

Lecture 7 Thermal Insulation & Cryostat Basics

J. G. Weisend II

Goals

- Introduce conduction, convection & radiation heat transfer as they apply to cryogenics
- Describe design techniques to reduce heat transfer into cryogenic devices
- Allow the estimating and scaling of heat leaks into cryogenic devices
- Discuss the basics of cryostat design
- Warning! Not a full description of heat transfer
 - Many topics (boiling, detailed convection calculations, complicated geometries in radiation heat transfer etc) won't be covered
 - Should, however, be a good example of how heat transfer theory can be applied to practical problems.

Three Ways to Transfer Heat

- Conduction
 - Heat transfer through solid material
- Convection
 - Heat transfer via a moving fluid
 - » Natural or free convection motion caused by gravity (i.e. density changes)
 - » Forced motion caused by external force such as a pump
- Radiation
 - Heat transferred by electromagnetic radiation/photons
- There is no such thing as a perfect insulator though we can design systems with very small heat leaks
- All matter above 0 K radiate heat
 - \bullet Remember we can't get to 0 K 3^{rd} Law of Thermodynamics though we can get vanishingly close
- Heat flows from high temperature to low
 - Heat leaks in, cold doesn't leak out

Conduction Heat Transfer

Fundamental Equation – The Fourier Law in one dimension

$$Q = -K(T)A(x)\frac{\partial T}{\partial x}$$

• If we assume constant cross section we get: $Q = -A/L \int_{T}^{T_H} K(T) dT$

- Reduce conduction heat leak by:
 - Low conductivity material: make K(T) small
 - Reduce cross sectional area: make A small
 - Increase length: make L large
 - For a given T_C make T_H smaller: i.e. use intermediate temperature heat intercepts
 - » You still have heat leak from 300 K to this intermediate temperature but <u>remember</u> <u>Carnot</u>, It's more thermodynamically efficient to remove heat at higher temperatures

Design Example ILC Cryomodule Support Post

- Total Heat Leak (conduction & radiation)
 - 70 K 10.5 W
 - 5 K 0.9 W
 - 2 K 0.03 W
- Can support up to 50 kN

Conduction Heat Transfer

 Conduction heat leaks may be estimated by the use of Thermal Conductivity Integrals (Lecture 4)

$$Q = -G(\theta_1 - \theta_2)$$

Convection Heat Transfer

Fundamental Equation: Newton's law of cooling

$$Q = hA(T_{surface} - T_{fluid})$$

- where h is the heat transfer coefficient and is a function of Re, Pr, geometry etc depending on the situation
- In cryogenics we eliminate convection heat leak in cryogenic systems by "simply" eliminating the fluid – vacuum insulation
- Using vacuum insulation to create vessels capable of storing cryogenic liquids was first done by James Dewar – who liquefied hydrogen
 - Such vessels are frequently called dewars though not always, more later
 - Thermos bottles are a simple example of this approach

Design Example Vacuum Insulated Test Cryostat

- Contains 3 Vacuum Spaces
 - 1 between 300 K wall and LN₂ bath
 - 1 between LN₂ bath and LHe bath
 - 1 between LHe bath and experiment

Vacuum Insulation

- How much vacuum is enough?
 - This of course depends on the heat leak requirements but generally we want to be below 10⁻⁵ torr If we maintain this level or better we can generally neglect the convection heat leak for most applications.
 - » Cryogenic Engineering, Flynn (1997) has a good discussion of calculating heat leak due to residual gas pressure

Cryopumping

- At cryogenic temperatures almost all common gases condense and freeze onto the cold surface. Typically, we'll see that once surface are cooled to ~ 77 K the isolation vacuum will drop to the 10-8 torr or better range if the system is leak tight and doesn't have significant outgassing
- But don't just start cooling with everything at room pressure
 - » Heat leak will likely be too high
 - » Safety hazards due to enrichment of LOX on cold surfaces
 - » Large amounts of condensed gases in vacuum space can lead to other problems including rapid pressure rise upon warming and possible solid conduction
 - » Best practice is to be at least 10⁻³ torr before cooling, lower pressures are better but there may be operational tradeoffs

 Lecture 7 | Thermal Insulation & Cryostat Basics- J. G. Weisend II

Outgassing and Getters

- All material outgas into a vacuum. This can raise the pressure in a sealed vacuum space
- Reduce outgassing by:
 - Minimize amount of polymers, wire insulation, FRP etc difficult
 - Keep vacuum surfaces as clean as possible. Remove any oil or cutting fluid, wear gloves etc.
- Getters: materials inserted into vacuum spaces to remove residual gas at low pressures
- In cryogenic systems, getters may be useful in removing residual gas and passively managing small leaks

Outgassing and Getters

- 3 types of getters
 - Adsorbers –gas bonds to surface
 - » Activated charcoal, silica gel
 - » Effectiveness increases with decreasing temperature good for cryogenic systems
 - Chemical getters chemical reaction between material and gas
 - » Ba & other Alkali metals not very common in cryogenics
 - Solution or absorber getters gas is absorbed in interstitial space of metals
 - » Ti, Zr, Th works well with H₂, O₂ and N₂
 - » Much better at room temperature
 - » Occasional use in room temperature applications in cryogenic systems

Getters, Cryogenics and Gilligan's island

- It turns out that one of the most common and effective materials used for getters of low pressure He gas is activated charcoal made from coconut husks.
- There is a significant amount of this material in the LHC magnet cryostats

The Professor says: "Lets look for the Higgs!"

Foam & Other Insulation Methods

- Not all cryogenic systems use vacuum insulation
- This is particularly true of storage vessels for fluids other than helium
- Reasons for using alternatives to vacuum insulation
 - Cost
 - Weight Space shuttle main tank
 - Required hold time related to size
 - Complex vessel shapes
- Some solutions
 - Expanded closed or open cell foams
 - Rock wool, fiberglass or other porous material
- These all require vapor barriers to prevent air from being pulled into the insulation and condensed (can cause both a safety hazard via O₂ enrichment & reduce effectiveness)

Design Example: Complex Foam Insulation System: LH₂ Tank for 2nd Stage Saturn V

From Cryogenic Engineering, Flynn

- Allows helium purging of the insulation
- Weight ~ 4.15 kg/m²
- Performance: measured effective thermal conductivity (0.86 1.1 mW/cm K) at T_{av} = 144 K Note this includes conduction, convection and radiation heat transfer

- Frequently the largest source of heat leak to cryogenic systems
- Fundamental Equation: Stefan-Boltzmann Law energy emitted from an ideal black body: $E_b = \sigma T^4$ where $\sigma = 5.67x10^{-8}$ W/m²K⁴
 - Real world Assumptions:
 - » Emissivity (ε) << 1 and independent of wavelength (grey body)
 - » Two parallel infinite plates: Radiative heat flux (W/m²)

Eq. A
$$q_r = \left(\frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2 - \varepsilon_1 \varepsilon_2}\right) \sigma \left(T_1^4 - T_2^4\right)$$

» Frequently in cryogenic systems $\varepsilon_1 \sim \varepsilon_2 << 1$ then Eq. A becomes:

Eq. B
$$q_r = \left(\frac{\varepsilon}{2}\right) \sigma \left(T_1^4 - T_2^4\right)$$

» Two long concentric cylinders or concentric spheres (1 represents the inner cylinder): the radiative heat flux (W/m²) on the inner cylinder is

Eq. C
$$q_1 = \left(\frac{\sigma\left(T_1^4 - T_2^4\right)}{\frac{1}{\varepsilon_1} + \left(\frac{A_1}{A2}\right)\left(\frac{1}{\varepsilon_2} - 1\right)}\right)$$

» Note as is frequently the case in cryogenics, if the spacing between the cylinders is small compared to the inner radius (i.e. $A_1 \sim A_2$) Eq. C becomes Eq. A

- Looking at Eq. A, How do we reduce the radiation heat transfer?
- We could reduce the emissivity (ε)
 - This is done in some cases; using either reflective tape or silver plating
 - Better below 77 K
 - It's also part of MLI systems (see below)
 - We have to consider tarnishing
 - May be labor intensive

From Helium Cryogenics - S. W. Van Sciver

- Another way to reduce radiation heat transfer is to install intermediate actively cooled radiation shields that operate at a temperature between 300 K and the lowest cryogenic temperature. This has several advantages.
 - It greatly reduces the heat load to the lowest temperature level
 - » Assume parallel plates with $\varepsilon = 0.2$
 - » then from Eq. B q (300 K 4.2 K) = 46 W/m² while q (77 4.2) = 0.2 W/m²
 - It allows heat interception at higher temperatures & thus better Carnot efficiency
 - Such an actively cooled shield provides a convenient heat intercept for supports, wires etc to reduce conduction heat leak.
- Shields may be cooled by
 - Liquid baths (LN₂)
 - Vapor boil off from stored liquid common in LHe storage dewars
 - Cooling flows from refrigeration plants
 - Conductive cooling via small cryocoolers

Examples of Cooled Radiation Shields

- LN₂ bath surrounds inner LHe or LH₂ bath
- Baths are separated by a vacuum insulation space

- Shield is cooled by boil off gas from stored cryogen
 - Spacing of cooling tubes on shield may be calculated by: $\Delta T = qL^2/2kt$
 - » ΔT = max allowable temperature difference between any point on shield and tube
 - » q = heat flux on shield
 - » k = shield thermal conductivity
 - » $L = \frac{1}{2}$ max tube spacing
 - » t = shield thickness

From Cryogenic Engineering, Flynn

Lecture 7| Thermal Insulation & Cryostat Basics- J. G. Weisend II

Thermal Radiation Shields

- Uncooled thermal radiation shields placed in a vacuum space between the warm & cold surfaces also help reduce the thermal radiation heat leak
- It can be shown (with the grey approximation and equal emissivities) that with N shields thermal radiation heat transfer is given by:

$$q = \frac{\varepsilon}{(N+1)2} \sigma \left(T_H^4 - T_L^4 \right)$$

This is the motivation behind Multilayer Insulation

MultiLayer Insulation

- Also referred to as superinsulation
- Used in the vacuum space of many cryostats (10⁻⁵ torr or better for best performance)
- Consists of highly reflective thin sheets with poor thermal contact between sheets.
 - Made of aluminized Mylar (or less frequently Kapton)
 - May include separate non conducting mesh
 - May use Mylar aluminized on only one side and crinkled to allow only point contacts between sheets
 - Frequently perforated to allow for better pumping
- Can be made up into blankets for ease of installation
- Don't pack MLI too tightly. Optimal value is ~ 20 layers / inch
- Great care must be taken with seams, penetrations and ends.
 - Problems with these can dominate the heat leak

MLI

Examples of Proper MLI Installation

From "Cryogenic Engineering" in Wiley Mechanical Engineer's Handbook

MLI Example from LHC cryostats

"SERIES-PRODUCED HELIUM II CRYOSTATS FOR THE LHC MAGNETS: TECHNICAL CHOICES, INDUSTRIALISATION, COSTS" A. Poncet and V. Parma Adv. Cryo. Engr. Vol 53

Porous Insulation

- Radiation heat transfer may also be reduced by filling the vacuum space between 300 K and cryogenic temperatures with other materials that are low conductivity and block line of sight
- Such materials include:
 - Glass beads or microspheres
 - Perlite powder (made from a volcanic rock)
 - Opaciated powders copper or other metallic flakes mixed in with other powders to further reduce radiant heat transfer
 - Aerogel
- Advantages:
 - Cheaper
 - Easier to install in complex shapes
 - Better performance than MLI in poor or no vacuum
- Frequently used in large storage and transport dewars

Porous Insulation

The total heat transfer through porous insulation between 2 spheres may be estimated by:

$$W = \frac{\overline{k}(T_2 - T_1)}{t} \sqrt{A_1 A_2}$$

- Where
 - t = thickness of Insulation
 - \overline{k} = the mean thermal conductivity
 - 1 = inner vessel and 2 = outer vessel
- Mean thermal conductivities may be found in references such as <u>Cryogenic Engineering</u> by Flynn

Comparison of Thermal Insulation Approaches (6 inch thick insulation in all cases)

	Total Heat Flux (W/m²)	
Type of Insulation	300 K to 77 K	77 K to 20 K
Polystyrene Foam (2 lb/ft ³)	48.3	5.6
Gas Filled Perlite powder (5 – 6 lb/ft ³ filled with He)	184.3	21.8
Perlite powder in vacuum (5 – 6 lb/ft³)	1.6	0.07
High Vacuum (10 ⁻⁶ torr $\epsilon = 0.02$)	9	0.04
Opacified powder (Cu flakes in Santocel)	0.3	-
MLI	0.03	0.007

Increasing Cost & Complexity

Note better performance of evacuated Perlite over high vacuum between 300 K & 77 K

Cryostat Design

- What is a cryostat?
 - A device or system for maintaining objects at cryogenic temperatures.
- Cryostats which contain superconducting RF systems are traditionally called cryomodules (term originally coined by Jlab)
- Cryostats whose principal function is to store cryogenic fluids are frequently called Dewars. Named after the inventor of the vacuum flask and the first person to liquefy hydrogen

E158 LH₂ Target Cryostat

Cryostat Design

- Cryostats are one of the technical building blocks of cryogenics
- Cryostat design involves many subtopics:
 - Development of requirements covered here
 - Materials selection already covered
 - Thermal insulation already covered
 - Support systems covered here
 - Safety covered in a future lecture
 - Instrumentation covered in a future lecture
- One of the best ways to learn about cryostat design is through examples (see next 2 talks) Also:
 - Cryostat Design J.G. Weisend II (Ed) Springer (2016)
- There are many different types of cryostats with differing requirements
 - The basic principles of cryostat design remain the same
 - Before we can do anything else we have to define our requirements

Cryostat Requirements

- Maximum allowable heat leak at various temperature levels
 - This may be driven by the number of cryostats to be built as well as by the impact of large dynamic heat loads (SCRF or target cryostats)
- Alignment and vibration requirements
 - Impact of thermal cycles
 - Need to adjust alignment when cold or under vacuum?
 - Alignment tolerances can be quite tight (TESLA :
 - +/- 0.5 mm for cavities and +/- 0.3 mm for SC magnets)
- Number of feed throughs for power, instrumentation, cryogenic fluid flows, external manipulators

Cryostat Requirements

- Safety requirements (relief valves/burst discs)
 - Design safety in from the start. Not as an add on
- Size and weight
 - Particularly important in space systems
- Instrumentation required
 - Difference between prototype and mass production
- Ease of access to cryostat components
- Existing code requirements (e.g. TUV or ASME)
- Need, if any, for optical windows
- Presence of ionizing radiation

Cryostat Requirements

- Expected cryostat life time
- Will this be a one of a kind device or something to be mass produced?
- Schedule and Cost
 - This should be considered from the beginning

All Design is Compromise