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Wake field in a bunch of particles
Consider a beam consists of N particles with the distribution function λ(z)
defined so that λ(z)dz gives the probability to find a particle near the point z ,∫
λ(z)dz = 1. Here we define positive z in the head of the beam, and negative

z in the tail. A particle located at z will interact with all other particles of the
beam through the wake11:

∆pz(z) = −
Ne2

c

∫∞
z

dz ′λ(z ′)w`(z
′ − z)

Note that we neglect the dependence of the wake on the transverse coordinates
of the test and source particles, implicitly assuming that the beam is thin (the
line charge model of the beam). In relativistic limit the energy change is
∆E(z) = c∆pz ,

∆E(z) = −Ne2

∫∞
z

dz ′λ(z ′)w`(z
′ − z) (4.1)

The negative sign here means that, with our convention on the signs, a positive
wake means energy loss.

11
Here we explicitly assume that the wake is behind the source particle; in a more general case use

∫∞
−∞ dz ′ . . ..
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Wake field in a bunch of particles

Later we will use the wake field of the bunch W ,

W`(z) =

∫∞
z

dz ′λ(z ′)w`(z
′ − z) (4.2)

Note the relation ∆E(z)/Ne2 = −W`(z). We can similarly define a transverse
wake field of the bunch, Wt .

Two important integral characteristics of the strength of the wake are the
average value of the energy loss ∆Eav (per particle) and the rms energy spread,
∆Erms, generated by the wake,

∆Eav =

∫∞
−∞ dz∆E(z)λ(z)

and

∆Erms =

[∫∞
−∞ dz(∆E(z) − ∆Eav)2λ(z)

]1/2

The energy loss for the whole bunch is N∆Eav.
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Loss factor

The loss factor is defined as

κloss = −
1

Ne2
∆Eav (4.3)

(the minus sign is chosen to make the loss factor positive).

Let us calculate κloss for a constant wake, w` = w0. From (4.2) we have

W`(z) = w0

∫∞
z

dz ′λ(z ′)

and12

κloss = w0

∫∞
−∞ dzλ(z)

∫∞
z

dz ′λ(z ′) =
1

2
w0

This explains why the factor κ in Eq. (3.11) is also called the loss factor
— this is the loss factor in the sense of (4.3) for very short bunches.

12
To calculate the integral use λ(z) = dψ(z)/dz with ψ(−∞) = 0 and ψ(∞) = 1.
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Transverse kick in a bunch of particles

Consider a beam passing through an element with an offset y which has
transverse wake w̄t(s). What is the deflection angle θ at the exit?

θ(z) =
∆p⊥(z)

p
=

1

cp

∫∞
z

dz ′Neλ(z ′) · eyw̄t(z
′ − z)

= y
Ne2

γmc2

∫∞
z

dz ′λ(z ′)w̄t(z
′ − z)

The averaged over the distribution function deflection angle is

θav = 〈θ〉 =
∫∞
−∞ dzθ(z)λ(z)

and the rms spread is

∆θrms = 〈(θ− θav)
2〉1/2

Similar to the loss factor, we define the kick factor,

κkick =
θav

y

γmc2

Ne2
=

∫∞
−∞ dzλ(z)

∫∞
z

dz ′λ(z ′)w̄t(z
′ − z) (4.4)
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Wake versus impedance

One often calculates the wake making the Fourier transform of the
Maxwell equations. This leads to the Fourier transforms of the wakes.
With a proper normalization factor, the Fourier transform of a wake is
called the impedance. It is also useful in stability analysis of the beams.

The longitudinal impedance has a physical meaning by itself: it is
proportional to the voltage induced by a sinusoidally modulated source
current on a sinusoidally modulated test one.

����

������

Both currents are sinusoidal waves
moving with the speed of light,
Is = Is0e

−iω(t−z/c),
It = It0e

−iω(t−z/c). The impedance
Z`(ω) = V /Is0 where V is the
voltage induced by the current Is0

on the current It0.
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Impedance definition

The longitudinal Z` and transverse Zt impedances are defined as Fourier
transforms of the wakes13

Z`(ω) =
1

c

∫∞
0

ds w`(s)e
iωs/c , Zt(ω) = −

i

c

∫∞
0

ds w̄t(s)e
iωs/c (4.5)

The integration can be actually extended into the region of negative
values of z , because w` and wt are equal to zero in that region.

Because the wakes are real, we have Z`(−ω) = Z ∗` (ω) and
Zt(−ω) = −Z ∗t (ω), or

ReZ`(ω) = ReZ`(−ω) ImZ`(ω) = −ImZ`(−ω)

ReZt(ω) = −ReZt(−ω) ImZt(ω) = ImZt(−ω)

13In principle, one can define a vectorial transverse impedance using the wake from
Eq. (3.2): Z t(ω) = −ic−1

∫∞
0

dz w t(z)e
iωz/c .
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Some Properties of Impedance

Impedance can also be defined in the upper half-plane of the complex
variable ω where Imω > 0. It is an analytic function there14.
The relation between the wakes and the impedances

w`(s) =
1

2π

∫∞
−∞ dωZ`(ω)e−iωs/c

w̄t(s) =
i

2π

∫∞
∞ dωZt(ω)e−iωs/c

14
This is true for classical wakes that are zero in front of the particle [and for the CSR wake in free space].
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Various definitions of wakes and impedances

Other authors often introduce definitions of wake and impedance that differ
from each other:

A. Chao—uses z = −s as the argument of w . His longitudinal wake
w` →W ′

0 , and the transverse one wt = −W1. The impedances agree with
ours. The same is for A. Wolsky, “Beam Dynamics in High Energy Particle
Accelerators”.

“Handbook of Accelerator Physics and Engineering” ed. by A. Chao et al.
Many articles use A. Chao’s conventions for the wake and impedance.

P. Wilson—Z` is complex conjugate of ours.

S. Heifets, S. Kheifets (Rev. Mod. Phys, 1991) — the transverse wake has
a different sign. The impedances are the same.

S. Kheifets and B. Zotter (Impedances and Wakes in High-Energy Particle
Accelerators, 1997)—the wake is the same, the impedance is a complex
conjugate.

E. Gianfelice, L. Palumbo. (IEEE Tr. N.S., 37, 2, 1084, (1990))—extra
factor (2π)−1 in Zt .
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Kramers-Kronig relations

The wake field can actually be found if only the real (or imaginary) part of the
impedance is known. Indeed, for arbitrary s ≶ 0

w`(s) =
1

2π

∫∞
−∞ dωZ`(ω)e−iωs/c (4.6)

=
1

2π

∫∞
−∞ dω

[
ReZ`(ω) cos

ωs

c
+ ImZ`(ω) sin

ωs

c

]
For s > 0 we have w`(−s) = 0. Substitute −s in (4.6),

0 =

∫∞
−∞ dω

[
ReZ`(ω) cos

ωs

c
− ImZ`(ω) sin

ωs

c

]
, s > 0

This means that for positive s

w`(s) =
1

π

∫∞
−∞ dωReZ`(ω) cos

ωs

c
=

2

π

∫∞
0

dωReZ`(ω) cos
ωs

c
, s > 0

Here we used the symmetry ReZ`(ω) = ReZ`(−ω).
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Kramers-Kronig relations

A similar derivation for the transverse wake gives

w̄t(s) =
2

π

∫∞
0

dωReZt(ω) sin
ωs

c

Since the wake can be found from ReZ , it means that there is a relation
between ReZ and ImZ

ReZ (ω)→ w(s)→ Z (ω)→ ImZ (ω)

These are called the Kramers-Kronig relations.

Problem: Express ImZ (ω) through ReZ (ω) following the approach outlined
above. Answer:

ImZ (ω) = −
1

π
P.V.

∫∞
−∞ dω ′

ReZ (ω ′)

ω ′ −ω
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Resonant mode impedance

Let us calculate the impedance corresponding to the resonant
wake (3.11)

Z`(ω) =
1

c

∫∞
0

ds w`(s)e
iωs/c

=
2κ
c

∫∞
0

ds e−αs/c+iωs/c

(
cos

ω̄s

c
−
α

ω̄
sin
ω̄s

c

)
=

2κ
ωR

[
2α

ωR
+ i

(
ωR

ω
−
ω

ωR

)]−1

=
R

1 + iQ
(
ωR
ω − ω

ωR

) (4.7)

where ωR =
√
ω̄2 + α2, R = κ/α - the shunt impedance, Q = ωR/2α.

For large Q, the impedance is peaked around ω = ±ωR .
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Resonant impedance

Resonant impedance for Q = 1 (solid) and Q = 10 (dashed). Blue
lines—ReZ`, red lines—ImZ`.

��� ��� ��� ��� ��� ��� ���

-����

-����

����

����

����

����

����

ω/ω�

�
�
�
�/
�
�
��
�
�/
�

In the limit of very large Q for ω > 0 we can approximate ReZ` by the
simple equation

ReZ` =
π

2

RωR

Q
δ(ω−ωR) = πκδ(ω−ωR) (4.8)

14



Impedance of transverse resonant wake

We can calculate the transverse impedance for the transverse resonant
wake (3.13) (we drop index n here)

Zt(ω) = −
i

c

∫∞
0

ds w̄t(s)e
iωs/c

= −
2iκt

c

∫∞
0

ds e−ωR s/2Qc+iωs/c sin
ω̄s

c

=
2κt

ωR

ω̄

ω

[
1

QωR
+ i

(
ωR

ω
−
ω

ωR

)]−1

=
ω̄

ω

Rt

1 + iQ
(
ωR
ω − ω

ωR

) (4.9)

where ωR = ω̄/
√

1 + (2Q)−2, Rt = 2Qκt/ωR (Rt has dimension
Ω/m). For large Q, the impedance is peaked around ω = ±ωR .

15



Energy Loss and ReZ`

The energy loss by a particle in a beam due to wake field is due to the real part
of impedance. Let us prove this. Start from Eq. (4.1)

∆E(z) = −Ne2

∫∞
z

dz ′λ(z ′)w`(z
′ − z). (4.10)

Average energy change in the bunch

∆Eav = −

∫∞
−∞ dzλ(z)

∫∞
−∞ dz ′Ne2λ(z ′)w`(z

′ − z)

= −Ne2

∫∞
−∞ dzλ(z)

∫∞
−∞ dz ′λ(z ′)

1

2π

∫∞
−∞ dωZ`(ω)e−iω(z ′−z)/c

= −
Ne2

2π

∫∞
−∞ dωZ`(ω)

∫∞
−∞ dzλ(z)e iωz/c

∫∞
−∞ dz ′λ(z ′)e−iωz ′/c

= −
Ne2

2π

∫∞
−∞ dωZ`(ω)|̂λ(ω)|2

where

λ̂(ω) =

∫∞
−∞ dzλ(z)e−iωz/c (4.11)
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Energy Loss and ReZ`

Since λ̂(−ω) = λ̂∗(ω), |̂λ(ω)|2 is an even function of ω and

∆Eav = −
Ne2

π

∫∞
0

dωReZ`(ω)|̂λ(ω)|2 (4.12)

An important property of the longitudinal impedance

ReZ`(ω) ≥ 0 (4.13)

The beam loses energy at all frequencies (assuming there is no
interaction of the beam with active medium, or feedback).
Note that Eq. (4.12) is the energy loss per one particle. If we want the
energy loss for the whole beam, we multiply it by N

∆Ebeam = −
Q2

π

∫∞
0

dωReZ`(ω)|̂λ(ω)|2 (4.14)

where Q = Ne is the beam charge.
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Energy loss for a point charge

The energy lost by the beam is equal to the energy deposited to the
source of the impedance.
For a point charge, λ(z) = δ(z), N = 1 and λ̂(ω) = 1, and the energy
loss is

∆E = −
e2

π

∫∞
0

dωReZ`(ω)

If we know the spectrum of the energy losses Esp(ω), we can find
ReZ`(ω)

∆E =

∫∞
0

dωEsp(ω)→ ReZ`(ω) = −
π

e2
Esp(ω) (4.15)

Using causality we can then calculate the wake through ReZ`(ω) (and
find ImZ`(ω)). In some cases this is the easiest way to calculate the
wake.
Another method is to consider a sinusoidally modulated beam,
λ(z) ∝ cos(kz) and calculate the power loss of such modulated current.
This power can be related to ReZ`(ck).
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Resonant heating in a ring

In a circular machine, the beam passes by each element every revolution
period, so we have to generalize (4.14) for multiple turns. For this, we
consider λ(z) as a periodic function of z with the period equal to the
circumference of the machine C and calculate the energy deposited over
r revolution periods. We then need to carry out the integration in (4.11)
over z from 0 to rC .

� ��

λ�(�) λ�(�-�) λ�(�-��)

z

λ(z) =
r−1∑
n=0

λb(z − nC )
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Resonant heating in a ring

Defining

λ̃(ω) =

∫C
0
λb(z)e

−iωz/cdz (4.16)

we obtain

λ̂(ω) = λ̃(ω)

r−1∑
n=0

e−iωnT0 = λ̃(ω)
1 − exp(−irT0ω)

1 − exp(−iT0ω)
, (4.17)

where T0 = C/c is the revolution period. In the limit of large number of
revolutions, r � 1, we have

|̂λ(ω)|2 = |̃λ(ω)|2
sin2(rT0ω/2)

sin2(T0ω/2)
→ rω0 |̃λ(ω)|2

∞∑
n=−∞ δ(ω− nω0),

(4.18)

with ω0 = 2π/T0.
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Resonant heating in a ring

Substituting this expression into (4.14) and defining the power as
P = −∆Ebeam/rT0 we obtain

P =
Q2

T 2
0

∞∑
n=−∞ |̃λ(nω0)|

2ReZ`(nω0). (4.19)

This formula also works when there are many bunches in the ring—then
Qλb in Eq. (4.16) is the charge distribution in all these bunches.
This result is important for calculation of heating in the ring of
high-current accelerators.
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How to compute the bunch wake using only impedance?
Assume that you know the (longitudinal) impedance as a function of frequency,
Z`(ω). You want to compute the ∆E(z) without calculation of the wake of a
point charge. Start from (4.2)

∆E(z) = −Ne2

∫∞
−∞ dz ′λ(z ′)w`(z

′ − z)

= −
Ne2

2π

∫∞
−∞ dz ′λ(z ′)

∫∞
−∞ dωZ`(ω)e−iω(z ′−z)/c ,

= −
Ne2

2π

∫∞
−∞ dωZ`(ω)λ̂(ω)e iωz/c (4.20)

where

λ̂(ω) =

∫∞
−∞ dz ′λ(z ′)e−iωz ′/c (4.21)

For a Gaussian bunch λ(z) = (2π)−1/2σ−1
z e−z2/2σ2

z

λ̂(ω) = e−ω
2σ2

z/2c2

(4.22)
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Why
∫
w(s)ds = 0?

Let us prove Eq. (3.9). Use (4.12) (integrate from −∞ to ∞)

∆Eav = −
Ne2

2π

∫∞
−∞ dωReZ`(ω)|̂λ(ω)|2

and take a very long Gaussian bunch with rms length σz . For a Gaussian
bunch we have Eq. (4.22). For a very long bunch this is a narrow function

|̂λ(ω)|2 = e−ω
2σ2

z/c
2 ≈
√
π
c

σz
δ(ω) (4.23)

Hence, with I0 = Nec/
√

2πσz the peak current in the beam,

∆Eav = −
Ne2c

2
√
πσz

ReZ`(0) = −
1√
2
eI0ReZ`(0) (4.24)
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Why
∫
w(s)ds = 0?

But when σz →∞ we are dealing with constant current → constant
magnetic field → no energy losses. Hence

ReZ`(0) = 0 (4.25)

Because ImZ` is an odd function of frequency ImZ`(0) = 0, hence
Z`(0) = 0. Using the definition of the impedance (4.5)

Z`(ω) =
1

c

∫∞
0

ds w`(s)e
iωs/c

we see that

Z`(0) =
1

c

∫∞
0

ds w`(s) = 0
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