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Outline of this lecture

The concept of the long-range wakefields, causality.
Longitudinal wakefields. Wake potential.
Transverse wakefields. Wake potential.
Panofsky-Wenzel theorem.
Some examples. Beam loading. Constant impedance 
vs. constant gradient accelerating structure.
Wakefield suppression: damping and detuning.
Wakefield acceleration.
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Long-range wakefields

 The electron beam traveling through the accelerating 
structure produces electromagnetic disturbances which 
can be described as a sum of the resonant modes.

 Wakefields include the higher-order modes and the beam 
excited accelerating mode (the effect of beam loading).
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Electromagnetic fields of a point charge in free space

The charge moves with the speed of light:

The Lorentz force acting on a test charge Q’ that also 
moves with the speed of light: 

In relativistic limit there is no electromagnetic interactions 
between two charge particles moving in free space.
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Wakefields or no wakefields?

 The charge moves in an infinite pipe of an arbitrary cross section: no 
wake.

 The charge moves in a pipe with resistive wall losses: wakes.

 The charge moves by an obstacle: wakes.
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Wake potential for a cavity

The longitudinal wake potential is defined as the total 
voltage lost by a test charge Q following at a distance s on 
the same path divided by the value of Q:

The transverse wake potential is defined as the momentum 
kick experienced by a test charge Q following at a distance 
s on the same path divided by the value of Q:
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Coulomb gauge: 

Electromagnetic fields in the cavity

Maxwell’s equations:

Express fields through potentials:
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Eigenmode expansion

The eigenmodes satisfy the following 
equation and the boundary conditions on the surface of the 
cavity: 

Coulomb gauge: 
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Equations for the eigenmode coefficients

The stored energy:  
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Eigenmode coefficients for a point charge
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Eigenmode coefficients for a point charge (continued)

Initial conditions: no fields in the cavity before the particle 
enters:   
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Loss factor (or kick factor)

Introduce:   

Loss factor        is the amount of energy deposited by the 
charge into the mode λ.
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Wake potentials
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Generalization for the case of parallel charges
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Panofsky-Wenzel Theorem
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Infinitely repeating structures

is the phase advance per cell.



Operated by Los Alamos National Security, LLC for NNSA

Fourier expansion

Each Fourier harmonics

satisfied Maxwell’s equations. So we can 
introduce
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Resonance condition

Only resonant space harmonics interact with the particles.
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Cylindrically symmetric waveguide

The wake potentials:

Eigenmodes of the system:
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Express wake potentials through the kick factor in 
cylindrically symmetric structures
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For the electron beam that is close to axis
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The longitudinal wake is dominated by the fundamental 
mode and its harmonics (m=0), while the transverse wake is 
dominated by the dipole modes (m=1):
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The wake fields for the SLC accelerator
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Constant impedance structure

The structure with identical accelerator cells – constant 
impedance structure:

The power and the accelerating gradient go down along the 
structure due to Ohmic losses and beam loading.

ௗாೌ
ௗ௭ ௔,



Operated by Los Alamos National Security, LLC for NNSA

Constant gradient structure

The group velocity goes down linearly with P:
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Cell’s dispersion in a constant gradient structure
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The negative effects of long-range wakefields

 Time-varying transverse deflections in the trailing 
bunches.

 Beam-breakup (BBU) instability.

 The wakefields extract a small fraction of the beam 
energy (which can be replaced by additional RF power).

 The power extracted from the beam ultimately represents 
additional ohmic losses in the structure walls or power 
delivered to the ohmic load (especially important for the 
superconducting structures).
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Wakefield suppression

Two main methods for wakefield suppression:

 Detuning: the frequencies of the higher order modes 
vary from cell to cell.

 Damping: damping waveguides are subcritical for the 
fundamental modes but propagate higher order modes.

 Often the method of choice is the moderate damping 
(Q~300 to 1000) combined with detuning.
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CLIC’s heavy damping scheme (Q~20)

Drawbacks:

 Reduced Q for the fundamental mode.

 Enhanced surface fields.

 Complicated fabrication.
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Choke-mode damping at Spring-8

 Better confines the fundamental mode.

 Strongly damps the dipole mode.

 Less effective than CLIC’s scheme with regards to other 
HOMs.
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NLC’s moderate damping and detuning

 Smaller pulse heating at the coupling irises than in heavily 
damped structures.

 Damping material located away from the structure.
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Wakefield acceleration
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Transformer ratio

TR ெ௔௫௜௠௨௠	௘௡௘௥௚௬	௚௔௜௡	௢௙	௧௛௘	௪௜௧௡௘௦௦	௕௨௡௖௛
ெ௔௫௜௠௨௠	௘௡௘௥௚௬	௟௢௦௦	௢௙	௧௛௘	ௗ௥௜௩௘	௕௨௡௖௛
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Enhanced transformer ratio

TR=16

Symmetric beam can never produce transformer ratios 
above 2. Triangular and double triangular beams are 
proposed to enhance the transformer ratios.

TR<2


