

Unit 5 Field harmonics

Soren Prestemon and **Steve Gourlay**

Lawrence Berkeley National Laboratory (LBNL)

With significant re-use of material from the same unit lecture by Ezio Todesco, USPAS 2017

Content

- Magnetic field and charged particle optics
- Electromagnetics:
 - Field produced by a line current
 - The biot-Savart law
 - Fields in 2D:
 - The complex potential
 - Field harmonics as a Taylor's series expansion
 - Connection to beam optics

1. FIELD HARMONICS: MAXWELL **EQUATIONS**

Maxwell equations for magnetic field

$$\nabla \cdot B = \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z} = 0 \qquad \nabla \times B = \mu_0 J + \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}$$

In absence of charge and magnetized material

$$\nabla \times B = \left(\frac{\partial B_{y}}{\partial z} - \frac{\partial B_{z}}{\partial y}, \frac{\partial B_{z}}{\partial x} - \frac{\partial B_{x}}{\partial z}, \frac{\partial B_{x}}{\partial y} - \frac{\partial B_{y}}{\partial x}\right) = 0$$

James Clerk Maxwell, Scottish

(13 June 1831 - 5 November 1879)

• If
$$\frac{\partial B_z}{\partial z} = 0$$
 (constant longitudinal field), then

$$\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} = 0 \qquad \qquad \frac{\partial B_x}{\partial y} - \frac{\partial B_y}{\partial x} = 0$$

The complex potential

$$F(z) = A(z) + iV(z)$$

$$B_{x} - iB_{y} = B^{*} = i\frac{dF}{dz} = i\frac{d}{dz}(A + iV)$$

$$f(z) = u(z) + iv(z) = f(x + iy) = u(x, y) + iv(x, y)$$

$$z = x + iy$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$F(z) = F(x+iy) = F\left(re^{i\theta}\right) = \sum_{n\geq 0} c_n z^n \quad \Rightarrow B^*(z) = i\sum_{n\geq 1} nc_n \left(z\right)^{n-1}$$

1. FIELD HARMONICS: ANALYTIC FUNCTIONS

 A complex function of complex variables is analytic if it coincides with its power series

$$f(z) = \sum_{n=1}^{\infty} C_n z^{n-1} \qquad f_x(x,y) + i f_y(x,y) = \sum_{n=1}^{\infty} C_n (x+iy)^{n-1} \qquad (x,y) \in D$$

 The Cauchy-Riemann conditions are a necessary and sufficient condition to be analytic:

$$\begin{cases} \frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} = 0\\ \frac{\partial f_x}{\partial y} + \frac{\partial f_y}{\partial x} = 0 \end{cases}$$

Augustin Louis Cauchy French (August 21, 1789 – May 23, 1857)

The scalar and vector potentials

- Vector potential
 - Since $\nabla \cdot B = 0$ one can always define a vector potential A such that

$$|\vec{B} = \nabla \times \vec{A}|$$
 (results from $\nabla \cdot \vec{B} = 0$ and identity $\nabla \cdot (\nabla \times \vec{A}) = 0$, $\forall \vec{A}$)

• The vector potential is **not unique** (gauge invariance): if we add the gradient of any scalar function, $A' = A + \nabla f$ it still satisfies

$$\nabla \times A' = \nabla \times A + \nabla \times \nabla f = \nabla \times A = B$$

- Scalar potential
 - In the regions free of charge and magnetic material $\nabla \times B = 0$ Therefore in this case one can also define a scalar potential

$$\vec{B} = -\nabla V$$
 (results from $\nabla \times \vec{B} = 0$ and identity $\nabla \times (\nabla V) = 0$, $\forall V$)

 One can prove that V is an analytic function in a region free of charge and magnetic material

We can expand the complex potential and relate it to each type of magnetic potential

$$B^*(z) = B_0 \sum_{n \ge 1} (a_n - ib_n) \left(\frac{z}{r_0}\right)^{n-1}$$

$$\Rightarrow A(x,y) = -B_0 \left[b_1 x + a_1 y + \frac{b_2}{2r_0} (x^2 - y^2) + \frac{a_2}{r_0} xy + \dots \right]$$

$$\Rightarrow V(x,y) = B_0 \left[a_1 x - b_1 y + \frac{a_2}{2r_0} (x^2 - y^2) + \frac{b_2}{r_0} xy + \dots \right]$$

Example: *V* describes geometry of magnetized surfaces to yield a multipole field; for a pure normal dipole:

$$\Rightarrow$$
 b₁y=+/-V₀

Recap...

• If
$$\frac{\partial B_z}{\partial z} = 0$$

Maxwell gives

$$\frac{\partial B_{y}}{\partial x} - \frac{\partial B_{x}}{\partial y} = 0$$

$$\frac{\partial B_y}{\partial v} + \frac{\partial B_x}{\partial x} = 0$$

and therefore the function $B_y + iB_x$ is analytic

$$B_{y}(x,y) + iB_{x}(x,y) = \sum_{n=1}^{\infty} C_{n}(x+iy)^{n-1}$$
 $(x,y) \in D$

where C_n are complex coefficients

$$\begin{cases} \frac{\partial f_x}{\partial x} - \frac{\partial f_y}{\partial y} = 0\\ \frac{\partial f_x}{\partial y} + \frac{\partial f_y}{\partial x} = 0 \end{cases}$$

Georg Friedrich Bernhard Riemann, German

- Advantage: we reduce the description of a function from R^2 to R^2 to a (simple) series of complex coefficients
 - Attention !! We lose something (the function outside *D*)

Field harmonics are the terms in the Taylor's series expansion of the complex potential

Each coefficient corresponds to a "pure" multipolar field

A quadrupole [from P. Schmuser et al, pg. 50]

A sextupole

- Magnets usually aim at generating a single multipole
 - Dipole, quadrupole, sextupole, octupole, decapole, dodecapole ...
 - Combined magnets: provide more components at the same time (for instance dipole and quadrupole) more common in low energy rings, resistive magnets one sc example: JPARC (Japan)

Some notation issues...

$$B_{y}(x,y) + iB_{x}(x,y) = \sum_{n=1}^{\infty} C_{n}(x+iy)^{n-1} = \sum_{n=1}^{\infty} (B_{n} + iA_{n})(x+iy)^{n-1}$$

The field harmonics are rewritten as (EU notation)

$$B_y + iB_x = 10^{-4} B_1 \sum_{n=1}^{\infty} (b_n + ia_n) \left(\frac{x + iy}{R_{ref}}\right)^{n-1}$$

- We factor out the main component (B_1 for dipoles, B_2 for quadrupoles)
- We introduce a reference radius R_{ref} to have dimensionless coefficients
- We factor out 10^{-4} since the deviations from ideal field are $\sim 0.01\%$
- The coefficients b_n , a_n are called <u>normalized multipoles</u>
 - b_n are the <u>normal</u>, a_n are the <u>skew</u> (adimensional)
 - US notation is different from EU notation

$$b_2^{US} = b_3^{EU}$$

The concept of reference radius

- Reference radius is usually chosen as 2/3 of the aperture radius
 - This is done to have numbers for the multipoles that are not too far from 1
- The reference is arbitrary it has no physical meaning
 - typically within the convergence radius

$$B_y + iB_x = 10^{-4} B_1 \sum_{n=1}^{\infty} (b_n + ia_n) \left(\frac{x + iy}{R_{ref}}\right)^{n-1}$$

Superposition of magnetic field

- Linearity of coefficients (very important)
 - Non-normalized coefficients are additive
 - Normalized coefficients are not additive

 Normalization gives handy (and physical) quantities, but some drawbacks – pay attention!!

Lets start with the simplest field producing element

Field given by a current line (Biot-Savart law)

$$B(z) = \frac{I\mu_0}{2\pi(z - z_0)} = -\frac{I\mu_0}{2\pi z_0} \frac{1}{1 - \frac{z}{z_0}}$$

using the power series expansion

$$\frac{1}{1-t} = 1 + t + t^2 + t^3 + \dots = \sum_{n=1}^{\infty} t^{n-1}$$
we get

$$B(z) = -\frac{I\mu_0}{2\pi z_0} \sum_{n=1}^{\infty} \left(\frac{z}{z_0}\right)^{n-1} = -\frac{I\mu_0}{2\pi z_0} \sum_{n=1}^{\infty} \left(\frac{R_{ref}}{z_0}\right)^{n-1} \left(\frac{x+iy}{R_{ref}}\right)^{n-1}$$

|t| < 1

Félix Savart, French (June 30, 1791-March 16, 1841)

Jean-Baptiste Biot, French (April 21, 1774 – February 3, 1862)

We now have the elements to calculate the resulting multipoles

• Now we can compute the multipoles of a current line at z_0

$$B(z) = -\frac{I\mu_0}{2\pi z_0} \sum_{n=1}^{\infty} \left(\frac{z}{z_0}\right)^{n-1} = -\frac{I\mu_0}{2\pi z_0} \sum_{n=1}^{\infty} \left(\frac{R_{ref}}{z_0}\right)^{n-1} \left(\frac{x+iy}{R_{ref}}\right)^{n-1} \left(\frac{x+iy}{R_{ref}}\right)^{n-1}$$

$$B_y + iB_x = 10^{-4} B_1 \sum_{n=1}^{\infty} (b_n + ia_n) \left(\frac{x + iy}{R_{ref}} \right)^{n-1}$$

$$B_1 = -\frac{I\mu_0}{2\pi} \operatorname{Re}\left(\frac{1}{z_0}\right)$$

$$b_n + ia_n = -\frac{I\mu_0 10^4}{2\pi z_0 B_1} \left(\frac{R_{ref}}{z_0}\right)^{n-1}$$

Harmonics from a line current - what they tell us

Multipoles given by a current line decay with the order

$$b_n + ia_n = -\frac{I\mu_0 10^4}{2\pi z_0 B_1} \left(\frac{R_{ref}}{z_0}\right)^{n-1}$$

$$\ln(b_n + ia_n) = \ln(\frac{|I|\mu_0 10^4}{2\pi R_{ref} B_1}) + n \ln(\frac{R_{ref}}{|z_0|}) = p + nq$$

- The slope of the decay is the logarithm of $(R_{ref}/|z_0|)$
 - At each order, the multipole decreases by a factor $\hat{R}_{ref}/|z_0|$
 - The decay of the multipoles tells you the ratio $R_{ref}/|z_0|$, i.e. where is the coil w.r.t. the reference radius –
 - like a radar ... we will see an application of this feature to detect assembly errors through magnetic field shape in Unit 21 although limited by measurement accuracy of higher order multipoles...

Note that in many cases we may want to use polar coordinates

Field given by a current line (Biot-Savart law) – vector potential formalism …

$$B_{\theta} = -\frac{\partial A_{z}}{\partial r} \qquad B_{r} = \frac{1}{r} \frac{\partial A_{z}}{\partial \theta}$$

$$A_{z}(\rho,\theta) = -\frac{\mu_{0}I}{2\pi} \ln\left(\frac{R}{\rho_{0}}\right) = -\frac{\mu_{0}I}{2\pi} \ln\left(\frac{\sqrt{\rho_{0}^{2} + \rho^{2} - 2\rho_{0}\rho\cos(\theta - \theta_{0})}}{\rho_{0}}\right)$$

... and polar coordinates formalism

$$B_r = -\frac{\mu_0 I}{2\pi\rho_0} \sum_{n=1}^{\infty} \left(\frac{\rho}{\rho_0}\right)^{n-1} \sin[n(\theta - \theta_0)]$$

$$B_{\theta} = -\frac{\mu_0 I}{2\pi\rho_0} \sum_{n=1}^{\infty} \left(\frac{\rho}{\rho_0}\right)^{n-1} \cos[n(\theta - \theta_0)]$$

The field expansion is only valid to the radius of convergence

 If we have a circular aperture, the field harmonics expansion relative to the center is valid within the aperture

• For other shapes, the expansion is valid over a circle that touches the closest current line

First comments on validity of the complex potential to real, finite-dimensional magnets

- Field harmonics in the heads
 - Harmonic measurements are done with rotating coils of a given length (see unit 21) they give integral values over that length
 - If the rotating coil extremes are in a region where the field does not vary with *z*, one can use the 2d harmonic expansion for the integral

- If the rotating coil extremes are in a region where the field vary with z, one cannot use the 2d harmonic expansion for the integral
- One has to use a more complicated expansion

Connecting magnetic measurements to beam dynamics

Integral values for a magnet

- For each magnet the integral of the main component and multipoles are measured
- Main component: average over the straight part (head excluded)
- Magnetic length: length of the magnet as
 - If there were no heads, and the integrated strength is the same as the real magnet

$$\overline{B}_1 = \frac{\int_{sp} B_1(s) ds}{\int_{sp} ds}$$

$$L_m = \frac{\int B_1(s)ds}{\overline{B}_1}$$

Types of errors

- Integral values for a magnet
 - Average multipoles: weighted average with the main component

$$\overline{b}_n = \frac{\int B_1(s)b_n(s)ds}{\int B_1(s)ds} \qquad \overline{a}_n = \frac{\int B_1(s)a_n(s)ds}{\int B_1(s)ds}$$

- Systematic and random components over a set of magnets
 - Systematic: mean of the average multipoles $\mu(b_n)$
 - Random: standard deviation of the average multipoles $\sigma(\overline{b}_n)$

Connecting beam requirements to field multipoles

- Beam dynamics requirements
 - Rule of thumb (just to give a zero order idea): systematic and random field harmonics have to be of the order of 0.1 to 1 unit (with R_{ref} one third of magnet aperture radius)
 - Higher order are ignored in beam dynamics codes (in LHC up to order 11 only)
 - Note that spec is rather flat, but multipoles are decaying !! Therefore in principle higher orders cannot be a problem

Examples of target values for multipoles

- Beam dynamics requirements: one has target values for
 - range for the systematic values (usually around zero, but not always)
 - maximum spread of multipoles and main component

Systematic multipoles in LHC main dipole: measured vs target

Systematic skew multipoles in LHC main quadrupole: measured vs target

Random normal multipoles in LHC main quadrupole: measured vs target

- The setting of targets is a complicated problem, with many parameters, without a unique solution
 - Example: can we accept a larger random b_3 if we have a smaller random b_5 ?
 - Usually it is an iterative (and painful) process: first estimate of randoms by magnet builders, check by accelerator physicists, requirement of tighter control on some components or of adding corrector magnets ...

General comments on beam dynamics requirements

- Beam dynamics requirements (tentative)
 - Dynamic aperture requirement: that the beam circulates in a region of pure magnetic field, so that trajectories do not become unstable
 - Since the beam at injection is much larger than at full energy (by a factor $(\sqrt{E_c/E_i})$)the requirement at injection is much more stringent \rightarrow no requirement at high field
 - Exception: the low beta magnets, where at collision the beta functions are large, i.e., the beam is large
 - Chromaticity, linear coupling, orbit correction
 - This conditions on the beam stability put requirements both at injection and at high field
 - Mechanical aperture requirement
 - Can be limited by an excessive spread of the main component or bad alignment

SUMMARY

- We outlined the Maxwell equations for the magnetic field
- We showed how to express the magnetic field in terms of field harmonics
 - Compact way of representing the field
 - Biot-Savart: multipoles decay with multipole order as a power law
 - Attention!! Validity limits and convergence domains
- We outlined some issues about the beam dynamics specifications on harmonics

COMING SOON

- Coming soon ...
 - It is useful to have magnets that provide pure field harmonics
 - How to build a (sufficiently) pure field harmonic (dipole, quadrupole ...) with a superconducting cable?
 - What field / field gradient can be obtained?

REFERENCES

- On field harmonics
 - A. Jain, "Basic theory of magnets", CERN 98-05 (1998) 1-26
 - Classes given by A. Jain at USPAS
 - P. Schmuser, Ch. 4
- On the field model
 - A.A.V.V. "LHC Design Report", CERN 2004-003 (2004) pp. 164-168.
 - N. Sammut, et al. "<u>Mathematical formulation to predict the harmonics of the superconducting Large Hadron Collider magnets</u>"
 Phys. Rev. ST Accel. Beams 9 (2006) 012402.

ACKOWLEDGEMENTS

- Ezio Todesco, for my copious use of his slides
- www.wikipedia.org for most of the pictures
- No frogs have been harmed during the preparation of these slides!!