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Energy, Velocity, Momentum

 

!
β =
!v
cParticle velocity

Mechanical (kinetic) particle 
momentum

γ = mc2 +W
mc2

= 1
1− β 2

Relativistic particle 
energy

Total energy

		mc2Rest energy

W = p2c2 +m2c4 −mc2 = mc2 (γ −1)Kinetic energy

β =
γ 2 −1
γ

p
mc

= βγ = γ 2 −1

Particle velocity versus relativistic 
energy
Mechanical momentum versus 
velocity and relativistic energy

 
!p = mγ !v = mc

!
βγ

E = (pc)2 + (mc2 )2 = mc2 +W
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Energy, Velocity, Momentum (cont.)
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(P. Lapostolle and M. Weiss, CERN-PS-2000-001 DR)
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Vector Operations in Cartesian Coordinates
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Vector Operations in Cylindrical Coordinates
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Units
1 eV = 1.6 ⋅10−19[C] x 1 [V ] = 1.6 ⋅10−19 JouleW = eU [eV ],  [electronVolt]

melectron = 9.1⋅10
−31kg

c = 3 ⋅108m / sec
e = 1.6 ⋅10−19Culomb
melectronc

2

e
= 0.51092 ⋅106Volt

		mproton =1.672⋅10−27kg=1836melectron

mprotonc
2

e
= 938.3 ⋅106Volt

mprotonc
2 = 938.3MeV

melectronc
2 = 0.51092 ⋅106 eV = 0.51092MeV

1 Joule = 1 Coulomb ⋅1 Volt = kg ⋅m2

s2
Electron energy

Proton energy
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Units (cont.)
Ion Energy

Ea = 931.481MeV

Atomic mass unit (1/12 the mass of 
one atom of carbon-12):

1u= 1.660540 x 10-27 kg

Proton mass:  1.007276 u
Electron mass: 0.00054858 u

		Eion = 931.481⋅A−0.511⋅Z [MeV ]
A-atomic mass number

Z-number of removed electrons (ionization 
state) 

Binding energy of removed electrons is 
neglected

Negative Ion of Hydrogen

  EH − = Eproton +2x Eelectron = 939.28 MeV

H- ion mass:   1.00837361135 u
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Units (cont.)

p
mc

= βγ = γ 2 −1 p = mc2

c
γ 2 −1 [GeV

c
]

Example: proton beam with kinetic energy W = 3 GeV: 

β =
γ 2 −1
γ

= 0.971E = mc2 +W = 3.938GeV γ = mc2 +W
mc2

= 4.2

p
mc

= βγ = γ 2 −1 = 4.079 p = mc2

c
γ 2 −1= 3.82 GeV

c

Particle momentum

Bρ = p
q
[T ⋅m]Particle rigidity

p
e
= Bρ = 12.7 T ⋅m
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Equations of Motion
Cartesian Coordinates

Cylindrical coordinates

 

d!x
dt

= !v
 

d!p
dt

= q(
!
E + !v x 

!
B)

z-axis is directed to the reader.
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.

Alvarez accelerating structure
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Resonance Principle of Particle Acceleration

Acceleration in linear resonance accelerator is based on 
synchronism between accelerating field and particles. 

Field distribution in RF structure:

t flight = TRF period =
1
f

Time of flight between RF gaps

Distance between RF gaps

fRF Frequency

RF Wavelength λ = c
f

Ez (z,r,t) = Eg (z, r)cos(ωt)

Circular RF Frequency ω = 2π f

L = nβcTRF period = nβλ
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.
11

Acceleration in π - Structure 

Time of flight between RF gaps of π- structure t flight =
TRF period
2

Distance between RF gaps of π- structure L =
βcTRF period

2
= βλ
2

Accelerating structure with π - type standing wave.
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Acceleration in π- structure (Courtesy of Sergey Kurennoy).

Acceleration in π- Structure 

12



Induction Accelerator
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Maxwell's equations

 
rot
!
E = − ∂

!
B
∂t

 
rot
!
H = ∂

!
D
∂t

+
!
j

 div
!
D = ρ

 div
!
B = 0

 
!
D = εo

!
E

 
!
B = µo

!
H

εo = 8.85 ⋅10
−12F/m

µo = 4π ⋅10−7H/m

 
!
EElectric field

Electric displacement field

Magnetic field

Magnetic field strength  
!
H

Permittivity  of free space

Permeability of free space 
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Electromagnetic Wave Equations

 
rot
!
E = − ∂

!
B
∂t  div

!
E = 0

 div
!
B = 0

 
rot rot

!
E = − ∂

∂t
(rot
!
B) = − 1

c2
∂2
!
E

∂t 2

 
rot rot

!
B = 1

c2
∂
∂t
(rot
!
E) = − 1

c2
∂2
!
B

∂t 2

In the absence of charges,                     , Maxvell’s equations are

 
rot
!
B = 1

c2
∂
!
E
∂t

 
!
j = 0, ρ = 0

c = 1
εoµo

= 2.99792458 ⋅108m / sec

 rot  rot
!
A = grad div

!
A− Δ

!
A

Taking the rot of the rot equations gives:

By using the vector identity

 div
!
E = 0Taking into account that                 ,                 we receive wave equations:  div

!
B = 0

 
Δ
!
E − 1

c2
∂2
!
E

∂t 2
= 0

 
Δ
!
B − 1

c2
∂2
!
B

∂t 2
= 0

speed of light in free space:
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Components of Electromagnetic Field
Most	of	RF	cavities	are	excited	at	a	 fundamental	mode	containing	 three	
components	 Ez ,	 Er ,	 Bθ .	 They	 are	 connected	 through	 Maxwell’s	
equations,	 therefore	 it	 is	 sufficient	 to	 find	 solution	 for	 one	 component	
only.	Taking	into	account	condition	for	axial-symmetric	field	(∂/ ∂θ = 0 ),	
wave	equation	for	Ez 	component	is	

∂2Ez

∂z2
+ 1
r
∂
∂r
(r ∂Ez

∂r
)− 1

c2
∂2Ez

∂t 2
= 0 	

	

Radial	component	 Ez 	can	be	determined	from	 div
!
E = 0 	as	

	

 
div
!
E = 1

r
∂
∂r
(rEr )+

∂Ez

∂z
= 0 	 	 	 	 	 	 	

	

which	gives										 Er (r) = − 1
r o

r

∫
∂Ez

∂z
r 'dr ' 		

	
Azimuthal	 component	 of	 magnetic	 field	 is	 determined	 from			

 
rot
!
B = 1

c2
∂
!
E
∂t

											which	gives										 Bθ =
1
c2r

∂Ez

∂to

r

∫ r 'dr ' 	
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Ez (z,r,t) = Eg (z, r)cos(ωt)Field in RF Gap:

∂2Eg

∂z2
+ 1
r
∂
∂r
(r
∂Eg

∂r
)+ (ω

c
)2Eg = 0

Wave Equation for Field Distribution in RF Gap:

Eg (r, z) = Ao (r)+ Am (r)cos(
2πmz
L

)
m=1

∞

∑
Fourier Expansion of Field Distribution in RF Gap:

Electric field lines 
between the ends of 
drift tubes.

Expansion of RF Field 

Periodic distribution of RF field.

17Y.K. Batygin Basics of Beam Acceleration USPAS 2019



1
r
∂Ao (r)
∂r

+ ∂2Ao (r)
∂r2

+ (ω
c
)2Ao (r) = 0, m = 0

1
r
∂Am (r)
∂r

+ ∂2Am (r)
∂r2

− km
2Am (r) = 0, m > 0

km = (2πm
L
) 1− ( L

mλ
)2

Expansion of RF Field (cont.)

Transverse wave number: 

Equations for Fourier 
coefficients of RF gap 
expansion:

Ao (r) = AoJo (
rω
c
), m = 0

Am (r) = AmIo (kmr), m > 0

Solutions are Bessel 
functions:

Eg (r, z) = AoJo (2π
r
λ
)+ AmIo (kmr)cos(

2πmz
L

)
m=1

∞

∑
Finally, expressions for spatial 
z-component Eg (z,r)
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d 2y
dz2

+ 1
z
dy
dz

+ (1− n
2

z2
)y = 0

Jn (z) =
1
n!
( z
2
)n − 1

1!(n +1)!
( z
2
)n+2 + 1

2!(n + 2)!
( z
2
)n+4 − ...= ( z

2
)n (−1)k

k!Γ(n + k +1)k=0

∞

∑ ( z
2
)2k

Bessel functions of the order n are solutions 
y = Jn(z) of differential Bessel equation:

Power representation of Bessel function: 

Special cases for n = 0, 1:

Zeros νnm of Bessel function Jn(z) = 0 .

Bessel Functions

Jn (z) =
1
π

cos(nθ − zsinθ )
0

π

∫  dθIntegral representation of Bessel functions: 

J1(z) = −Jo
' (z) = z

2
− z3

16
+ ....Jo (z) = 1−

z2

4
+ z4

64
− .....
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Modified Bessel Functions

Modified Bessel functions of the n-th order 
In(z) = i-n Jn(iz) are solutions of modified 
Bessel differential equation:

d 2y
dz2

+ 1
z
dy
dz

− (1+ n
2

z2
)y = 0

In (z) =
1

k!Γ(n + k +1)k=0

∞

∑ ( z
2
)n+2kPower representation of modified Bessel functions:  

I1(z) = Io
' (z) = z

2
+ z3

16
+ z5

384
+ ...

Io (z) = 1+
z2

4
+ z4

64
+ z6

2304
+ ...

Special cases for n = 0, 1:

Modified Bessel functions of 1st kind, In(x).
20



Integrals and Derivatives of Bessel Functions

dZn (x)
dx

= − n
x
Zn (x)+ Zn−1(x) =

n
x
Zn (x)− Zn+1(x)

xn+1Zn (x)dx = x
n+1Zn+1(x)∫

Let Zn(x)  to be an arbitrary Bessel function:

Zo
' (x) = −Z1(x)

Z1
' (x) = Zo (x)−

Z1(x)
x

Particularly 
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Expansion of RF Field (cont.)

Eg (a,r) =
Ea , 0 ≤ z ≤ g

2

0, g
2
≤ z

⎧

⎨
⎪⎪

⎩
⎪
⎪

To get an approximate expression for 
coefficients Am , let us assume the 
step-function distribution of  component 
inside RF gap of width  at bore radius
r = a

Eg (a, z) = Ea[
g
L
+ 2
π

1
mm=1

∞

∑ sin(πm g
L
)cos(2πm z

L
)]Expansion of periodic step-function

Ao =
Ea

Jo (2π
a
λ
)

g
L Am = 2Ea

Io (kma)
g
L

sin(πm g
L
)

πm g
L

Eg (r, z) = AoJo (2π
r
λ
)+ AmIo (kmr)cos(

2πmz
L

)
m=1

∞

∑

Coefficients in field expansion:

Field expansion in RF gap

Ea

L z

g

Ea
g
L
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dpz
dt

= qEz (z, r, t)

Energy Gain of Synchronous Particle in RF Gap 

Equation for change of longitudinal particle 
momentum 

From relativistic equations pz = mc γ 2 −1
dpz = mc

2dγ / (βc) dW = mc2dγ

the equation for change of particle energy 

dW
dz

= qEz (z, r, t)

ΔWs = q Eg (z)  cosωts (z) dz
−L /2

L /2

∫Increment of energy of synchronous 
particle per RF gap

When synchronous particle arrive in the center 
of the gap, z = 0, the RF phase is equal to φs . 
The time of arrival of synchronous particle in 
point with coordinate z

ts (z) ≈
ϕ s

ω
+ z
βc

kz =
2π
βλLongitudinal wave number 

or ωts (z) =ϕ s + kzz
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Energy Gain of Synchronous Particle in RF Gap (cont.) 

Using equity 
the increment of synchronous particle energy per RF gap: 

cosωts = cosϕ s  coskzz − sinϕ s  sin kzz

ΔWs = qcosϕ s [ Eg (z)  cos(kzz)dz
−L /2

L /2

∫ − tgϕ s Eg (z)  sin(kzz)dz
−L /2

L /2

∫ ]

Let us multiply and divide this expression by 
EoL , where we introduce average field Eo of 
the accelerating gap across accelerating 
period (note that Eo=Ao):  

Eo =
1
L

Eg (z)dz
−L/2

L/2

∫ = Ea

Jo(2π
a
λ
)

g
L
≈ Ea

g
L

Effective voltage applied to RF gap: U = EoL

The increment of synchronous particle energy per 
RF gap can be written as: 

ΔWs = qEoTL cosϕ s

T = 1
EoL

[ Eg (z)  cos(kzz)dz
−L /2

L /2

∫ − tgϕ s Eg (z)  sin(kzz)dz
−L /2

L /2

∫ ]where transit time factor 
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Transit Time Factor

Transit time factor                   , where An is the amplitude of n-th harmonics of Fourier 
field expansion 

T = An
2Eo

In most accelerators, synchronism is provided for n = 1, therefore: 

T =
Jo (2π

a
λ
)

Io (
2πa
βγλ

)
 
sin(πg

βλ
)

πg
βλ

In accelerators usually aperture of the channel is 
substantially smaller than wavelength, a << λ , 
then                           , and transit time factor is Jo (2πa / λ) ≈1

T = 1

Io(
2πa
βγλ

)
 
sin(πg

βλ
)

πg
βλ

Transit time factor indicates effectiveness of transformation of RF field into particle 
energy. It mostly depends on field distribution within the gap, which is determined by 
RF gap geometry. 
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T = 1

Io(
2πa
βλ

)
 
sin(πg

βλ
)

πg
βλ

sin πL
2βλ

Transit Time Factor for Two-Gap Cavity

Two gap cavity

Field expansion in two-
gap cavity

Transit time 
factor for two-
gap cavity
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Design of Accelerator Structure 

dWs

dzs
= qEoT cosϕ s

Specify dependence of transit time factor on velocity: T = T(β).

From equation for energy gain one can express dzs

à

Second equation:

Using equation dWs = mc2 βγ3 dβ we can rewrite them as

dts =
dzs
βsc

dzs =
dWs

qEoT cosϕ s

dzs = (
mc2

qEo cosϕ s

) βdβ
T(β)(1−β 2)3/2

dts = (
mc

qEo cosϕ s

) dβ
T(β)(1−β 2)3/2

27
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Design of Accelerator Structure (cont.) 

Integration gives:

Calculation the lengths of 
accelerating periods.

zs = (
mc2

qEo cosϕs
)
βo

β

∫
βdβ

(1− β 2 )3/2T (β )

ts = (
mc

qEo cosϕs
)
βo

β

∫
dβ

(1− β 2 )3/2T (β )

Using β as independent variable, one can get 
parametric dependence zs(ts). Increment in 
time Δts = k(2π/ω) corresponds to distance 
between centers of adjacent gaps Δzs = L. 
Gap and drift tube length are determined by 
adjustment of the value of transit time factor 
T=T (β, λ, a, g).  

ts
ω
2π k

zs
L

0        1         2        3
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Simplified Method of Design of Accelerator Structure

		ΔWs = qEoTLcosϕ s

dW = mc2dγ

		dγ = βγ 3dβ

		
βn ≈ βn−1 +k

qEoT(βs )λ
mc2γ s

3 cosϕ s

Increment of energy of synchronous 
particle per RF gap

Increment of energy through increment 
of relativistic factor

Increment of velocity of synchronous particle per RF gap:

Average velocity at RF gap:

Cell length: L = k βs λ (k = 1 for 0 mode; k = 1/2 for π - mode) 

Drift tube length  l = L - g              

βs =
βn + βn−1

2
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Autophasing: Stable and Unstable Phases

30

RF phase of synchronous particle
is selected to be when the field is
increasing in time. Earlier particle
receive smaller energy kick than
the synchronous one and will be
slowing down with respect to
synchronous particle. Particles,
which arrive later to accelerating
gap, receive larger energy gain,
and will run down the synchronous
particle. When non-equilibrium
particles exchange their positions,
this process is repeated for new
particles setup, which results in
stable longitudinal oscillations
around synchronous particle. While
synchronous particle monotonically
increases it’s energy, other particle
perform oscillation around
synchronous particle, and also
increase their energy. Such
principle is called resonance
principle of particle acceleration.
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Beam Bunching: Analogy with Traffic

Continuous traffic  Bunched car traffic created by a traffic light

31
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Standing Wave as a Combination of Traveling Waves

Eo cos(kzz)cos(ωt) =
Eo

2
[cos(ωt − kzz) +  cos(ωt + kzz)]

32
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Equivalent Traveling Wave

33

ΔW = q Eg (z, r)  cos(ωt)dz
−L /2

L /2

∫Increment of energy of arbitrary particle in RF gap 

cos(2πmz
L

)cos(ωt)
m=1

∞

∑ = 1
2

cos(ωt − 2πmz
L

)
m=1

∞

∑ + 1
2

cos(ωt + 2πmz
L

)
m=1

∞

∑

Standing wave can be represented as combination of traveling waves:

ωt(z) = ϕ + kzzThe RF phase at the time  of arrival of 
arbitrary particle in point with coordinate z

cos(2π z
L

− 2πmz
L

+ϕ )dz =
−L /2

L /2

∫
L cosϕ, m = 1
0, m ≠ 1

⎧
⎨
⎩

cos(2π z
L

+ 2πmz
L

+ϕ )dz =
−L /2

L /2

∫ 0

traveling waves                traveling waves in 
in z – direction                 opposite direction  

Only m = 1 harmonic of traveling 
waves propagating in z-direction 
contributes to energy gain of 
particle. In general case  m = n 
(where L = nβλ).
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Increment of energy of arbitrary particle in RF gap ΔW = qEoLT Io (
2πr
βγλ

) cosϕ

Taking into account  equation for increment of 
particle energy dW/ dz = qEz(z,r,t) , the equivalent 
accelerating traveling wave is

Ez = EoT Io (
kzr
γ
) cosϕ

E = Eo TAmplitude of equivalent traveling wave 

Ez = E Io (
kzr
γ
) cosϕ

Er = −γ E I1(
kzr
γ
) sinϕ

Bθ = − βγ
c
E I1(

kzr
γ
) sinϕ

Electromagnetic field of equivalent traveling wave 

Equivalent Traveling Wave (cont.)
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Longitudinal Dynamics in Equivalent Traveling Wave 
ϕ =ωt − kzzPhase of particle in traveling wave:

Phase velocity: φ = const

Wave number 

Longitudinal equations of motion
of arbitrary particle 

vph =
ω
kz		dϕ ≈ωdt −kzdz =0

  

dϕ
dz

= 2π
λ

(
1
β
− 1
β ph(z)

)

dW
dz

= qE cosϕ

Auto-phasing principle: particle with β > βph is slowing down with respect to
synchronous particle; particle with β < βph is accelerating with respect to synchronous
particle. For synchronous particle β = βph(z). Dependence βph(z) is determined by
geometry of accelerating structure. Synchronous phase is selected automatically with
certain value of accelerating field E:

With change of field E, synchronous phase is changing, and particles
start oscillate around new synchronous phase.

  
cosϕs =

1
qE

dWs

dz

  
kz (z) = 2π

β ph(z)λ
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dz
dt

=
pz
mγ

dpz
dt

= qE cosϕEquations of longitudinal motion in 
traveling wave near axis Io (

kzr
γ
) ≈1

pζ = pz − ps
Longitudinal momentum deviation from 
synchronous particle

Deviation from synchronous particle

dpζ
dt

= qE[cos(ϕ s − kzζ )− cosϕ s ]

dζ
dt

=
pζ
mγ 3

Equations of particle motion 
around synchronous particle

ϕ =ωt − kz (zs +ζ ) = ϕ s − kzζPhase of particle in traveling wave:

ζ = z − zs

Oscillations Around Synchronous Particle

dζ
dt

= dz
dt

− dzs
dt

= d(βc)

dβ = 1
γ 3

dp
mc
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H =
pζ
2

2mγ 3 +
qE
kz
[sin(ϕ s − kzζ )+ kzζ cosϕ s ]

Equations of motion around synchronous 
particle can be derived from Hamiltonian  

Hamiltonian of Longitudinal Oscillations

dpζ
dt

= − ∂H
∂ζ

dζ
dt

= ∂H
∂pζ

Hamiltonian equations of motion:

Hamiltonian describes particle oscillations around synchronous particle, 
where parameters γ, E, kz depend on longitudinal position. Let us assume 
that parameters γ, E, kz, are changing slowly during particle oscillations. 
Hamiltonian with constant values of γ, E, kz, is a constant of motion. Actually, 
in this case:

dH
dt

= ∂H
∂t

+ ∂H
∂ζ

dζ
dt

+ ∂H
∂pζ

dpζ
dt

= ∂H
∂ζ

∂H
∂pζ

− ∂H
∂pζ

∂H
∂ζ

= 0

Time-independent Hamiltonian coincides with particle energy (kinetic + 
potential). Equation dH /dt =0 expresees conservation of energy in isolated 
system (conservative approximation). In this case, we get equation for 
phase space trajectory                     as equation

H (ζ , pζ ) = const

pζ = pζ (ζ )
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Hamiltonian of Longitudinal Oscillations in (ΔW, ψ)

Another pair of canonical variables:  ψ = φ – φs , ΔW = Ws – W

Phase deviation from synchronous particle ψ = −kzζ

ΔW = −βcpζInverse energy deviation from synchronous particle:

Hamiltonian of energy-phase oscillations around synchronous particle:

H = (ΔW )2

2mγ s
3βs

2c2
ω + qEβc[sin(ϕ s +ψ )−ψ cosϕ s ]

dΔW
dt

= qEβc[cosϕ s − cos(ϕ s +ψ )]

dψ
dt

= ΔW
mγ s

3βs
2c2

ω

Equations of motions:
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Accelerating Field, Potential Function, and Separatrix

V (ψ ) = qE
kz
[sin(ϕ s +ψ )−ψ cosϕ s ]

Potential function:

Separatrix of longitudinal phase space 
oscillations including acceleration.  39



dV
dψ

= qE
kz
[cos(ϕ s +ψ )− cosϕ s ] = 0

Derivative of potential function determines two 
extremum points: stable point ψ = 0

unstable point ψ = -2φs. 

To be stable, potential function must have 
minimum in extremum point ψ = 0 , or the 
second derivative hast to be positive 

d 2V (0)
dψ 2 = − qE

kz
sinϕ s > 0

Stability condition sin φs < 0 ϕ s < 0

Hamiltonian, corresponding to separatrix
Hsep = H (pζ

= 0,ψ = −2ϕ s )
Hsep =

qE
kz
[−sinϕ s + 2ϕ s cosϕ s ]

Equation for separatrix p
ζ

2

2mγ 3 +
qE
kz
[sin(ϕ s+ψ )-ψ cosϕ s+sinϕ s -2ϕ s cosϕ s ] = 0

Equation of Separatrix

40
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sin(ϕ s+ψ )−ψ cosϕ s + sinϕ s − 2ϕ s cosϕ s = 0
Phase length of separatrix Φs
is determined from separatrix
equation assuming pζ=0

Equation has two roots ψ1 = -2φs, and ψ2.  Width of separatrix is Φs = ψ2 + 2 /φs /  
Substitution ψ2 = Φs - 2 /φs /  into upper equation gives expression for determination 
of phase width of separatrix: 

tg ϕ s =
Φs − sinΦs

1− cosΦs

		
Φs ≈3ϕ s

Phase width of separatrix as a 
function of synchronous phase.

Phase Width of Separatrix

For small values of synchronous 
phase, tgϕ s ≈ϕ s sinΦs ≈ Φs −Φs

3 / 6
cosΦs ≈1−Φs

2 / 2 phase width of separatrix

ψ 2 ≈ϕ sTherefore,
41
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Equation for longitudinal oscillations 

For small amplitude oscillations 

Frequency of small amplitude linear oscillations  

Ω =
qEkz sinϕ s

mγ 3

cos(ϕ s − kzζ ) ≈ cosϕ s + kzζ sinϕ s

At the separatrix kzζ=2φs, frequency is zero:

Frequency of Linear Small Amplitude Oscillations

cos(ϕ s − kzζ )− cosϕ s = 0

Ω
ω

= qEλ
mc2

sinϕ s

2πβγ 3
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From Hamiltonian of longitudinal oscillations

Hamiltonian of Linear Small Amplitude Oscillations

H =
pζ
2

2mγ 3 + mγ
3Ω2 ζ 2

2

H =
pζ
2

2mγ 3 +
qE
kz
[sin(ϕ s − kzζ )+ kzζ cosϕ s ]

sin(ϕ s − kzζ ) ≈ sinϕ s − kzζ cosϕ s −
(kzζ )

2

2
sinϕ s

expanding trigonometric function 

Hamiltonian of small linear oscillations:
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Longitudinal oscillations in RF field with φs = - 90o

(Courtesy of Larry Rybarcyk).

Example of Longitudinal Oscillations
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d 2ζ
dt 2

+Ω2ζ = 0Equation of linear longitudinal oscillations

d 2ζ
dz2

+ (Ω
βc
)2ζ = 0

Change variable z = βct

ζ = ζο cos(
Ω
βc

z +ψ o )Solution of equation of longitudinal 
oscillations

Let S to be a period of focusing structure.
Phase advance of  longitudinal oscillations  
per focusing period

µol =
Ω
βc

S = 2π (qEλ
mc2

)
sinϕ s

βγ 3  ( S
βλ
)

Phase advance of  longitudinal 
oscillations  per accelerating period

  
µoa =

Ω
βc

L = 2π (qEλ
mc2 )

sinϕs

βγ 3  ( L
βλ

)

Phase Advance of  Longitudinal Oscillations 

For Alvarez structure L = βλ , for π – mode structures L = βλ/2
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The half - width of 
separatrix in momentum 
is determined from 
separatrix equation 
assuming ψ = 0:

Longitudinal Acceptance

  

p
ζ sep

mc
= 2βγ 3 Ω

ω
1-

ϕs

tgϕs

Hamiltonian  

is constant along elliptical trajectory. 

H =
pζ
2

2mγ 3 + mγ
3Ω2 ζ 2

2

Maximal value of ζ at ellipse is                                         or mγ 3Ω2 ζ sep
2

2
=

pζsep
2

2mγ 3 ζ sep = 2
βc
ω

1− ϕ s

tgϕ s

Longitudinal acceptance is a phase space area of stable oscillations available for 
the beam (area of separatrix). Let us determine longitudinal acceptance using 
elliptical approximation to separatrix.

Elliptical approximation of 
separatrix

Effective length 
of separatrix Φseff = 2π

(2ζ sep )
βλ

= 4 1− ϕ s

tgϕ s

≈
4 ϕ s

3
1− ϕ s

tgϕ s

≈ ϕ s

3

Taking approximation tgϕ s ≈ϕ s +ϕ s
3 / 3
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Longitudinal Acceptance (cont.)
Area of separatrix ellipse is π ζsep (psep / mc). Phase space area of acceptance  is 
determined as a product of ellipse semi-axis:

Using approximation                         , normalized longitudinal acceptance

εacc =
2
3π

β 2γ 3(Ω
ω
)ϕ s

2 λ

1− ϕ s

tgϕ s

≈ ϕ s
2

3

Often longitudinal acceptance and beam emittance are determined in phase plane   
(φ - φs,  W-Ws ) in units (π keV deg). 

The value of π is not included in the value of acceptance, but is included in units of 
acceptance  (π m radian), or, more often (π cm mrad).

Relationship between phase and longitudinal coordinate
and between energy and momentum

Δϕ = 360o ζ
βλ

ΔW = mc2β(Δp
mc
)

 

⌣εacc  [π ⋅ keV ⋅deg] = εacc  [π ⋅m ⋅ rad]  360
o

λ[m]
  mc2[keV ]

Transformation of longitudinal phase space area in 
different units:

εacc = ζ sep

psep
mc

= 2
π
λ β 2γ 3(Ω

ω
)(1− ϕ s

tgϕ s

)
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Longitudinal Acceptance: Example

Accelerating gradient E=EoT 1.6 MV/m
Synchronous phase φs                          -26o

Wavelength, λ 1.49 m
Energy 750 keV

Velocity, β 0.04
Longitudinal frequency:

DTL Longitudinal acceptance:

LANL DTL Acceptance (red)

Ω
ω

= qEλ
mc2

sinϕ s

2πβγ 3 = 0.0665

εacc =
2
π
λ β 2γ 3(Ω

ω
)(1− ϕ s

tgϕ s

) = 7.17 ⋅10−6π mrad = 1.62 π MeV deg
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d 2ζ
dz2

+ (Ω
βc
)2ζ = 0

ζ = ζmax cos(
Ω
βc

z +ψ o )

dζ
dz

= −ζmax
Ω
βc
sin(Ω

βc
z +ψ o )

Unnormalized Longitudinal Beam Emittance

∍z= ζ max

2 Ω
βc

Unnormalized longitudinal emittance of matched beam:

Longitudinal oscillations:
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Normalized Longitudinal Beam Emittance

dζ
dt

= d(βc)

dζ
dz

= d(βc)
βc

= 1
βγ 3

dp
mc

dβ = 1
γ 3

dp
mc

ε z = βγ 3 ∍z= ζ max

2 γ 3 Ω
c

= 2π (ζmax
2

λ
)(Ω
ω
)γ 3

Normalized longitudinal emittance of matched beam:

pζ max
mc

= ζmaxγ
3 Ω
c
= 2π (ζmax

λ
)(Ω
ω
)γ 3
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Adiabatic Damping of Longitudinal Oscillations
Previous analysis was performed in conservative approximation assuming 
accelerator parameters are constant along the machine. Consider now effect of 
acceleration on longitudinal oscillations. Equations of motion for small oscillations 
around synchronous particle. 

H =
pζ
2

2mγ 3 + mγ
3Ω2 ζ 2

2

pζ
2

pζ  max
2 + ζ 2

ζmax
2 = 1

Hamiltonian of linear oscillations 

Along phase space trajectory H = const. Let us 
divide expression for Hamiltonian by H. Phase 
space trajectory is an ellipse

pζ  max = 2Hmγ 3 ζmax =
1
Ω

2H
mγ 3Semi-axis of ellipse

The value of Hamiltonian, H, is the energy of particle oscillation around synchronous 
particle. Product of semi-axis of ellipse, gives the value of phase space area 
comprised by a particle performing linear longitudinal oscillations. Largest phase 
space trajectory comprises longitudinal beam emittance:

ε z =
pζ  max
mc

ζmax =
2H
mcΩ
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Adiabatic Damping of Longitudinal Oscillations (cont.)

If parameters of accelerator are changing adiabatically along the channel, the 
value of beam ellipse in phase space is conserved according to theorem of 
adiabatic invariant. In this case, energy of particle oscillation around synchronous 
particle, H , is proportional to frequency of longitudinal oscillation, Ω:

H ~ Ω

Adiabatic change of parameters means that parameters are changing slowly 
during one oscillation period of 2π/Ω . 

Τhe semi-axes of beam ellipse are changing as 

ζmax =
ε zc
γ 3Ω

~ 1
γ 3/2Ω1/2

pζ  max
mc

=
γ 3ε zΩ
c

~ γ 3/2Ω1/2
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Adiabatic Damping of Longitudinal Oscillations (cont.)

Many accelerators are designed keeping the constant values of equivalent 
traveling wave, E, and synchronous phase φs. In this case, longitudinal oscillation 
frequency drops as 

 
Ω ∼ 1

β1/2γ 3/2

Semi-axes of beam ellipse at phase plane are changing as

 
ζmax ∼

β1/4

γ 3/4
 
pζ  max ∼

γ 3/4

β1/4

Phase length of the bunch and relative momentum spread  drop as

 
Δψ ∼ 1

(βγ )3/4

 

Δp
ps
∼

1
β 5/4γ 1/4
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DW = Constant x (bg )3/4

Df = Constant
(bg )3/4

Adiabatic Phase Damping

DWDf = ConstantLongitudinal Beam Phase Space

Beam Energy Spread

Beam Phase Width
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Acceleration in Sections with Constant β

LANSCE high-energy linear accelerator.
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Acceleration in Sections with Constant β (cont.)

Phase space trajectory in structure with 
constant length cell. 

Because cell lengths are equal, actual synchronous phase in each structure is 
φs = - 90ο. Energy gain per tank (for π - structure):

ΔWref = qEoT cosϕref Ncell
βλ
2

Accelerator structure with 
constant length cell. 
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Acceleration in Multiple Sections with Constant β

Dynamics in RF field of multiple Dynamics around
section with constant β synchronous particle
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Acceleration in Multiple Sections with Constant β
(cont.)

La

L

β1 β2 β3

l
β1 < β2 < β3  

Synchronous phase

Phase advance of longitudinal oscillations
In single tank 

Effective accelerating gradient

Effective phase advance of longitudinal oscillations
per accelerating period L

  
µoa = 2π (qEλ

mc2 )
sinϕs

βγ 3  (
La

βλ
)

 ϕs ≈ϕref

  
!E = E

La

La + l

   
!µoa ≈ 2π (qEλ

mc2 )(
La

La + l
)

sinϕs

βγ 3  (
La + l
βλ

) = µoa 1+ l
La
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Dynamics in Sections with βs = 1

In accelerating sections with βs = 1 there is no synchronous particles. 

dp
dt

= qE cosϕEquation for change of particle momentum:

Equation for change of particle phase

Wave number for βs = 1  

ϕ =ωt − kzz
dϕ
dt

=ω − 2π
λ

βc

Introducing dimensionless momentum                    we can write:  pϕ = p
mc

dpϕ
dϕ

= qEλ
2πmc2

cosϕ

(1+
pϕ
1+ pϕ

2
)

Integration gives: C = 1+ pϕ
2 − pϕ + (

qEλ
2πmc2

)sinϕ

where C is the constant of integration.

kz =
2π
βsλ

= 2π
λ
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Phase Space Trajectories for βs = 1
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Minimal Energy of Particles Accelerated in Wave with βs = 1

pϕ → ∞ C = ( qEλ
2πmc2

)sinϕ

C ≤ qEλ
2πmc2

Accelerated particles:

If                       ,         is finite and particles are not accelerated until infinity C > qEλ
2πmc2

pϕ

For accelerated particles                        

Therefore boundary of acceleration is determined by C = qEλ
2πmc2

qEλ
2πmc2

(1− sinϕ ) = 1+ pϕ
2 − pϕ

Minimal value pφ min is determined by φ =-π/2, or sinφ = -1

pϕmin =
1− 4( qEλ

2πmc2
)2

4( qEλ
2πmc2

)

For indefinite acceleration of protons in wave with  E = 5 
MV/m, λ = 1 m, pφ min = 294, or minimal kinetic energy  
Wmin= 275 GeV.

Beams with lower energies can be accelerated in finite 
length section with βs= 1 within -π/2 < φ < π/2.
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RF Cavities Tuning: Threshold Field
The increment of energy that the equilibrium particle receives during each 
acceleration period is determined by the increase in the period length and, 
therefore, is determined by the design od accelerator:

The threshold field at which the equilibrium phase is still real (cos φs = 1) is 

ΔWs = eEoTL cosϕ s = const

Eth =
ΔWs

eTL

Accelerating field must be Eo ≥ Eth

Synchronous phase is                        . 

The threshold field is determined through measurement of width of energy capture 
region as a function of field in resonator. This is done by measurement of dependence 
of accelerated beam current versus injection energy. The threshold field is determined 
by extrapolating of the energy width of capture region to zero value.

cosϕ s =
Eth

Eo
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Phase Scans to Set the Phase and Amplitude of RF Linac

Schematic of the phase scan measurement setup. At LANL linac
there are 4 absorber/collectors at 40, 70, 100, and 121 MeV.

Result of phase scan
63
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Phase Scans to Set the Phase and Amplitude of RF Linac

Longitudinal acceptance of RF linac for 5 
different average axial field amplitudes.

Accelerated beam as a function 
of beam phase

ΔWs = eEL cosϕ s = constEnergy gain of synchronous 
particle per gap is constant

Decrease of accelerating 
field results in decrease of 
phase width of separatirx 
(and vise versa)

E ↑→cosϕ s ↓→ϕ s ↑→Φsep ≈ 3ϕ s ↑

E ↓→cosϕ s ↑→ϕ s ↓→Φsep ≈ 3ϕ s ↓

Sequence of RF buckets
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Determination of Bunch Length Using Phase Scan

LANL Phase Scan at the energy of 121 MeV.
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Delta-t Tuning Procedure

  
ΔtB = −

DAB

mc3(βγ )A
3 ΔWA −

ΔϕB − Δϕ A

ω
−

D1

mc3 [
ΔWA

(βγ )A
3 −

ΔWB

(βγ )B
3 ]

		
ΔtC = ΔtB −

D2 −D1
mc3

[ ΔWA

(βγ )A3
−

ΔWB

(βγ )B3
]

Change in tAB,  tAC values when accelerating module is switched from off to on are 
Time-of-flight of the beam centroid from location A to B and from A to C: tAB, tAC

		tB = tAB ,off −tAB ,on   tC = tAC ,off − tAC ,on

Deviation of values tB,  tC from design values:

Delta-t tranduser
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Delta-t Tune

Output of delta-t program displaying search of amplitude (ASP) and 
phase (PSP) while minimizing values of  (DTB) and  (DTC).
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Delta-t Tuning Issues
Delta-t tuning procedure works well 
only when particles perform significant 
longitudinal oscillations within RF 
tanks. If longitudinal oscillations are 
“frozen”, then combination of ΔtB, Δtc
can be obtained with infinitely large 
number of combinations of (E, φs).

–50 –48 –46 –44 –42 –40 –38 –36 –34 –32 –30 –28 –26 –24 –22 –20 –18 –16
0.470

0.475

0.480

0.485

0.490

0.495

0.500

0.505

Phase (deg)

βγ

W=100 MeV

Phase Oscillations

–50 –48 –46 –44 –42 –40 –38 –36 –34 –32 –30 –28 –26 –24 –22 –20 –18 –16
1.085

1.090

1.095

1.100

1.105

1.110

Phase (deg)

βγ

W=382 MeV

In linac phase advance of 
longitudinal oscillation per 
module drops as
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Phase Scans

Phase scan: measurement of time of arrival of the beam to 
downstream pickup loop versus RF phase of the accelerating 
module. 
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Measurement of Beam Energy by Difference in 
BPM RF Phases

Module N BPM 1 BPM 2

RF Phase Module N Phase 1 Phase 2

Reference RF Line

L

		

β = L

λ(N +
ϕloop2 −ϕloop1 +Δϕcorr

2π )

Beam velocity

Beam RF phases measured at delta-t loops. 
70

Y.K. Batygin Basics of Beam Acceleration USPAS 2019



Time-Of-Flight Measurement of Absolute Beam Energy

		
β = L

c[t −(τ cable2 −τ cable1)]Beam velocity

		
W =mc2( 1

1−β 2
−1)Beam energy
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Longitudinal Beam Emittance Measurement 
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Magnetic energy analyzer

Measurement of Beam Energy Spread

High-dispersive part of 800 MeV beamline

Beam energy- spread-dependent wire scan

Faraday cup
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σ tot = σ + (ηdisp

σ p

p
)2

Beam size in point 
with high dispersion:



Bunch Shape Monitor (A. Feschenko, PAC2001)
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