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Introductory comments

o Superconducting accelerator magnets are characterized by high fields and high
current densities.

o As aresults, the coil is subjected to strong electro-magnetic forces, which tend
to move the conductor and deform the winding.

o The resulting deformations can affect field quality and/or serve as energy
sources in the “disturbance spectrum”

o A good knowledge of the magnitude and direction of the electro-magnetic
forces, as well as of the stress of the coil, is mandatory for the mechanical
design of a superconducting magnet.

o In this unit we will describe the effect of these forces on the coil through
simplified approximation of practical winding, and we will introduced the
concept of pre-stress, as a way to mitigate their impact on magnet performance.
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o In the presence of a magnetic field B, an electric charged
particle g in motion with a velocity v is acted on by a force F;
called electro-magnetic (Lorentz) force [N]:

—_

F, =qVxB

o A conductor element carrying current density | (A/mm?) is
subjected to a force density f; [N/m?]

7 —JxB

o The e.m. force acting on a coil is a body force, i.e. a force that
acts on all the portions of the coil (like the gravitational force).
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| |1 All magnets in colliders to-date are based on the
| cos(0) concept
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Tevatron,
6 m, 76 mm
774 dipoles




For high-tield dipoles a number of concepts -, :
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o The e.m. forces in a dipole magnet tend to push the coil
o Towards the mid plane in the vertical-azimuthal direction (F,, Fy < 0)
o Outwards in the radial-horizontal direction (F,, F, > 0)

Tevatron dipole
y
z
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o The e.m. forces in a quadrupole magnet tend to push the coil
o Towards the mid plane in the vertical-azimuthal direction (F,, Fy <0)
o Outwards in the radial-horizontal direction (F,, F, > 0)
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[ets start with solenoids

o The e.m. forces in a solenoid tend to
push the coil
o Outwards in the radial-direction (F,> 0)

o Towards the mid plane in the vertical
direction (F, <0)

o Important difference between solenoids
and dipole/quadrupole magnets

o In a dipole/quadrupole magnet the horizontal
component pushes outwardly the coil

o The force must be transferred to a support
structure

o In asolenoid the radial force produces a
circumferential hoop stress in the winding

o The conductor, in principle, could support the
forces with a reacting tension
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The magnetic force in solenoids can often be

viewed as a pressure

o The magnetic field is acting on the coil as a pressurized gas on its
container.

o Let’s consider the ideal case of a infinitely long “thin-walled” solenoid,
with thickness d, radius a, and current density J, .

o The field outside the solenoid is zero. The field inside the solenoid B, is
uniform, directed along the solenoid axis and given by

By = pgJgd

o The field inside the winding decreases linearly from B, at a to zero at a + 9.
The average field on the conductor element is B /2, and the resulting
Lorentz force is radial and given by

JoB,
fr="2
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We can therefore define a magnetic pressure p,, acting on the
winding surface:

fL5 = Pm
where
Pm = f(‘]?
Ho

So, with a 10 T magnet, the windings undergo a pressure p,, =
(10%)/(2-4 © x 107) = 4 x 107 Pa = 390 atm.

The force pressure increase with the square of the field

Note that this model is built on some assumptions - not valid
for thick and short coils
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o In the coil ends the Lorentz forces tend to push the coil
o Outwards in the longitudinal direction (F, > 0)

o Similarly as for the solenoid, the axial force produces an axial
tension in the coil straight section.
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Lets consider various configurations

N
O
(

o In order to estimate the force, let’s
consider three different approximations
for a n-order magnet

o Thin shell (see Appendix I)
o Current density | = ], cos(n8) (A per unit
circumference) on a infinitely thin shell
¢ Orders of magnitude and proportionalities

o Thick shell (see Appendix II)

o Current density | =], cosn® (A per unit area)
on a shell with a finite thickness
e First order estimate of forces and stress

o Sector (see Appendix III)

o Current density | = const (A per unit area) on
a a sector with a maximum angle 6 = 60°/30°
for a dipole/quadrupole

e First order estimate of forces and stress
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o Ina dipole, the field inside the coil is

J
By=—MO 0
2

o The total force acting on the coil [N/m] is

2 2
Foobr 4, Foo_tr 4,
T 2u 3 ’ 2o 3

o The Lorentz force on a dipole coil varies
o with the square of the bore field
o linearly with the magnetic pressure
o linearly with the bore radius.

o In arigid structure, the force determines an azimuthal displacement
of the coil and creates a separation at the pole.

o The structure sees F..
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In a quadrupole, the gradient [T/m] inside the coil is

B J
G= C=_M00
a 2a

The total force acting on the coil [N/m)] is

B 4G

Fx
2ug 15 2n, 15
B2 42+8 G* ,a2+8
F,=- a = - a
Yo 2u, 15 2u, 15

The Lorentz force on a quadrupole coil varies
o with the square of the gradient or coil peak field
o with the cube of the aperture radius (for a fixed gradient).
Keeping the peak field constant, the force is proportional to the
aperture.
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For thick coils the solutions become more

complex, but can still be solved

o We assume
o J=],cosn® where J,[A/m?]is L to the cross-section plane
o Inner (outer) radius of the coils = al (a2)

o Noiron
o The field inside the aperture is o
B, -- oo rn—l(a%_” _alz—" S By, = _Mr"'l(u cos 19
2 2-n ' 2 2-n

o The field in the coil is

2- 2- 2-n 2-n
. a’ n_g2-n 1 r2+n _a12+n | a - 1 r2+n _a12+n
r + r -
2-n 2+n plrn 2-n 2+n plin

o The Lorentz force acting on the coil [N/m?] is

_ koJg
2

cos n

g - _MJo

, 5 sinnd By =

2 [ 2-n _ _2-n 2+n 241\ |
MOJO n-1 a2 r 1 r _al

fr=-ByJ = ) r 7 “am o cos? nd fy =f,cosO — f, sin0
- r
J2 [ a2‘” —7"2_n 1 2+n _ _2+n | _ .
Jo =Br‘]=_MO N P + r %1 sin 70 cos nY fy =frsinB + fo cosb
2 2-n 2+n pltn
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o Wae assume

o J=],is L the cross-section plane
o Inner (outer) radius of the coils = al (a2)

o Angle ¢ =
o No iron

60° (third harmonic term is null)

o The field inside the aperture

B, =_2M0Jo
TT

2uyJ

By = - H0f0
T

' U 2 11 . '
(a2 -a, )smq) sino + Z (2n +:X2n - 1) = - W= sm(2n + l)b sm(2n + 1})
n=
' . S 2 1 1) '
(a, —a; Jsing cosB + 2 o +:XZn ) = - o sin(2n +1) cos(2n+1p
n=

o The field in the coil is

)
T

5, = 2odo
bl 8

3 (a2 —r)sin¢ sin0 + 2
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o The total energy [J] is given by

2

b
E = —dV
all _space 2“0
o Or, considering only the coil volume, by This is used

extensively in
E = f A - jdV  «—"" numerical codes

o Knowing the inductance L, it can also be expresses as

E=1L12
2

o The total energy stored is strongly related to mechanical and
protection issues (see later lectures)
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We can use the stored energy expression to

derive the end forces

o In general the force acting on a system with potential energy
U is =
F=VU
o The magnetic stored energy can therefore be used to evaluate

the Lorentz forces

dE o ( LI
z=lm

”_ar r 00 09z o9z| 2

o This means that, considering a “long” magnet, one can
compute the end force F, [N] from the stored energy per unit

length W [J/m]:

1 04,

Br(r,9)=— P

W=lf_ A, - jdA raA
2 coil _area Be (I",@)= a Z

ar
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Application to the thin shell

o For a dipole, the vector potential within the thin shell is

A4 = +M°TJ°a cosV

and, therefore,
B2

F, =—22na’
2u,

o The axial force on a dipole coil varies
o with the square of the bore field
o linearly with the magnetic pressure
o with the square of the bore radius.

o For a quadrupole, the vector potential within the thin shell is

A =+ MO—J"gcos 20
and, therefore, 2 2

B? G*a’®
= ¢ g’ = na’

F =
2u, 2u,

V4

o Being the peak field the same, a quadrupole has half the F, of a dipole.
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o A stress ¢ or t [Pa] is an internal distribution of force [N] per
unit area [m?]

o When the forces are perpendicular to the plane the stress is called
normal stress (o) ; when the forces are parallel to the plane the stress is
called shear stress (1).

o Stresses can be seen as way of a body to resist the action (compression,

tension, sliding) of an external force.

y, %

L‘z:vx

o A strain ¢ (dl/]) is a forced change dimension 6/ of a body
whose initial dimension is [,.

o A stretch or a shortening are respectively a tensile or compressive
strain; an angular distortion is a shear strain.
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Definitions...

o The elastic modulus (or Young modulus, or modulus of elasticity)
E [Pa] is a parameter that defines the stiffness of a given
material. It can be expressed as the rate of change in stress with
respect to strain (Hook’s law):

e=0oc /E

o The Poisson’s ratio v is the ratio between “axial” to “transverse”
strain. When a body is compressed in one direction, it tends to
elongate in the other direction. Vice versa, when a body is
elongated in one direction, it tends to get thinner in the other
direction.

V= _Saxia/ S trans
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By combining the previous definitions, for a biaxial stress
state we get

o O o
E E Y E E
and
E E
O. = +VE o, = +VE
X l_vzex y) y 1—\’2@); X)

Compressive stress is negative, tensile stress is positive.
The Poisson’s ration couples the two directions
o A stress/strain in x also has an effect in y.

For a given stress, the higher the elastic modulus, the smaller
the strain and displacement.

USPAS June 2018, Michigan State University Superconducting accelerator magnets 25



Basic characteristics of common structural

materials

o The proportionality between stress and strain is more
complicated than the Hook’s law s
o A:limit of proportionality (Hook’s law)
o B:yield point

o

o Permanent deformation of 0.2 %

PN

o C:ultimate strength
o D: fracture point

0
o Several failure criteria are defined to estimate the

failure/yield of structural components, as

o Equivalent (Von Mises) stress ¢,< & where

yield s

Ov=J(ol—oz)%(oz_%)u(os_ol)z

2
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Some basic comments on accelerator magnet

mechanics

o The e.m forces push the conductor towards mid-planes and
supporting structure.

o The resulting strain is an indication of
o a change in coil shape
o effect on field quality
o a displacement of the conductor
o potential release of frictional energy and consequent quench of the magnet
o The resulting stress must be carefully monitored

o In NbTimagnets, possible damage of kapton insulation at about 150-
200 MPa.

o In Nb;S5n magnets, possible conductor degradation at about 150-200
MPa.

o In general, al the components of the support structure must not exceed
the stress limits.

o Mechanical design has to address all these issues.
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Basic mechanical deformations seen in
accelerator magnets

Displacement scaling = 50

o Usually, in a dipole or quadrupole magnet, the highest
stresses are reached at the mid-plane, where all the azimuthal
e.m. forces accumulate (over a small area).
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We can calculate the midplane stress on thick

cos(B) coils under hypothesis of no shear

o For a dipole, i w2 r r-a’ .
O6 _mid-plane = .{f(,rde = —Tzl(az -r)- ?]
2
00 mid —-plane _av = _M iag + l lnﬂ-l- % af - laZalz L
- - 2 |36 6{ a, 3 4 a, —a,
o For a quadrupole, » i .
WoJg 7 Q4 _r —4
Og = rdg =- % —lrln-2-——F1
0 _mid- plane {fé 2 4 ( r 4r3 )

AR 7a;+9af+L(lnal 4)3 1

0] , =
0 d - pl
—mid—plane_av 2 144 q, 12 a,-a,

PLOT NO. 1

=150 ;7T:§3E.émlszIa\1
—_ 157.08, 155 ThE-L

e
E’ ~ 165 i
g MY
R =170 S
=N [ |
5 O omiad® 175 =
g - 180 ) |
g =]
o - 185 2 =
w ]
ol
P =190
A -

- 192,158, 195
=200
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a, r 2,
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A first perspective on pre-stress — motivation

for tield quality

A.V. Tollestrup, [3]
We are now in a position to discuss a difficult problem in magnet
construction. If the azimuthal forces of the last section were allowed to act
on a coil supported only in the radial direction, the coil would compress
itself as it was excited and the angles of the shell would change. If these
change symmetrically, a sextupole moment is induced and, if asymmetri-
cally, quadrupole terms appear as well. The field is enormously sensitive to
these angles—they must be maintained to an accuracy of ~25 urad for
adequate field quality. The forces are so large that, with the elastic modulus

3 available in the insulated coil packages (E == 10° psi), the compression of
g the coil would far exceed this limit. As a result, when the coil is constructed,
<l it is preloaded in the azimuthal direction to the extent that the elastic forces
o—; : are greater than the magnetic forces. This ensures that the boundaries of the
o coil package will stay in contact with the collars during excitation. The
2 Tevatron coils (18) were assembled in a large press, and the CBA magnets
= were bolted together with a similar pressurc. Elastic motion of the coil
e relative to its support can still take place but at a much reduced level. (It 1s
; | similar to fixing two ends of a loaded beam, compared to fixing only one
z end.) Elastic motion can also be reduced by making the elastic modulus
> high. The group at LBL has had successes in achieving E ~ 4 x 10° psi,
g which is perhaps four times larger than achieved in the Tevatron magnet ;

the CBA coils had 2 x 10° psi.
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7. Pre-str .
e-stress =

Tevatron main dipole

o Let’s consider the case of the Tevatron
main dipole (B,,,,= 4.4 T).

o In ainfinitely rigid structure without
pre-stress the pole would move of

about -100 um, with a stress on the
mid-plane of -45 MPa.
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7. Pre-stress

Tevatron main dipole

o We can plot the displacement and
the stress along a path moving from
the mid-plane to the pole.

o In the case of no pre-stress, the
displacement of the pole during
excitation is about -100 um.

0 0.00
; /.

10 / -0.02 \
0.04

- / ’E‘
g 15 =
= yd 5 -0
2 -20 5 \
o / &
2 -25 - -0.06
5 pd 2
£ -30 ° \
5 ©
E s yd £ 008
N ~ >
< / g

-40 N

< 010 157
-45 —0T |
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'50 T T T T T '012 T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Path from mid-plane to pole (mm) Path from mid-plane to pole (mm)
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7. Pre-stress

Tevatron main dipole

o We now apply to the coil a pre-stress of
about -33 MPa, so that no separation
occurs at the pole region.

o The displacement at the pole during
excitation is now negligible, and, within
the coil, the conductors move at most of
-20 um.

. AR
. / NN
~ OO\

A O N
0.10 \\

Azimuthal stress (MPa)
Azimuthal displacement (mm)

-50 -0.10 4-
—0T —0T N
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Path from mid-plane to pole (mm) Path from mid-plane to pole (mm)
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The correlation between coil separation and training

~

as a second motivation for prestress: cexe
Experience in Tevatron

Ly o Above movements of 0.1 mm, there is a
y .

. \ correlation between performance and
£|9 \/ 22 SERIES )
> = / o moners o | INOvement: the larger the movement, the
¥ ik longer the training
71" 7 A e

/ \ elastic. It shows very Liit::le hysteresis. However,

the azimuthal motion has given more trouble. Early in
the program, magnets were built such that the _elastic™
forces wlr}_en cold were less than the magnetlc forces,
and the conductor at the key moved. - Fig. 11 shows data
from 81 magnets whose traJ_nJ.ng “tock from one quench to

over 25. Some magnets in this series had preload small

15 ~rmtinds ~a Rhad FhAasea rrma mAadkd A AR LA vrdaaa Al LA AT

AVERAGE
FOTION

/0\

<
n
W,
|

e
e}

—_—— -

. o o Conclusion: one has to prestress to avoid
g 0.1 mm movements that can limit performance
- : I?
{f%{} H error bars are justaSquare root of the number of mag-
T — : " v S nets at each point. It is seen that this motion does

5 10 15 20 25 not couple into the tra:.nmg untll it is large enough
so that the conductor is campletely unclamped. Why it -
B e ANEDIMAGHE takes some magnets one quench and others 10 quenches

= SR to train when the conductor remains clamped is a mys-

tery.

3 QUENCHKES

A.V. Tollestrup, [10]
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Data from the Tevatron cexe

o We focus now on the stress and
displacement of the pole turn (high field
region) in different pre-stress conditions.

o The total displacement of the pole turn is
proportional to the pre-stress.

o A full pre-stress condition minimizes the

displacements. | A== = —
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Pre-stress on various collider magnet

configurations

o The practice of pre-stressing
the coil has been applied to all
the accelerator dipole magnets

o Tevatron [4]
o HERA [5]

o SSC [6]-[7]

o RHIC [8]

o LHC [9]

o The pre-stress is chosen in such
a way that the coil remains in

Coil azimuthal pole stress (MPa)

contact with the pole at e
nominal field, sometime with a e A 1 s
“mechanical margin” of more 80 R
IS € e IS IS e
than 20 MPa. § & & & &
; 3
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o As we pointed out, the pre-

stress reduces the coil motion
during excitation.

This ensure that the coil
boundaries will not change as
we ramp the field, and, as a
results, minor field quality
perturbations will occur.

What about the effect of pre-
stress on quench performance?

o In principle less motion means
less frictional energy dissipation
or resin fracture.

o Nevertheless the impact of pre-
stress on quench initiation
remains controversial

Coil azimuthal pole displacement (mm)
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Application of prestress to eliminate separation: oy

RHIC main dipole

Coil stress (MPa)

/é —O~ Inner pole

—<- Inner mid-plane

@ c c e e £ e e
S 3 2 S S S S S
Qa T T w - - L -
2 8 3 R R R X X
= 8 8 o (=) ) Q =)
s o 2 N < © @ o
2 5 £ -
m
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freeees |

Shell-based support structure often referred as “bladder
and keys” structure

o developed at LBNL for strain sensitive material

coil

pad
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Shell-based support structure
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Shell-based support structure 2y
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Shell-based support structure ~
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Shell-based support structure

B j
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Shell-based support structure
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Application of prestress to eliminate separation:

LARP TQ quadrupole

o With low pre-stress, unloading but still good quenct "

el
< [T NP 7 ¢ st
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. . %
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o Study of variation of pre-stress in several models - evidence
of unloading at 75% of nominal, but no quench

40

= \\\
30 ™ Outer Layer

= \ Slope: -0.136MPa/kA*2
o
= = ‘\ " After unloading |
? 20 ~ Slope: -0.\21\MPalkA“24|_
®
o 15 Inner Layer } \\
= Slope: - 0.321MPalkA*2 | N
8 10 \\ B

5 \\

0 Ty

) %%m N. Andreev, [11]

0 20 40 60 80 100 120 140 160 180
Current Squared (kA*2)

o “Itis worth pointing out that, in spite of the complete
unloading of the inner layer at low currents, both low pre-
stress magnets showed correct performance and quenched
only at much higher fields”
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Conclusions

o We presented the force profiles in superconducting magnets
o A solenoid case can be well represented as a pressure vessel

o In dipole and quadrupole magnets, the forces are directed towards the mid-
plane and outwardly.

o They tend to separate the coil from the pole and compress the mid-plane region
o Axially they tend to stretch the windings

o We provided a series of analytical formulas to determine in first
approximation forces and stresses.

o The importance of the coil pre-stress has been pointed out, as a
technique to minimize the conductor motion during excitation.
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Appendix I

Thin shell approximation
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Appendix I: thin shell approximation

Field and forces: general case

o We assume

o |=],cosn® where |,[A/m]is * to the cross-section plane
o Radius of the shell/coil = a
o No iron

o The field inside the aperture is

n-1 n-1

J J
B, =- R020 (7 sinnd By = - 2070 (T cosnd
2 \a) o 2 \a
o The average field in the coil is
J o o e
BI" _ - MO 0 Sln nﬂ BG = O s [1

o The Lorentz %orce acting on the coil [N/m?] is

f.==ByJ=0 Jo=B.J=- M"zj" sin nY cos no

f. =f,cosO — f, sinB fy =1, sinB + fy cos6
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Appendix I: thin shell approximation

Field and forces: dipole

o Ina dipole, the field inside the coil is

J
By=—MO 0
2

o The total force acting on the coil [N/m] is

2 2
F =B_yia F =_B_yia
T 2u 3 ’ 2o 3

o The Lorentz force on a dipole coil varies
o with the square of the bore field
o linearly with the magnetic pressure
o linearly with the bore radius.

o In arigid structure, the force determines an azimuthal displacement
of the coil and creates a separation at the pole.

o The structure sees F..
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Appendix I: thin shell approximation

Field and forces: quadrupole

o Ina quadrupole, the gradient [T/m] inside the coil is

B J
G= C=_M00
a 2a

o The total force acting on the coil [N/m] is

B 4G

Fx
2ug 15 2n, 15
B2 42+8 G* ,a2+8
F,=- a = - a
Yo 2u, 15 2u, 15

o The Lorentz force on a quadrupole coil varies
o with the square of the gradient or coil peak field
o with the cube of the aperture radius (for a fixed gradient).

o Keeping the peak field constant, the force is proportional to the
aperture.
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o For a dipole, the vector potential within the thin shell is

z

A =+ MOTJO acosv

and, therefore,

B2
Yy

2u,

F=

z

o The axial force on a dipole coil varies
o with the square of the bore field
o linearly with the magnetic pressure
o with the square of the bore radius.

o For a quadrupole, the vector potential within the thin shell is

_ Wy a
and, therefore, 4, =+ 0 cos28

B2 G2 2
2 — J_l:aZ

F =
2u
o Being the peak field the same, a quadrupofe has half the F, of a dipole.
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o If we assume a “roman arch” condition, where all the f, accumulates on
the mid-plane, we can compute a total force transmitted on the mid-plane
Fy [N/m]

o For a dipole,

3 B?
F, =j;2fead6 =—ﬁ2a
0

o For a quadrupole,
B’ G*

a =-—a’
2, 2u,

F, =f01ﬁ,ade =-

o Being the peak field the same, a quadrupole has half the F, of a dipole.
o Keeping the peak field constant, the force is proportional to the aperture.
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Appendix II

Thick shell approximation
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Appendix II: thick shell approximation

Field and forces: general case

o We assume
o J=],cosn® where J,[A/m?]is * to the cross-section plane
o Inner (outer) radius of the coils = al (a2)
o No iron

o The field inside the aperture is

- - 2-n 2-n
B'=_M0J0 rn—l(agn_af " sin 79 Bei=_mrn-1[u]cosnﬁ
" 2 2-n 2 2-n
o The field in the coil is
2-n 2-n 2+n 2+n 2-n
Wodo | 1| %2 7 1 (r77 - - WoJo | n-1| 42 7
B =Moo 9 By =-
r 2 | [ 2—n )+2+n e S 6 2 | 2—n

o The Lorentz force acting on the coil [N/m?] is

2 [ 2-n _ _2-n 2+n 241\ |
MOJO n-1 a2 r 1 r _al

fr=-ByJ = ) r 5 “ 7 o cos? nd fy =f,cosO — f, sin0
-n n v
[ 2-n 2-n 2+n 24n \ | .
Jo =BrJ=‘M020 ] 5 +2 r 1+a1 sin 70 cos nY fy =frsinB + fo cosb
-n +n o
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Appendix II: thick shell approximation

Field and forces: dipole

o In a dipole, the field inside
the coil is

B =_M02JO (az_al)

y

o The total force acting on the
coil [N/m] is

W/ 3

: 2

la;’ +l lna—2+E a’ —lazal2
54 9 3 2
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Appendix II: thick shell approximation

Field and forces: quadrupole

o In a quadrupole, the field
inside the coil is

B . 2—n_ 2-n
G=2ro W@ being L T4 %

r 2 a, 2-n a,

o The total force acting on the
coil [N/m] is

2 4 4
5o Mo V2 11a} - 274; +5ﬁ 4,4 i

T2 1540 a, 45| a, 15

_ w1 ﬁlﬁ+7):;+(81-27ﬁ)zf+1 Gﬁ_s)nﬂ+4\/§—22 3
45 a, 3

¢ 2 540 a, ‘
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Appendix II: thick shell approximation

Stored energy, end forces: dipole and quadrupole

o For a dipole,

3 3
A, =+M°—J°r[(a2 —r)—r 2a1
2 r

cosO
=

and, therefore,

2 4 4
F;=+MOJ0£a2—gal3a2+a—l
2 216 3 2

o For a quadrupole,

and, therefore,

F"Z=+MOJ02£
2 8

4
% (et al
8 a, 4
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Appendix II: thick shell approximation ~

A
freeeer ||||

Stress on the mid-plane: dipole and quadrupole

. /2 2 3 3
o For a dipole, " uoJe 7 r’-a
= =——0"0 _ - R No shear
0’G_mic;(—plane - ff‘ﬂrde - (aZ I")+ 3
0 v
J215 , 1(. a 2y, 1 L] 1
00 _mid-plane _av == M02 ° 36 a2 + g lna_1+ 5 al _ZaZal a a
2 2 "1
o For a quadrupole, b i .
n
WoJg 7 Q4 _r —4
o, = (forde =-2o (% T =
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al T az

. m)
;%}%Kglfg}{g Eﬁw&lﬁ@g%ré\{l%éﬁm Jear& %ry 23_2gi1perconductiﬂg Bleethontagmetigifetces and stresses in superconducting accelerator magnets 59



Appendix III

Sector approximation
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Appendix III: sector approximation

Field and forces: dipole

o We assume
o J=],is " the cross-section plane
o Inner (outer) radius of the coils = al (a2)
o Angle ¢ = 60° (third harmonic term is null)
o Noiron
o The field inside the aperture

20/
e

_ 2M0J0 [ _ r2" 1 1 .

By = - (@, - a; Jsing cos® + 2 @n+1)2n- 1)( = aﬁ"l ]sm(2n+l)b cos(2n+1)3]

o The field in the coil is

B, =-

( —al)smq)sme +2(2n+lx2n 1)[ : sm(2n+1)|)s1n(2n+1})
a

2u0J, | =
B, =—%4(a2 —r)sin¢sin9 +2
n=

- (“71]2’”1 ] o~ erZn - 1)sin(2n ~1)p sin(2n - 1)3}

2n+1

,
n (2n+1)2n-1

By =—M<(a2 -r)sind) cosf —E 1—(a—1)
n=1 r

)sin(Zn - 1)1) cos(2n - 1)] }
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Appendix III: sector approximation

Field and forces: dipole

o The Lorentz force acting on the coil [N/m?], considering the
basic term, is

L 33 .
|, =—BygJ = +Msin¢ (a2 —r)— T "4 1 cosh Sy =/f,cosO — fy sin6
g 32
2u,J¢ . r-a | .
fo =B,J = —msmq)[(a2 —r)+ 2 L |sin® Sy = f,sinb + fg cosH
U r

o The total force acting on the coil [N/m] is

2uJ2 -
F,. =+ oo \/5 2n \Eag+£ a—2a3+4n+\/§af’—£a2a12
n 2| 36 12 g 36 6
2u0J 8 1
F, = - 2olo 3 L S . B T
o 2 |12 4 a, 12
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Appendix III: sector approximation

Field and forces: quadrupole

o We assume '
J=], is " the cross-section plane

o Inner (outer) radius of the coils = al (a2)

o Angle ¢ = 30° (third harmonic term is null)
o No iron

o The field inside the aperture -
B, = 2110-]0 [r In —2 sin 2¢ sin 26 + 2 W ] Sin(4n - 2)1) Sin(4n + 2)3 }

[ 4n 4n
2u4J, a, . - r r r .
B, =- r1n—=sin 2¢ cos 20 + — - — sin{4n + 2 cosld4n + 2
° T a, 2% Z 2n(4n +2i a, a, ( )b ( )3
o The field in the coil is :

210y

a, . ) - r [ [ a
B, =-""9"0 J41n "2 5in 2¢ sin 20 + 1-| 2L
4 L r 20 Z2ni4n—2i r)

r o0 r 4'
2uyJ
By =—m<rlna—zsin2¢00526—Z; 1- a—l) sin(4n—2))cos(4n—2)3}
n

sin(4n - 2)]) sin(4n - 2)3 }

n r - 2n(4n—2) r
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Appendix III: sector approximation

Field and forces: quadrupole

o The Lorentz force acting on the coil [N/m?], considering the
basic term, is

> 4 4 .
f, ==-BgJ =+ i sinZ(I)[rlna2 _r4 3al ]00528 Sy =/f,cosO — fy sin6
T r v
w2 4 4
fo =B,,J=—Msin2(p[rlna2 r 4 ]sinZﬂ Sy = f,sinb + fg cosH
r 4r

o The total force acting on the coil [N/m] is

F =+2u0J§ ﬁ L12a§—36a14 N lna—1+l &
T 12|72 a, a,

F, =-

2u0J§f[5 243 1a;‘+2_J§ma1 3 1(\5
2

az+ 12a, 6  a,
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Appendix III: sector approximation
Stored energy, end forces: dipole and quadrupole

o For a quadrupole,

4 4
A = +M§sin2¢(rlna—2— i

; 27 )00526
T r r '

and, therefore, . %
_ 2u,/g 3|4 ( a, 1
B 8 ‘

F n—Lt-—|af
8 a, 4
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Appendix III: sector approximation :

A
freeeer ||||

Stress on the mid-plane: dipole and quadrupole

1 /3
o For a dipole, T f e 26T 3 (- r) r-a No shoar
09_mid—plane - ff(;r - r a2 —r)- 2
A n 4 3r
2
OC¢ _mid-pi == " a, +—|In—+—la; - —a,a;
_ plane _av
t 4]36 6\ a, a,—a,
o For a quadrupole, s , . .
2u,J, V3 a, r —-a
o = [fordo == 0 2 S T
0 _mid-plane 0 3
0 T r r
2u g2 N3 [ 1 7at+9aF 1( _a 4)\,] 1
o, . = - +—[InL+—|a’ | ——
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