Lecture 2
Properties Of Cryogenic Fluids

J. G. Weisend II
Goals

• Introduce basic definitions used in describing cryogenic fluids & their properties
• Describe important fluid properties and their variation with temperature and pressure
• Introduce the law of corresponding states
• Describe where fluid properties may be found
• Mention unique properties of Hydrogen & Helium (more in later lectures)
Introduction

- Due to the wide temperature & pressure ranges covered by cryogenics the properties of fluids vary greatly – we generally can’t assume constant properties.
- Understanding changes in the thermodynamic state of the fluids allows us to describe refrigeration and liquefaction cycles.
- With the exception of Helium and Hydrogen, pure cryogenic fluids act as classical Newtonian fluids.
- Fluid properties are well known (mostly) & many resources exist.
Typical Properties

- Density
- Specific Heat
- Enthalpy \((h \text{ (J/kg))})\): \(h = u + Pv\)
- Entropy \((s \text{ (J/Kg K)})\): In a reversible process: \(ds = dQ/T\)
- Thermal Conductivity
- Viscosity
Some Definitions

• Supercritical Fluid: a fluid that may no longer be thought of as a liquid or a gas but only as a fluid. Such a fluid is either above its critical temperature or critical pressure or both.
 – The accuracy of calculated thermodynamic values becomes relatively inaccurate around the critical point
• Subcooled or Pressurized Liquid: A liquid whose temperature or pressure places it below the saturation curve
• Triple Point: The point in thermodynamic space in which the solid, liquid and vapor phases of a substance coexist.
• T-S (temperature – entropy) Diagram: Used to both display graphically fluid properties and frequently to describe refrigeration cycles
• Isenthalpic Expansion: changing from high to low pressure along a line of constant enthalpy
Some Definitions

- **Isentropic Expansion**: changing from high to low pressure along a line of constant entropy
- **1st Order Phase Transition**: A change in phase in which there is a discontinuity in the specific heat and which requires latent heat
- **2nd Order Phase Transition**: No discontinuity in specific heat and no latent heat is required
Some Key Parameters of Cryogenic Fluids

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Normal Boiling Point (K)</th>
<th>Triple Point (K)</th>
<th>Critical Temperature (K)</th>
<th>Critical Pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krypton</td>
<td>119.8</td>
<td>115.8</td>
<td>209.4</td>
<td>5496</td>
</tr>
<tr>
<td>Methane</td>
<td>111.6</td>
<td>90.7</td>
<td>190.6</td>
<td>4599</td>
</tr>
<tr>
<td>Oxygen</td>
<td>90.2</td>
<td>54.4</td>
<td>154.6</td>
<td>5043</td>
</tr>
<tr>
<td>Argon</td>
<td>87.3</td>
<td>83.8</td>
<td>150.9</td>
<td>4906</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>77.4</td>
<td>63.2</td>
<td>126.3</td>
<td>3399</td>
</tr>
<tr>
<td>Neon</td>
<td>27.1</td>
<td>24.6</td>
<td>44.4</td>
<td>2703</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>20.3</td>
<td>13.8</td>
<td>32.9</td>
<td>1283.8</td>
</tr>
<tr>
<td>Helium</td>
<td>4.2</td>
<td>N/A</td>
<td>5.2</td>
<td>227.46</td>
</tr>
</tbody>
</table>
Generic T-S diagram Showing Isenthalps, Isobars and 2 Phase Region
T-S Diagram for Nitrogen

June 2019

Lecture 2 | Properties of Cryogenic Fluids - J. G. Weisend II

9
T S Diagram illustrating a Refrigeration Cycle
The Law of Corresponding States

• With the exception of helium and hydrogen, the properties of cryogenic fluids can be scaled from one fluid to another with a fair accuracy provided the properties have been normalized (typically by the critical properties of the fluid).

• This is useful in looking at the general shape of properties.
Normalized Density of Oxygen as a Function of Pressure & Temperature
Cp/R for Oxygen as a Function of Pressure & Temperature
Thermal Conductivity of Oxygen
Equations of State

• Allow calculation of all thermodynamic state properties
• In theory, are based on the interactions of a molecule with its neighbors
• In reality, are highly empirical
 – A simple example is the ideal gas law:
 \[A(\rho,T) = RT (\log \rho - a \log T + S_0) \]
• \(a = 3/2 \) for a monatomic gas, \(5/2 \) for a diatomic etc.
• Best calculated via computer codes
• The use of computer codes to generate properties (based typically on equations of states and empirical data) is the most common way to find fluid properties today

• Examples include:
 – NIST – 12 National Institute for Standards & Technology
 – GASPAK & HEPAK from CryoData
 http://www.htess.com/software.htm
 – An interactive website also from NIST should suffice for this class
Additional Sources for Cryogenic Fluids Data

 - This is a detailed bibliography for cryogenics material properties and includes fluids
- **Thermodynamic Properties of Cryogenic Fluids**, R. Jacobson et al.,
Special Case # 1: Hydrogen

- Exists in two molecular states:
 - orthohydrogen – nuclear spins parallel
 - parahydrogen – nuclear spins antiparallel
- At 300 K: 75% ortho and 25 % para
- At cryogenic temperatures: parahydrogen is the lowest energy state
 - Conversion from ortho to para is slow and exothermic
- H₂ liquefiers typically include a catalyst (e.g. nickel silicate) to speed up conversion
- Thermodynamic properties of ortho and para hydrogen are significantly different
Special Case #2: Helium

Liquid Helium exhibits quantum properties

- Requires high pressure for solidification
 - Why?
 - The zero point energy associated with the Heisenberg Uncertainty Principal ($\Delta P \Delta X \sim h$) for helium at room pressures is greater than the energy required to melt helium. Thus, it won’t solidify.
 - Roughly 20 Atm of pressure are required.
 - The fact that Helium remains a liquid all the way down to 0 K has significant technological advantages

- Helium has a second liquid phase (He II)
 - This comes about as a result of some of the atoms condensing into the lowest ground state (very similar to Bose-Einstein Condensation)
 - Is a second order phase transition: thus no latent heat is required
 - He II (aka superfluid helium) has many unique & useful properties
 - More information in a later lecture
P-T Diagram for Helium