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Outline

* Test dewars and test stands
— Saturated bath test dewars
— Double bath test dewars
— SRF test cryostats
— SRF cryomodule test stands
— Horizontal magnet test stands

* Procurement and assembly
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Saturated bath vs. subcooled

» Accelerator magnets are often cooled with
subcooled liquid

— Typically working near the limit of the superconductor
with large stored energy

— Ensure complete liquid coverage and penetration

* Superconducting RF cavities are generally cooled
with a saturated bath

— Large surface heat transfer in pool boiling for local “hot
spots”

— Very stable pressures, avoid impact pressure variation
on cavity tune
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Saturated bath dewar

* Simple, 1n principle

— Essentially a “bucket” of liquid helium
* Entirely at saturation pressure
* Very stable pressure and temperature

» Low heat load due to simple “hanging”
construction of inner vessel
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Saturated bath RF
cavity test dewar

4.5 K to 2 K heat exchanger
(pumped flow precooling supply)

\

Supply helium phase separator

— Liquid helium space with RF cavity

N
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Saturated bath dewar schematic
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Saturated bath dewar i1ssues

e Subatmospheric if less than 4.2 K

— Many potential air inleaks 1f <4.2 K

— Air inleak may appear as operational problem without a
clear cause

* For example, low pump-down or cool-down rate
* Large volume of liquid presents venting problem
with loss of insulating vacuum to air

— As much as 4 W/sq.cm. heat deposition on bare surface

— Venting may be a design challenge for a low pressure
vessel (large pipes, etc.)

— We use MLI even under a thermal shield in order to
reduce venting flow rate with loss of vacuum
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* 4.4 K liquid above 1.2
bar, 2 K liquid

* So 2 K liquid 1s
subcooled, single
phase liquid

44 K above 1s
saturated

* Separated by a
“lambda plate”

 Also low heat load
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Double-bath dewar

* Mostly positive pressure

— Provides subcooled liquid

* Seal between 4.3 K and sub-lambda regions
1S a heat transfer barrier
— Need not be hermetically tight

— Key feature 1s to provide long, thin path for
heat transport, so leaks should be long

— Flat seal rather than “knife-edge”
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Double-bath control screen
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insert assembly

* Top plate

e (Closed-foam
(Rohacel)
insulation

e 4.4 K vapor space
* Lambda plate

* Magnet

Displacer
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Lambda plate
assembly

» Lambda plate
and seal (blue)

* Intermediate
support plate

* Copper clad
magnet (for
cooldown)
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Lambda plate
assembly

another view

» Lambda plate
and seal (blue)

* Intermediate
support plate

* Copper clad
magnet (for
cooldown)
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Pressurized SF cooldown
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Pressurized SF warm-up

e Sub-lambda point

warm-up shows

non-linear effects
— SF heat transport
— Heat capacity

— Pressurization of
associated
saturated bath

* But essentially

1sothermal SF bath

1s excellent
calorimeter
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Quench Current (A)
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Double-bath dewar 1ssues

* Subatmospheric portion of dewar 1s more
limited than 1n the completely saturated
bath dewar, so less extensive but still
important to be leak tight

 Heat transport via a “lambda” seal between
normal and SF 1s a problem
— Seal must be tight with long leak paths

— Heat loads come from various sources, so
difficult to distinguish lambda seal leak from

others

June, 2019 Superconducting Test Stand Design 20
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Barriers between superfluid and normal fluid

« Lambda plate, lambda plug (detailed example in part 3),
check valve (later in this talk)

 [f the barrier plane 1s oriented horizontally and the 4.5 K
bath above 1s quiescent, the bath above slowly stratifies to
2.17 K just above the barrier

e In fact one can operate a “double bath” without a lambda
plate down to 2.2 K
— A 2 K heat exchanger below the surface will subcool the liquid
— There will still be a 4.4 K layer and positive vapor pressure on top
-- vapor and liquid surface equilibrium
« Fermilab routinely tests magnets in subcooled liquid in the
positive pressure vertical dewar

June, 2019 Superconducting Test Stand Design 21
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Some Common Thermal
Prediction Errors

Thermal intercept temperature
assumption, overestimating
conduction, free convection thermal
“short”, incidental contact



Thermal intercept temperatures

* A common source of underestimated heat loads 1s
analysis which assumes 1deal thermal intercept
temperatures, for example 77 K or even 80 K for
an LN2 thermal intercept, when 1n fact due to
thermal resistance of long thermal strap
connections, nitrogen or helium pressure, or other
factors, the thermal intercept temperature 1s higher
than assumed.

* The following example for the vertical test
cryostat which I just described illustrates the 1ssue.

June, 2019 Superconducting Test Stand Design 23
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Analysis for two sets of assumptions

stainless thermal cond integral T-warm  T-cold Integ K
f K1, K1, i I (WS 4.5 1.8 0.0047
Compare calculated rom (16, to (), integral (W/fem) = 0005
. 6.0 1.8 0.0097
heat loads with thermal =
. 80.0 4.5 3.4970
intercepts at 100 K vs 1000 45 5.2800
300.0 80.0 2711
80 K and at 6 K VS 300.0 100.0 25.32
4‘ 5 K ratio of thermal cond integrals ratio
. to TBK, fromB Kvs 45K 2.0638
Not a huge dlfference, to 4.5 K, from 100 K vs 80 K 1.5099
. . e from 300 K, to 100 K vs BO K 0.934
quite realistic.
ratio of thermal radiation to S K or 2 K ratio
tolow T, from 100 K vs from BO K 24474
June, 2019 Superconducting Test Stand Design 24
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Estimated heat for test dewar

Assumed intercept temperature, 80K (4.5 K 100 K B K
Data below from original estimates
Heat to temperature level (Watts) Heat to temperature level (Watts)

source or mechanism for heat flow B0 K 4.5 K 1.8 K B0 K 4.5 K 1.8 K
Current leads 2.30 2.50
Conduction down magnet supports 17.42 1.12 0.02 16.27 1.69 0.02
Conduction down vessel walls 71.67 7.30 0.00 bG.94 11.02 0.00
Cond through G-10 lambda-plate (2") 0.94 (.94
Cond thru stainless lambda seal ring 0.50 0.50
Helium gas conduction 31.8 3.20 51.9 4,00

Thermal radiation from sides 8.60 0.10 0.72 8.60 0.24 1.76
Thermal radiation from top 1.00 1.00
Conduction down nitrogen CD line 0.31 .47

Heat to He ll via lambda plate "leaks™ 5.00 5.00
Warmugp/sTill line 0.B8 (.88
WValves 1.30 1.30 1.30 1.30
Instrument wires 1&8.31 3.35 0.18 15.24 .08 0.37
Heat flow thru s.f. in voids in inst. wire 0,14 0,14
Warm bore heat load (1.5 W/m) 1.00 G.30 1.00 G.30
TOTAL HEAT LOAD (WATTS) F 16591 18687 1868 F 158957 25787 199
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Intercept discussion

Other factors dominate 1.8 K heat load here, so
focuson 4.5 K

Effect on the estimate is 18.7 W =2 25.8 W

This 1s a 38% 1ncrease

The higher one 1s a realistic estimate

— LNZ2 system actually operates at the dewar pressure,
with flow control downstream of the dewar, so about 50
psig, 4.5 atm absolute, 93 K

— Thermal straps are often undersized for 4.5 K intercepts

— Contact resistances for intercepts are underestimated

June, 2019 Superconducting Test Stand Design 26
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<

4.5 K helium
flow
What is wrong
with this design?
80 K thermal
intercept strap 4
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Another common problem

* Free convection
— Within relief valve lines
— In dead-headed cool-down lines
— In instrumentation lines
* May even generate thermo-acoustic
oscillations
— Larger heat load to 4.5 K
— Vibrations

June, 2019 Superconducting Test Stand Design
USPAS Tom Peterson
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I esson

e Critically examine assumptions in thermal
analyses

* Specify thermal intercepts in detail

 Include thermal intercept links, straps, contact
resistances, and real fluid temperatures in the
analysis

* Look at temperature gradients in the fluid in dead-
headed lines and possible free convection drivers

June, 2019 Superconducting Test Stand Design 29
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Back to Test Stands
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Horizontal test stands

Horizontal -- simply as opposed to vertical
orientation of a long magnet or SRF cavity in a
typically vertically oriented dewar

May consist of just end boxes
— A supply box for power and cryogens
— A turnaround box
— Test object in its own cryostat
— Interconnects to the end boxes

Or may be more like a horizontal vacuum chamber
or horizontally oriented dewar

Like vertical test dewars, may provide saturated
bath or subcooled liquid

June, 2019 Superconducting Test Stand Design 31
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Features due to horizontal
configuration

e Not such a simple support structure

« Helium container typically needs separate
enclosure within vacuum container

— Test device typically not hanging but supported
with low thermal conductivity structure within
the vacuum space

— Installation of test device more complicated

June, 2019 Superconducting Test Stand Design 32
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SRF cavity test cryostat

CAD model of
vacuum
chamber for
SRF cavity
tests

* Designed for
tests of RF
cavities which
are pre-
installed into
helium vessels
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 Helium

vessel with
RF cavity
slides 1n,
then cryo
pipes and
RF coupler
connected
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SRF horizontal test stand

Fermilab SRF cavity test cryostat

d _’

(A

—— or

o Stainless
Y ' e vacuum shell
| N * Rubber O-ring
.’ | I - M E seals vacuum
\ ' i | door

» Copper thermal
shields

* Cryogenic
piping in top

e Indium metal
seals connect

cryogenic piping
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RF power mput coupler

o (arries RF
from 300 K to 2
K 1n horizontal
test stand

 Thin sections
and thermal
intercepts

e (Conductor 1s
copper plating
on stainless
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Providing 2 K on a test stand

» Test stand refrigeration requirements are
typically small

— A large, 2 K cryoplant will not be available

— 4.5 K helium from either a small liquefier or
storage dewars will provide refrigeration

— Room-temperature vacuum pumps provide the
low pressure for the low temperature helium

— Small heat exchangers may be incorporated for
continuous fill duty

June, 2019 Superconducting Test Stand Design 38
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Horizontal SRF test stand

Tom Peterson Comell ERL Cryogenic Schematic
28 October 2004
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Tom Peterson Cotnell ERL Cryogenic Schematic
28 October 2004
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 Helium
supply
from left
into end
of

cryostat
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SRF cryomodule test stand

KEK STF feed box
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SRF Cryomodule
Test Stand --
DESY - 1

 Feed box

* Cryogenic
connections to
cryoplant out
through top
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e Feed box and
connection to

feed
Interconnect

* Note similar
configuration

to Cornell
and KEK
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Cryomodule Test Stand -- DESY - 3

e Feed-end
Interconnect

e I mdia

 Bellows
slide back
for access
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Cryomodule Test Stand -- DESY - 4

—— = A « Cryomodule
' = ~ on test stand
. distribution

under
platform

.........
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Cryomodule Test Stand -- DESY - 5

o Test stand
with
cryomodule
removed

e View from
turnaround
end
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Horizontal magnet test stand
| Magnet test stands at Fermﬂab
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Magnet “test stand 5

* Qur first superfluid magnet test stand at
Fermilab, in the 1980’ s

* Provided stagnant or forced flow operation
e 45Ktol1.8K

* [llustrates use of local test stand heat
exchangers 1n combination with large warm
vacuum pumps to provide sub-lambda
helium

June, 2019 Superconducting Test Stand Design 49
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Superfluid magnet test stand 5
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Feed box for
LHC magnet test

* Essentially a
double-bath with a
horizontal
extension

e Current leads and
Instrumentation in
on the top
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Horizontal magnet test stand
HC magnet test stand at Egrmilab
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Long pipe cool-down with SF

~low Scan Data ve. date

- | mq‘mbﬂi.ﬁ'cﬂbe?@eiUf{?ﬂfE.SJ?UUUTU,UUU | - Temperature at the far
36 | o AT eCeAMeCeade 1, K ! 1 end of a 15 m long,

I '« ] 42 mm inner diameter,

= f' 1 Cool-down line, with a
30 |- ! 1 small heat input at
: | the far end

|_ Temperature in a large
volume of subcooled
liquid helium, slowly

1.5 I8 ' | |
66_\'1 ﬁ_\”l I_f}_\'l .
Aot A RNC
P o i e P ot warming up
! N N
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More long-pipe temperatures
during cool-down and warm-up

=low Scan Data vs. date
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Plot shows temperature
history over two days,
consisting of a forced-flow
filling at 4.5 K early
December 2, cool-down
from45Kt01.9Kin
stagnant helium, a quench
and recovery the evening
of the 2nd, an overnight
warm-up, cool-down the
morning of the 31, and
finishing with a quench
the afternoon of the 3,
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check valve

et * Long, conical seal
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Procurement strategies

* Design and build in-house

* Design and procure “to print”

» Detail interfaces and critical areas but not
entire object -- procure to spec’ s and
drawings

e Performance specification with only a few
key interfaces detailed

June, 2019 Superconducting Test Stand Design 56
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Procurement experience

e Test vessels and stands with end boxes are
typically unique -- one or a few-of-a-kind

 Industry 1s small and specialized

* Designs often contain new, risky, or
erroneous features
e (Close collaboration with a vendor 1s critical

— Frequent (once per week or more) inspections
and meetings at the vendor

June, 2019 Superconducting Test Stand Design 57
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Design, procurement, installation
time scale

* Design of a new cryogenic box
— 0.5 or more man-years engineering
— 1.0 or more man-years drafting
— Typically 6 - 9 months calendar time

 Procurement -- another 6 - 12 months

e Installation

— Complexity of instrumentation, controls, interfaces are
often underestimated

— Several months
e Result -- two years or more

June, 2019 Superconducting Test Stand Design 58
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Operations

 Common problems encountered

— Warm gas 1n adds large amount of heat

« A very small leak via a valve 1solating warmer
helium from the lower temperature system may be a
hidden source of heat

* 1 mg/sec at 300 K ==> 1.5 Watts to 4.5 K!
— Air leak 1n (contamination)

» Subatmospheric operation for sub-4.2 K provides
risk of air inleaks, especially through
instrumentation and other seals

June, 2019 Superconducting Test Stand Design 59
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More about operations

e Instrumentation
— Often 1n doubt

— In situ checks like at a phase change can
provide verification of temperatures and
pressures

— We generally allow a period of “thermal
studies” upon startup of a new test system
* Check instrumention
e Review operating procedures
* Verify thermal performance

June, 2019 Superconducting Test Stand Design 60
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References
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