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System Overview and the Problem

cp

« SLC Damping Ring
« 1.19GeV
« Up to 5el0 e-/bunch
« Two bunch operation

« One 60kW klystron driving two RF accelerating cavities of two cells each for a
total of 1MV

* Instability threshold

* In order to prevent turbulent bunch lengthening, voltage is ramped down mid-
store to keep bunch length long until extraction when voltage is ramped back
to nominal

* The Problem

« At low cavity voltage, beam loading instability occurs because cavities tuned
for optimum loading angle of O when at max voltage

« Cavity tuning angle fixed during store due to mechanical tuners not fast
enough to compensate



Inside the ring

Klystron in ring to
right

Temperature
stabilized to 105F
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System Representation

Model the system as a
resonant cavity driven by
two current sources: the
klystron and the beam.

_T=current in cavity V_ref
_B=beam current

_G=generator current
(klystron)

V_c=voltage of cavity
G=RF feedback
V_ref=Klystron Drive Signal



Phasor Representation of Currents

| O=Real part of total current in
cavity

® B=Beam phase—determined
by synchronous phase of
particle

®_Z=Impedance angle—
determined by cavity tuning wrt
Klystron

®_L=Loading angle—
determined by angle between
Klystron current and cavity
voltage
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Modeled Behavior
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Gain and stability limits

Stability criteria: 2C0S Py <sin2¢, <0

Shaded region in plot at positive phase is anti-
damping of synchrotron oscillations. Curved region on
left is exponential growth. Vertical axis is Y=I_B/I_O.
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At cavity frequency, Z=R_SH and G=G_0/R_SH, so -
effective impedance is reduced as 1/(1+G_0). Real \
part of cavity current increase by (1+G_0) and raises stabe operating point

the shaded region on left by this amount. —

Nyquist plot on right shows stability limit with (dashed I
line) and without feedback. St
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Phase shifts cause rotation and gain increase push
curve to left. Allowing for phase margin limits effective
Impedance reduction
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Direct Loop RF Feedback Implementation
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« Klystron and cavities are in tunnel, so signal path lengths are
short

« Two-cell cavities have a non-accelerating O-mode which is
close to the accelerating pi-mode

* Probe signals from the cells combined with phase shifters
and attenuators to suppress 0-mode

« Cavity signals are then combined with phase shift and
attenuation

« Common phase and attenuation to tune feedback parameters
remotely



Implementation
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Measured Response
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Observations

* Direct Loop behaves as predicted from model

* Suppresses beam loading instabllity
« Straight forward implementation
* Relatively simple design

 Robust
* Allows for physics parameters to be pushed



