# An R Exercise
# Let's make a phase space distribution and explore its
# properties upon injection into the g-2 Storage Ring
# Use a uniform distribution in x and momentum, and a Gaussian
# distribution in y
rm(list=ls()) # clear any variables left over from last time...
Npar = 5000
x0 = runif(Npar, -9, 9) # alfa_x x + beta_x x'
Px0 = runif(Npar,-50,50)
y0 = rnorm(Npar,0,15)
Py0 = rnorm(Npar,0,15) # alfa_y y + beta_y y'
# offset the x coordinate by 77 mm (injection)
x0 = x0 + 77
plot(x0,Px0,asp=1,pch=".")
plot(y0,Py0,asp=1,pch=".")
# Give each particle a momentum (dp/p)
del = runif(Npar,-0.006,0.006)
hist(del,breaks=25)
# Rotate each particle horizontally about ITS closed orbit, to the kicker:
D = 8100 # dispersion [mm]
x = -Px0 + D*del
Px = -(x0 - D*del)
y = y0
Py = Py0
# Q: why this is the right thing to do?
plot(x,Px,xlim=c(-60,60),asp=1,pch=".")
# Kick the distribution onto the central orbit
Ak = 77
phik = 0
Px = Px + Ak*cos(phik)
x = x + Ak*sin(phik)
plot(x,Px,xlim=c(-60,60),asp=1,pch=".")
# Q: why does it have this shape?
# Make a data frame of our final particle data
df = data.frame(x,Px,y,Py,del)
# Look at the first few lines of the data frame...
head(df)
## x Px y Py del
## 1 -10.481481 -16.218133 -11.9642981 -19.362421 -0.0009076567
## 2 18.228174 -1.330378 0.1119496 9.174353 0.0009274216
## 3 4.230873 -22.741721 -10.8386293 -3.445242 -0.0025593979
## 4 -23.273731 -1.243135 -1.9065723 -8.571396 0.0002269044
## 5 15.724556 49.947384 14.2516737 0.273611 0.0055267592
## 6 -6.509867 31.055719 -4.8381024 4.462012 0.0041444486
# Let's add some color to the momentum
plot(y0,Py0,asp=1,pch=".",col=2+500*(del+0.006))
plot(x0,Px0,asp=1,pch=".",col=2+500*(del+0.006))
df$color = 2+500*(del+0.006)
plot(df$x,df$Px,xlim=c(-60,60),asp=1,pch=".",col=df$color)
# OK, now we can sort/subset this data
# Example: which particles in our distribution are currently
# inside a circular aperture of radius 45 mm?
rAp = 45
df2 = subset(df, subset= x^2 + y^2 < rAp^2 )
plot(df2$x,df2$y,xlim=c(-60,60),asp=1,pch=".",col=df2$color)
plot(df2$x,df2$Px,xlim=c(-60,60),asp=1,pch=".",col=df2$color)
plot(df2$y,df2$Py,xlim=c(-60,60),asp=1,pch=".",col=df2$color)
# number of particles in the subset:
length(df2$x)
## [1] 3366
# Example: Suppose have a square aperture; which particles
# stay inside the aperture?
df3 = subset(df, subset =
D*abs(del) + sqrt((x-D*del)^2 + Px^2 ) < rAp &
sqrt(y^2 + Py^2) <rAp )
plot(df3$x,df3$y,xlim=c(-60,60),asp=1,pch=".",col=df3$color)
hist(df3$del)
# Q: why is this the correct subset?
# Q: create df4, for the case of a round aperture
# Q: compare the number of particles that survive each df above
# Q: compare the rms momentum spread for each f above
# also, make histograms of each momentum distribution
# Q: change the kicker amplitude (Ak) and phase (phik) and
# look at the resulting momentum distribution for the
# case of a circular aperture