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Lecture outline

Skin effect and the Leontovich boundary condition.

Parameter s0 and the resistive wall wake.

Longitudinal and transverse RW wake in the limit s � s0.
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Maxwell’s equations in metal

To understand interaction of a beam with a metallic wall, we need to
consider effects of finite conductivity, or resistive wall effect.
We start with quick derivation of the so called skin effect.
The skin effect deals with the penetration of the electromagnetic field
inside a conducting medium characterized by a conductivity σ and
magnetic permeability µ. We neglect the displacement current ∂D/∂t in
Maxwell’s equations in comparison with j :

∇×H = j , ∇ · B = 0 , ∇× E +
∂B
∂t

= 0 (5.1)

where B = µH . In the metal we have the relation between the current
and the electric field

j = σE (5.2)

Combining all these equations, one finds the diffusion equation for the
magnetic field B:

∂B
∂t

= σ−1µ−1∇2B (5.3)
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Skin effect
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A metal occupies a semi-infinite volume z > 0 with the vacuum at z < 0.
We assume that at the metal surface the x-component of magnetic field
is given by Hx = H0e

−iωt . Due to the continuity of the tangential
components of H , Hx is the same on both sides of the metal boundary,
that is at z = +0 and z = −0.

4



Skin effect

Seek solution inside the metal in the form Hx = h(z)e−iωt . Equation
(5.3) then reduces to

d2h

dz2
+ iµσωh = 0

with the solution h = H0e
ikz and

k =
√
iµσω = (1 + i)

√
µσω

2
≡ 1 + i

δ

Note that we’ve chosen Im k > 0 so that the field exponentially decays
into the metal. The quantity δ,

δ =

√
2

µσω
(5.4)

is called the skin depth; it characterizes how deeply the electromagnetic
field penetrates into the metal, |Hx | ∝ e−z/δ.
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Skin effect

In many cases, the magnetic properties of the metal can be neglected,
then µ = µ0

δ =

√
2c

Z0σω
(5.5)

The electric field inside the metal has only y component; it can be found
from the first and the last of Eqs. (5.1)

Ey =
jy
σ

=
1

σ

dHx

dz
=

ik

σ
Hx =

i − 1

σδ
Hx (5.6)

The mechanism that prevents penetration of the magnetic field deep
inside the metal is a generation of a tangential electric field, through
Faraday’s law, that drives the current in the skin layer and shields the
magnetic field.
In reality the metal has finite a thickness ∆: our results are valid for
∆� δ.
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The Leontovich boundary condition

The relation (5.6) can be rewritten in vectorial notation:

E t = ζH × n (5.7)

where n is the unit vector normal to the surface and directed toward the
metal, and

ζ(ω) =
1 − i

σδ(ω)
(5.8)

Eq. (5.7) is called the Leontovich boundary condition. Remember that ζ
is a function of ω — it is only applicable to the Fourier representation of
the field.
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Perfectly conducting metal

In the limit σ→∞ we have δ→ 0 and ζ→ 0 and we recover the boundary
condition (3.3) of the zero tangential electric field on the surface of a perfect
conductor. One can also show that in this limit the normal magnetic field is
zero on the surface of the metal15:

Bn = 0. (5.9)

The approximation of small δ is good for calculation of EM field of short
bunches (rapidly varying fields). It is not valid for a constant current (ω = 0).
When ω is small, the skin depth becomes much larger then the wall thickness t,
δ� t. The magnetic field penetrates through the metal, while the tangential
component of the electric field is zero on the surface.

At large frequencies the conductivity begins to depend on frequency — the so
called ac conductivity. At low temperatures there is an anomalous skin effect
where (5.2) does not work.

15
It follows from Faraday’s law of induction.
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Round pipe with resistive walls
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We need to solve Maxwell’s equations using the Lentovich boundary
conditions and to find the electric field Ez(s) behind the source charge to
calculate the longitudinal wake. The problem is easier solved in the
Fourier representation where one calculates the longitudinal impedance
Z`(ω).

In this problem, there is an important parameter s0 in this problem which
we now introduce using an order of magnitude estimate.
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Parameter s0

Consider a bunch of length σz with the peak current I propagating in the round
pipe a. What is the magnetic field Hθ on the wall (this field defines Ez on the
wall through the Leontovich boundary condition)? For a perfectly conducting
wall this field will be the same as in vacuum (Ampere’s law)

Hθ =
I

2πa
(5.10)

but the longitudinal electric field in the system changes the field through the
Maxwell equation

∇×H = j +
∂ε0E
∂t

which involves the displacement current in z direction ∂ε0Ez/∂t. Let us
estimate Ez from the boundary condition, Ez ∼ ζ(ω)Hθ. We estimate
∂/∂t ∼ ω ∼ c/σz . When we integrate jz through the cross section of the pipe
we get the current I . We now integrate ∂ε0Ez/∂t through the cross section:

∼ a2 c

σz
ε0

1

σδ

I

a
∼ a

c

σz
ε0

1

σ
√

2c
Z0σω

I ∼ a
c

σz
ε0

1

σ
√

2σz

Z0σ

I

This term is of the order if I when
10



Round pipe with resistive walls

σz ∼
a2/3

(Z0σ)1/3

Here comes the parameter

s0 =

(
2a2

Z0σ

)1/3

(5.11)

For σz � s0 the magnetic field of the beam on the wall is very close to
the vacuum one, Eq. (5.10). For σz . s0 this field is suppressed by the
displacement current. RW wake looks different for distances s � s0 and
s . s0.

For a = 5 cm

Metal Copper Aluminium Stainless Steel

s0, µm 60 70 240
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Round pipe with resistive walls

A. Chao calculated the longitudinal impedance valid for a� δ,

Z`(ω) =
Z0s0

2πa2

(
isgn(κ) + 1

|κ|1/2
−

iκ

2

)−1

(5.12)

where κ = ωs0/c . Remarkably, this impedance depends only on the
scaled frequency κ. Making the Fourier transform of the impedance, one
finds the wake per unit length16

w`(s) =
Z0c

4π

16

a2

(
1

3
e−s/s0 cos

√
3s

s0
−

√
2

π

∫∞
0

dx x2

x6 + 8
e−x2s/s0

)
, s > 0

(5.13)

[Prove that the integral of this wake is equal to zero.]

16
K. L. F. Bane and M. Sands. The Short-Range Resistive Wall Wakefields. SLAC-PUB-95-7074, Dec. 1995
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Field lines
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Here −s is the distance behind the point charge located at s = 0
(courtesy of K. Bane). Note that the field changes sign 3 times and then
remains accelerating at −s & 4.3.
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Longitudinal resistive wall wake

The wake at the origin,

w`(0) =
Z0c

πa2

does not depend on the
conductivity!
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Limit s � s0 is

w` = −
c

4π3/2a

√
Z0

σs3
(5.14)

σ is the conductivity. Negative wake means acceleration of the trailing charge.
This limit corresponds to the approximation κ� 1 in the impedance,

Z`(ω) =
Z0s0

2πa2

|κ|1/2

isgn(κ) + 1
=

1

4πa

(
2Z0|ω|

cσ

)1/2

(1 − isgn(ω)) (5.15)
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Transverse resistive wall wake

Resistive wall transverse wake for s � s0 is

w̄t =
c

π3/2a3

√
Z0

σs
(5.16)

For, s0 & s the wake is shown in the
figure.
Slope at the origin

dw̄t

ds

∣∣∣∣
s=0

=
2Z0c

πa4
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The transverse impedance in the limit s � s0 is

Zt(ω) =
1 − isgn(ω)

2πa3

√
2Z0c

σ|ω|
(5.17)
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Universal values of the wake at the origin

We obtained the following results for the wake w` and the derivative
dw̄t/ds at the origin for the resistive wall:

w`(0) =
Z0c

πa2

dw̄t

ds

∣∣∣∣
s=0

=
2Z0c

πa4
(5.18)

It turns out that these results are also valid in other situations: a metal
wall covered by dielectric, a corrugated wall, a periodic sequence of round
diaphragms (a model of RF structure)17. In all cases we talk about the
limit s → 0. However, the effective value of s0 is different for different
problems.

17
A generalization for other cross sections can be found in: Baturin and Kanareykin, PRL 113, 214801 (2014).
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Resistive wall wake and a Gaussian bunch

As an example, let us calculate ∆Eav and ∆Erms for the resistive wall
wake given by Eq. (5.14) and a Gaussian distribution function,

λ(z) =
1√

2πσz
exp

(
−

z2

2σ2
z

)
(5.19)

where σz is the rms bunch length. Note that, since w` in Eq. (5.14) is
the wake per unit length of the pipe, we need to multiply the final answer
by the pipe length L.
We assume σz � s0. A direct substitution of the wake Eq. (5.14) into
Eq. (4.1) gives a divergent integral when z ′ → z . This divergence is
caused by the singularity of Eq. (5.14) at s = 0 where it is not valid,
(remember that s � s0).
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Resistive wall wake and a Gaussian bunch

One way to fix this singularity is to use the correct expression for the wake at
s . s0. A simpler, although more formal, approach is to represent w` as a
derivative of another function (see Eq. (3.5)), w` = V ′(s) with
V = (c/2π3/2a)

√
Z0/σs for s > 0, and V = 0 for s < 018. We then rewrite Eq.

(4.1) as

∆E(z) = −Ne2L

∫∞
−∞ dz ′λ(z ′)

dV (z ′ − z)

dz

= Ne2L

∫∞
z

dz ′
dλ(z ′)

ds
V (z ′ − z)

=
Ne2Lc

√
Z0

23/2π2aσ
3/2
z σ1/2

G

(
z

σz

)
(5.20)

where the function G (x) is

G (x) = −

∫∞
x

ye−y2/2dy√
y − x

18
We should have V (∞) − V (−∞) = 0 because the area under the wake is zero.
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Resistive wall wake and Gaussian bunch

Plot of the function G (s/σz). The positive values of s correspond to the
head of the bunch.
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Particles lose energy in the head of the bunch (s > 0) and get accelerated
in the tail (s < 0). On average, of course, the losses overcome the gain.
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Resistive wall wake and Gaussian bunch

For the average energy loss one can find an analytical result:

∆Eav = −
Γ(3

4)

25/2π2

Ne2c
√
Z0L

aσ
3/2
z σ1/2

(5.21)

Numerical integration of Eq. (5.20) shows that the energy spread
generated by the resistive wake is approximately equal to ∆Eav :

∆Erms = 1.06|∆Eav | (5.22)
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Calculation of the bunch wake for resistive wall

Do we make a mistake when calculate the energy loss ∆E(z) using the
wake in the limit s � s0 and integrating by parts (see (5.20))? Is it
better to use a more accurate wake valid for arbitrary s?
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Magenta – σz = s0; black – σz = 2s0; blue – σz = 3s0; red – this limit
s � s0.
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Longitudinal RW wake in a rectangular vacuum chamber

See derivations in19.
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�� Consider a rectangular vacuum
chamber with dimensions 2a× 2b.
We consider the limit s � s0,

w` = −F

(
b

a

)
c

4π3/2b

√
Z0

σs3

(5.23)
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19
Gluckstern, Zeijts and Zotter. PRE, 47, 656 (1993)
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Transverse RW wake in a rectangular vacuum chamber

When all particles have the same offset,
the wake is given by Eqs. (3.10)

wy (s, y) = [w̄d
y (s) + w̄q

y (s)]y

wx(s, x) = [w̄d
x (s) + w̄q

x (s)]x

Again, we consider the limit s � s0.
Introduce

u(s) =
c

π3/2b3

√
Z0

σs

(see Eq. (5.16)).
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Fdx

Fdy

Fqx

wd
x (s) = Fdx

(
b

a

)
u(s) (5.24)

wd
y (s) = Fdy

(
b

a

)
u(s)

wq
x (s) = −wq

x (s) = Fqx

(
b

a

)
u(s)

Parallel plates limit:
Fdx(0) = Fqx(0) = π

2/24,
Fdy (0) = π

2/12.
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