



### Unit 18 Persistent currents and dynamic effects

#### **Soren Prestemon** and **Steve Gourlay**

Lawrence Berkeley National Laboratory (LBNL)

With significant re-use of material from the same unit lecture by Ezio Todesco, USPAS 2017





- Each conductor in a magnetic field tends to shield itself from the field what happens for superconducting cables in a magnet ?
- Is there a dependence on ramp rate, and on the history of the magnet ?
- Are these effect large ? How can we remove them or live with them ?

These slides heavily rely on the lecture "Dynamic effects in superconducting magnets" by A. Jain at USPAS, Phoenix 2006, and on chapter 6 of Schmuser







- 1. Persistent currents
- 2. Decay
- 3. Snap-back
- 4. Ramp effects





- Superconductor slab in external field
  - A superconductor tries to shield itself from a magnetic field
  - The shielding is made through currents that flow in each filament
  - These currents flow inside the superconductor and therefore have no resistance (persistent)



- To maximize the shielded area, the persistent currents must have the largest possible current density, i.e. the critical current – which depends on the external field (critical state model)
- These induced currents perturb the field harmonics



Reminder - superconductors in a changing field act 🚊 to shield their interior - persistent currents

- Superconductor slab in external field
  - For low external fields, the critical current flows in the outer skin to generate a field opposite to the external one – inside the field is zero



 When the external field rises, the area filled with shielding currents increases





Reminder - superconductors in a changing field act to shield their interior - persistent currents



Superconductor slab in external field

 When the external field reaches a given value (penetration field), all the superconductor is filled with shielding currents



 Beyond this value, the superconductor cannot do anything more to shield itself and a magnetic field is present inside it





# Using the Bean model the field penetration can be estimated



- Circular filament in external field
  - Hypothesis: currents flow in an elliptical shell (Bean model)
  - A bit of trigonometry gives the shielding condition determining b

$$B = \frac{2\mu_0 j_c a}{\pi} \left( 1 - \frac{\alpha \cos \alpha}{\sin \alpha} \right) \qquad \cos \alpha = \frac{b}{a}$$



B

В

+

B

B

 At full penetration one has b=0 and the magnetic field is the penetration field

$$B = B_{pf} \equiv \frac{2\mu_0 j_c a}{\pi}$$



We can calculate the magnetization of the filament under these simple assumptions



- Magnetization in a circular filament in external field
  - Magnetization estimate in the Bean model

$$M = \frac{2\mu_0 j_c}{\pi a^2} \int_{-a}^{a} dy \int_{b\sqrt{1-y^2/a^2}}^{\sqrt{a^2-y^2}} x dx = -\frac{4\mu_0 j_c a}{3\pi} \left(1 - \frac{b^2}{a^2}\right)$$



At full penetration the magnetization is

$$M = M_{pf} = \frac{4\mu_0 j_c a}{3\pi}$$





## It does not take much field for the filaments to be penetrated



#### Estimating penetration field

- Critical current surface vs field
  use parameterization for low j
- Critical current vs penetration field
- Filament size is ~ 5-100 μm
  (see Unit 4)

| 60000              |                                                           |
|--------------------|-----------------------------------------------------------|
| °€ 50000           | $\frac{\int J_c = J_c/(2^{\mu}a) B_p}{\sqrt{1-2^{\mu}a}}$ |
| u/y 40000          |                                                           |
| 30000              | i <sub>k</sub> (B)                                        |
| 20000              |                                                           |
| ට <sub>10000</sub> |                                                           |
| 0                  |                                                           |
| (                  | 0.0 0.2 0.4 0.6 0.8 1.0<br>Field (T)                      |

|                 | Filament diameter | Temperature | Critical current | Penetration field |
|-----------------|-------------------|-------------|------------------|-------------------|
|                 | (mm)              | (K)         | $(A/mm^2)$       | (T)               |
| Tevatron dipole | 0.009             | 4.2         | 25000            | 0.09              |
| HERA dipole     | 0.015             | 4.2         | 21667            | 0.13              |
| RHIC dipole     | 0.007             | 4.2         | 26786            | 0.08              |
| LHC dipole      | 0.007             | 1.9         | 35714            | 0.10              |

### The penetration field is in general rather low – at high field filaments are fully penetrated



The phenomenology in a circular filament in external field ramping down

• We reached the condition of full penetration

- If now we ramp down, the external layer of the superconductor will have opposite current to continue the shielding
- The shielding feature depend not only on the field but also on the previous fields: hysteresis effect







### We have seen the hysteresis through the magnetization loop











#### Persistent currents depend on

- External parameters: magnetic field and its previous values but not on the rate of change of the field !
- Filament parameter: size and geometry
- Superconductor parameter: critical current

#### Parametric dependence

- For low external fields, the critical current is larger and therefore the persistent current and induced magnetization are larger
- At large external fields the critical current becomes smaller and therefore the effect is smaller

#### What happens in a magnet ?

- Magnetic field in the coil has large variations in module and direction
- Filament magnetization induces a perturbation in main field and harmonics
- For larger fields, the harmonics are further reduced by the normalization



#### Measurements of magnetization of cables





Magnetization measurement in HERA cable From P. Schmuser, pg. 85 Fig. 6.3 Magnetization measurement in LHC cable Courtesy of L. Bottura et al.





- A way to compute persistent currents
  - Calculate the field map in each strand of the coil (and its previous values)
  - Estimate the critical current vs field using measurements or a parameterization note that values for low fields are very relevant
  - Compute the persistent currents of the filament using a geometrical model, and scale them to the strand
  - Scale the magnetization to take into account of

the transport current – it must flow somewhere !

Reduction factor is  $1 - \frac{j_t}{j_c}$ 

- Evaluate the effect of these additional currents to the main field and to the field harmonics
- Several codes can do this evaluation Roxie, …



## Example of calculation and comparison with measurements



Comparison measurements vs model

• A good agreement is found – agreement at ~90%



Persistent current measured vs computed in HERA dipoles and quadrupoles - From P. Schmuser, pg. 87 Fig. 6.5

Persistent current measured vs computed in Tevatron dipoles -From P. Bauer et al, FNAL TD-02-040 (2004)

- Spread of persistent current given by
  Differences in the critical current
  Differences in the filement geometry, deform
  - Differences in the filament geometry, deformed after cabling

USPAS June 2018, Michigan State University

Superconducting accelerator magnets





- Even with the finest filaments (~5 μm) the persistent current give several units in allowed multipoles at injection
  - How to cure this effect? Several strategies
- Change the hardware (not cheap ...)
  - Of the cable: further reduce the filament size feasible ?
  - Of the machine: reduce the energy range, i.e. increase the injection current

#### Compensation

- Design compensation: optimize coil geometry, such that harmonics are minimized at injection
  - Drawback: at high field harmonics will be not optimized, but the beam is smaller ...
- Active compensation through correction magnets (as in HERA, LHC)
- Passive compensation through ferromagnetic shims or ferromagnetic cold bore

Phenomenology

The injection of the beam is not instantaneous - takes ~ minutes

• Tevatron: 30 minutes to 2 hours

HERA: around 20 minutes

During the injection the field is not constant and one observes a decay of main field and multipolar components ~ units

First observed in Tevatron in 1987 [R. Hanft et al., Appl. Supercond. Conf. (1988), also in TM-1542]

Equations proposed to fit the decay

Logarithmic decay (HERA, Tevatron)

 $b_3(t) = A - R \log t$ 

LHC: 20 minutes

Double exponential (RHIC, LHC)  $b_3(t) = A_1 \exp(t/t_1) + A_2 \exp(t/t_2)$ 

Decay of b3 in HERA dipoles versus time, from Schmuser pg. 90, fig 6.8









#### Origins

- Thermally activated flux creep inducing a decrease in the critical current density
  - It is temperature dependent
  - Produces a logarithmic decay
- Boundary induced coupling currents
  - The strands carry different currents
  - Current redistribution can affect the magnetization due to the changes in the local field
- There are indications that both mechanisms are involved in the decay of magnetization



#### One example: boundary-induced coupling currents 🚟

Markus Haverkamp Ph.D. thesis

- Can emanate from variations in the transverse contact resistances,
- or from variations in dB/dt across the cable
- Often systematic so can have significant impact on integrated multipoles
- Time constants long: 10-10<sup>5</sup>s



Figure 2.18 Two strands in a Rutherford-type cable carry a current, flowing in a long loop.



Figure 2.19 a) Numbering of the strand positions in the cross section of a 16-strand Rutherford-type cable. b) Illustration of the BICC magnitude in a 16-strand cable at a certain z-position. The labels indicate the strand positions [55].

#### Superconducting accelerator magnets





- Dependence on the previous history
  - The amplitude of the decay depends on the parameters of the previous cycles
    - Proportional to the flat-top current of the previous cycle
    - Decreases for longer back-porch
    - Saturates for flat-top duration longer than ~1 h



The cycle used for powering Tevatron dipoles, from P. Bauer et al, FNAL TD-02-040 (2004)



### An example of impact of decay currents: snapback



#### Phenomenology

- At the end of the injection, the beam is accelerated and the field is ramped up
- In that moment, the decay of persistent currents disappears and the previous values are recovered



Snapback phenomenology in RHIC dipoles, from A. Jain, USPAS 2006, « Dynamic effects and ... », slide 27



#### Snapback has been studied in some detail



.....





#### Snapback versus current

The snapback versus current (i.e. versus field, and versus time) dependence is exponential

$$b_3^{sb} = \Delta b_3^{sb} \exp\left(-\frac{I - I_{inj}}{\Delta I}\right)$$

The snapback takes place in a few seconds – very fast phenomena



Snapback in b3 versus time, LHC main dipoles, from L. Bottura et al, IEEE Trans. Appl. Supercond. 15 (2005) 1217-20.



## Comparison between Tevatron and CERN experience





$$b_3^{sb} = \Delta b_3^{sb} \exp\left(-\frac{I - I_{inj}}{\Delta I}\right)$$

- Two parameters: amplitude (the same of the decay) and "time" constant  $\Delta I$ 
  - Measurements show that they are proportional

$$\Delta b_3^{sb} \propto \Delta I$$

- The constant depends on the magnet design
- One can justify this proportionality through a model



Linear relation between snapback constants for Tevatron (right) and LHC (left) dipoles from L. Bottura et al, IEEE Trans. Appl. Supercond. **15 (2005)** 1217-20.

Superconducting accelerator magnets





- The ramping of the magnet induces a variation of the flux with time in loops made by strands
  - This variable flux can induce currents which are
    - Proportional to the ramp rate
    - Proportional to the area of the loop



- Inversely proportional to the inter-strand cross-contact resistance
- These currents may perturb the field homogeneity for high ramp rates
- A cure: increase the inter-strand resistance by special coating
- For example, in the LHC dipoles the ramp rate is 10 A/s, the interstrand resistance is > 15-40  $\mu\Omega$ , and the impact on field quality is negligible
- Another effect can come from flux variation in loops made by filaments - coupling currents

#### CONCLUSIONS



#### Persistent currents

- The mechanism
  - The conductor shields itself from the external magnetic field  $\rightarrow$  this generates shielding currents inside the conductor  $\rightarrow$  field perturbation
- Features
  - Contribution is very relevant at injection, disappears at high field
  - Contribution on allowed harmonics, proportional to filament size, gets worse with large energy sweep
  - Contribution depends on the previous values of the magnetic field, but not on the rate of magnetic field change (hysteretic phenomena)
- Reliable models can predict the persistent currents
- Corrections
  - Passive correction with ferromagnetic shims
  - Smaller filament, smaller energy sweep
  - Active correction with corrector magnets

#### CONCLUSIONS





- The mechanism
  - When the field is constant (this happens at injection energy) the magnetization decays with time due to different mechanisms
    - Flux creep
    - Boundary induced coupling currents
- Features
  - Scale time is ~100 s
  - Semi-empirical fits with exponential or logarithms are used
  - Contribution depends on the previous history, including the rate of magnetic field change (dynamic effect)
- No quantitative predictions available
- Corrections
  - Phenomena are slow, corrector magnets are used to compensate on the fly

#### CONCLUSIONS





- The mechanism
  - When the field is ramped up again, all the decay of persistent currents is wiped out and the previous state is recovered
- Features
  - Scale time is ~1 s
  - Fit with exponential, based on heuristic model, are used
  - The amplitude of the snapback and the time constant are proportional can be justified with an heuristic model
- Corrections
  - Phenomena are fast, they cannot be corrected on the fly but correction curves should be implemented based on measurements



#### REFERENCES



#### General

- M. N. Wilson, Ch. ?
- Schmuser, Ch. 6 and 7
- L. Bottura, "Field dynamics in superconducting magnets for particle accelerators", CERN 98-05 (1998).
- Classes given by A. Jain at USPAS 2006, Unit 7
- Ph. D. thesis of A. Verweij
- Decay and snap-back
  - L. Bottura et al, IEEE Trans. Appl. Supercond. 15 (2005) 1217-20
  - N. Sammut Ph. D. thesis on the LHC magnets
  - Several works by P. Bauer et al carried out in 2000-2005 at FNAL on Tevatron
  - Complete references on the works on Hera can be found in Schuser book