects. Although fluctuations from
pulse-to-pulse still remain, they can not be compensated due to the absence of an intra-pulse
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Figure A.3: Response to excitation signal after removing the unexcited system response from
the measurement data

feedback controller. Finally in Fig. A.6, the amplitude andphase stability are given as function
of the iteration steps. It is easy to observe that the convergence speed is fast and the adaptation
remains stable for several iteration steps. Compared to therelative amplitude error∆A/A and
the phase error∆P the improvement very significant.
These measurements show, that the model based approach of the ILC is able to compensate for
repetitive disturbances also on different accelerator subsystems.
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Figure A.5: System output for different iteration steps
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A.2 RF feedback controller

In the following an example of the parameter settings in the MIMO feedback controller should
be briefly shown. This is done by a Bode plot of the feedback controller parameters used in
the measurements done for the 3.9 GHz system. It can be seen that the controller is diago-
nal dominant for the low-frequency rangef < 1kHz. For comparison the dc gains are given.
Remembering the pulse duration ist < 1300µs, the frequency range of interest is given by
≈ 1 kHz. In the high-frequency range some singularities occurwhich is due to the sampling
process and therefore can be neglected here.
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Figure A.7: Bode diagrams for the MIMO controller transfer function of the matrix elements.
The frequencies given in the plots are the crossover frequencies of the the controller elements.
Furthermore the dc gains of the controller parameters are shown
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A.3 Additional plots for ILC
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Figure A.8: Energy deviation over a bunch train measured by photomultipliers after adaptation
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Figure A.9: Measurement of the energy jitter within a bunch train for several pulses after adap-
tation with the ILC
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Figure A.10: Snapshot of the control system panels with ILC improvements

Figure A.11: Snapshot of the SASE energy monitor after removing beam induced transients in
ACC1
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