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QUESTIONS

@ Each conductor in a magnetic field tends to shield itself from the field -
what happens for superconducting cables in a magnet ?

@ Is there a dependence on ramp rate, and on the history of the magnet ?

@ Are these effect large ? How can we remove them or live with them ?

@ These slides heavily rely on the lecture “Dynamic effects in superconducting
magnets” by A. Jain at USPAS, Phoenix 2006, and on chapter 6 of Schmuser
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PERSISTENT CURRENTS:

SUPERCONDUCTOR IN EXTERNAL FIELD

@ Superconductor slab in external field
@ A superconductor tries to shield itself from a magnetic field
@ The shielding is made through currents that flow in each filament

@ These currents flow inside the superconductor and therefore have
no resistance (persistent)

B

Pt Pt

@ To maximize the shielded area, the persistent currents must have the
largest possible current density, i.e. the critical current - which
depends on the external field (critical state model)

@ These induced currents perturb the field harmonics

USPAS June 2018, Michigan State University Superconducting accelerator magnets



|| Reminder - superconductors in a changing field act

B )

to shield their interior - persistent currents

* Superconductor slab in external field

@ For low external fields, the critical

current flows in the outer skin to
generate a field opposite to the

external one - inside the field is zero 1“' 1‘3 "
B
@ When the external field rises, the
area filled with shielding currents
B B

Increases

I 11
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Reminder - superconductors in a changing field

act to shield their interior - persistent currents

@ Superconductor slab in external field

@ When the external field reaches a
given value (penetration field),
all the superconductor is filled with
shielding currents

@ Beyond this value, the superconductor
cannot do anything more to shield
itself and a magnetic field is present

inside it
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Using the Bean model the field penetration can

be estimated

@ Circular filament in external field

@ Hypothesis: currents flow in an elliptical
shell (Bean model)
@ A bit of trigonometry gives the shielding

condition determining b

B

2u, j b
_ ZHo/d |- 204 CosSOl = —
] SIn A

@ At full penetration one has b=0 and

the magnetic field is the penetration
field

2MOjca
B=Bpf = T

USPAS June 2018, Michigan State University Superconducting accelerator magnets 7



@ Magnetization in a circular filament in external field

@ Magnetization estimate in the Bean model
. a \ a2 —y2 . 2

2u,J du,j.a(l, b
M =—2-< (dy xdx = ———>—|1-—
ta 2 ‘_l; le_—‘)% 3T a 2

@ At full penetration the magnetization is

4M0jca
M=M= B
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It does not take much field for the

filaments to be penetrated

@ Estimating penetration field
@ Critical current surface vs field
use parameterization for low j
@ Critical current vs penetration field

@ Filament size is ~ 5-100 um
(see Unit 4)

~

Frrsssers
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Tevatron dipole 0.009 4.2 25000 0.09
HERA dipole 0.015 4.2 21667 0.13
RHIC dipole 0.007 4.2 26786 0.08
LHC dipole 0.007 1.9 35714 0.10

@ The penetration field is in general rather low - at high field

filaments are fully penetrated
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Hysteresis of persistent currents

@ The phenomenology in a circular filament in external field
ramping down

B N

@ We reached the condition of full penetration

Q@ If now we ramp down, the external layer
of the superconductor will have opposite

current to continue the shielding

@ The shielding feature depend not only on the

field but also on the previous fields:
hysteresis etfect
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We have seen the hysteresis through the

magnetization loop

! | % / 3
1 .2 9 E.‘-—.‘—h T SR Bp = (%J Jca; preak = ‘ ﬁ ’J{‘a
| 3 ‘ \ T J

— Initial Up Ramp
= Dn Ramp ‘
~ —2ndUpRamp

Normalized Magnetization ( M/ /M ,.../)

0 0.5 1 15 2 2.5 3 3.5
Normalized Applied Field (B ,/B )

From A. Jain, USPAS 2007, Dynamic effects in superconducting magnets, pg. 18
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@ Persistent currents depend on

@ External parameters: magnetic field and its previous values - but not on
the rate of change of the field !

@ Filament parameter: size and geometry

@ Superconductor parameter: critical current

@ Parametric dependence

@ For low external fields, the critical current is larger and therefore the
persistent current and induced magnetization are larger

@ At large external fields the critical current becomes smaller and therefore
the effect is smaller
@ What happens in a magnet ?
@ Magnetic field in the coil has large variations in module and direction

@ Filament magnetization induces a perturbation in main field and
harmonics

@ For larger fields, the harmonics are further reduced by the normalization

USPAS June 2018, Michigan State University Superconducting accelerator magnets 12



Measurements of magnetization of cables
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Magnetization measurement in HERA cable
From P. Schmuser, pg. 85 Fig. 6.3
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How to use the model and data to compute the

persistent currents and their effects

@ A way to compute persistent currents

@ Calculate the field map in each strand of the coil (and its previous
values)

@ Estimate the critical current vs field using measurements or a
parameterization - note that values for low fields are very relevant

@ Compute the persistent currents of the filament using a geometrical
model, and scale them to the strand

@ Scale the magnetization to take into account of
the transport current - it must flow somewhere !
Reduction factor is 1— J_;
Je
@ Evaluate the effect of these additional currents to the main field and
to the field harmonics
@ Several codes can do this evaluation - Roxie, ...
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Example of calculation and comparison with =~ =2

measurements

@ Comparison measurements vs model
@ A good agreement is found - agreement at ~90%

b3-10% bg-10“
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sextupole hysteresi 2 £
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Persistent current measured vs computed in HERA dipoles and Persistent current measured vs computed in Tevatron dipoles -
quadrupoles - From P. Schmuser, pg. 87 Fig. 6.5 From P. Bauer et al, FNAL TD-02-040 (2004)

@ Spread of persistent current given by
@ Differences in the critical current
@ Differences in the filament geometry, deformed after cabling
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So what can we do about it?

@ Even with the finest filaments (~5 um) the persistent current
give several units in allowed multipoles at injection

@ How to cure this effect? Several strategies

@ Change the hardware (not cheap ...)

@ Of the cable: further reduce the filament size - feasible ?

@ Of the machine: reduce the energy range, i.e. increase the injection
current

@ Compensation
@ Design compensation: optimize coil geometry, such that harmonics are
minimized at injection
Drawback: at high field harmonics will be not optimized, but the beam is
smaller ...

@ Active compensation through correction magnets (as in HERA, LHC)

@ Passive compensation through ferromagnetic shims or ferromagnetic
cold bore
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@ Phenomenology

@ The injection of the beam is not instantaneous - takes ~ minutes
@ Tevatron: 30 minutes to 2 hours HERA: around 20 minutes
@ LHC: 20 minutes

@ During the injection the field is not constant s

Iby 1-10
and one observes a decay of main field : (b) sextupole
and multipolar components ~ units L7 T i e 3
@ First observed in Tevatron in 1987 i A;R-logt
[R. Hanft et al., Appl. Supercond. Conf. (1988), also in TM-1542] 34 Bb, —~

@ Equations proposed to fit the decay | '
@ Logarithmic decay (HERA, Tevatron) 2| me
b,(t)= A-Rlogt ;
0 bl L ainnl i
10 100 1000 10000
@ Double exponential (RHIC, LHC) time /seconds

b,(t)=A, exp(t/t)+ A, exp(t/t,)

Decay of b3 in HERA dipoles versus time, from Schmuser pg. 90, fig 6.8
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@ Origins
@ Thermally activated flux creep inducing a decrease in the critical
current density

@ It is temperature dependent
@ Produces a logarithmic decay

@ Boundary induced coupling currents
@ The strands carry different currents

@ Current redistribution can affect the magnetization due to the changes in
the local field

@ There are indications that both mechanisms are involved in the decay
of magnetization
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Figure 2.19 a) Numbering of the strand positions in the cross section of a 16-strand Rutherford-type cable.
b) Illustration of the BICC magnitude in a 16-strand cable at a certain z-position. The labels indicate the

strand positions [55].
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Some level of hysteresis in the decay currents

@ Dependence on the previous history
@ The amplitude of the decay depends on the parameters of the
previous cycles
@ Proportional to the flat-top current of the previous cycle
@ Decreases for longer back-porch

@ Saturates for flat-top duration longer than ~1 h

current pre-cycle injection store
4333 A 4333 A
1-60' 20 hrs
flat-top
70 Als -70 Als
666 A \ 666A
30 2hrs 12
396 A linear acceleration

quench back-porch ’/ time
reset parabolxc acceleration

front-porch start
injection porch

The cycle used for powering Tevatron dipoles, from P. Bauer et al, FNAL TD-02-040 (2004)
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@ Phenomenology

@ At the end of the injection, the beam is accelerated and the field is
ramped up

@ In that moment, the decay of persistent currents disappears and the

previous values are recovered
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Snapback phenomenology in RHIC dipoles, from A. Jain, USPAS 2006, « Dynamic effects and ...
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Figure 1.6 a) The dipole field B, and the normal sextupole component b; are shown as a function of time.
The injection field is reached at a time t = 0. The sextupole component decays during injection. After about
1000 s the magnet is ramped again. The snapback is clearly visible. b) The same measurement of b; is

shown as a function of the dipole field, along the up-ramp branch of the hysteresis curve. The decay and

snapback are indicated.
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More data from CERN on snapback reae) §

@ Snapback versus current

@ The snapback versus current (i.e. versus field, and versus time)
dependence is exponential

[ _[in'
by’ = AbY exp(——M d ]

@ The snapback takes place in a few seconds - very fast phenomena

6 — E; — - 10 ¢ ,
- + data R | + dat
% » ‘ E _ | ata
E 5 \ ——baseline fit | E 1 3 ——exponential fit
= ®
® 4L ‘ £ 0.1
Z [ \ =
: L | N’
& ‘J F
[ | =
2. vy T T R o O S e e PRSP b
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1 (A) 1 (A)

Snapback in b3 versus time, LHC main dipoles, from L. Bottura et al, IEEE Trans. Appl. Supercond. 15 (2005) 1217-20.
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Comparison between Tevatron and CERN -

experience

I _Iin'
b;b = Ab;b cXp —TJ

@ Snapback versus current

@ Two parameters: amplitude (the same of the decay) and “time”
constant Al
. sb
@ Measurements show that they are proportional AD;" o Al
@ The constant depends on the magnet design
@ One can justify this proportionality through a model

2.50 |
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Linear relation between snapback constants for Tevatron (right) and LHC (left) dipoles
from L. Bottura et al, IEEE Trans. Appl. Supercond. 15 (2005) 1217-20.
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@ The ramping of the magnet induces a variation of the flux
with time in loops made by strands |

@ This variable flux can induce currents which are
@ Proportional to the ramp rate

@ Proportional to the area of the loop
@ Inversely proportional to the inter-strand cross-contact resistance

@ These currents may perturb the field homogeneity for high ramp
rates

@ A cure: increase the inter-strand resistance by special coating

@ For example, in the LHC dipoles the ramp rate is 10 A/s, the inter-
strand resistance is > 15-40 p€2, and the impact on field quality is
negligible

@ Another effect can come from flux variation in loops made
by filaments - coupling currents
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CONCLUSIONS

@ Persistent currents

@ The mechanism

@ The conductor shields itself from the external magnetic field — this
generates shielding currents inside the conductor — field perturbation

@ Features
@ Contribution is very relevant at injection, disappears at high field

@ Contribution on allowed harmonics, proportional to filament size, gets
worse with large energy sweep

@ Contribution depends on the previous values of the magnetic field, but
not on the rate of magnetic field change (hysteretic phenomena)

@ Reliable models can predict the persistent currents
@ Corrections

@ Passive correction with ferromagnetic shims

@ Smaller filament, smaller energy sweep

@ Active correction with corrector magnets
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CONCLUSIONS

@ Decay

@ The mechanism

@ When the field is constant (this happens at injection energy) the
magnetization decays with time due to different mechanisms

Flux creep

Boundary induced coupling currents
@ Features
@ Scale time is ~100 s
@ Semi-empirical fits with exponential or logarithms are used

@ Contribution depends on the previous history, including the rate of
magnetic field change (dynamic effect)

@ No quantitative predictions available
@ Corrections

@ Phenomena are slow, corrector magnets are used to compensate on the

fly
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CONCLUSIONS

@ Snapback

@ The mechanism

@ When the field is ramped up again, all the decay of persistent currents is
wiped out and the previous state is recovered

@ Features
@ Scale time is ~1 s
@ Fit with exponential, based on heuristic model, are used

@ The amplitude of the snapback and the time constant are proportional -
can be justified with an heuristic model

@ Corrections

@ Phenomena are fast, they cannot be corrected on the fly but correction
curves should be implemented based on measurements
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