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Beam Bunching in RF field

Layout of klystron beam bunching scheme (from 
http://en.wikipedia.org/wiki/Klystron)
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RF beam bunching scheme: (left) initial beam modulation in 
longitudinal momentum, (right) final beam modulation in density.

Beam Bunching in RF Field (cont.)
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Increase on fraction of the beam inside separatrix after beam bunching.

Beam Bunching in RF Field (cont.)
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Equation of motion in RF gap of width d and applied voltage U1

Longitudinal particle velocity in RF gap

Longitudinal particle velocity after RF gap

Initial particle velocity after extraction voltage Uo

RF phase in the center of the gap

Transit time angle through the gap

Longitudinal particle velocity after RF gap

Amplitude of modulation of longitudinal velocity 

Transit time factor of RF gap

Beam Bunching in RF Field (cont.)
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Phase of arrival of particle into second gap as a 
function phase of the same particle in the first gap.
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Time of arrival of particle to the second gap

Phase of arrival of particle into the second gap 

Transit angle between gaps

Bunching parameter

Beam Bunching in RF Field (cont.)
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i2 =
I

1− X cosωt1

Current in the second gap as a function of time.

X < 1

X = 1

X > 1

i1dt1 = i2dt2

i2 = i1
dt1
dt2

= I
dt2
dt1

Conservation of charge

Beam current in the second gap

Beam current in the second gap as a function of RF phase 
in the first gap and bunching parameter

Beam Bunching in RF Field (cont.)
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Phase of arrival of particle into second gap
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Expansion of the current in the second gap in Fourier 
series

Fourier coefficients

Differentiation of RF phase

Constant in Fourier series

Other coefficients in Fourier series

Bessel function (integral representation)

Beam current in the second gap

Beam Bunching in RF Field (cont.)
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Bessel functions determine amplitude of the fist, third and tenth 
harmonics of induced current in two-resonator buncher.

Beam Bunching in RF Field (cont.)
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The first harmonic of the induced beam current in the second gap             
as a function of z for different values of voltage at first gap.

The optimal value of bunching parameter is Xopt = 1.84. 

I1
I
= 2J1(X)

Beam Bunching in RF Field (cont.)
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Beam Bunching in Presence of Space Charge Forces

2Ez =
ρ
εo
2zp

Ez =
ρ
εo
zp

Gauss theorem

m
d 2zp
dt 2

= q(Eext − Ez )

d 2zp
dt 2

+ω p
2zp =

q
m
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ω p =
qρ
mεo

= 2c
R

I
Icβ

ρ = I
πR2βc

1D longitudinal space charge field

Space charge density of the beam

Substitution of space charge field gives:

Plasma frequency

Longitudinal oscillation in presence of  
space charge field, Ez, and external 
field Eext
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Space Charge Field of the Train of Cylindrical Bunches 

Space charge potential of the train of the bunches (Y.B., NIM-A 483 (2002) 
611–628) 
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Averaging of the field over radius

Additionally, consider only linear part 
of the field assuming

Taking only first term in field 
expansion, the equation for 
longitudinal beam oscillations is

For most common beam bunching

Reduced plasma frequency due to 
finite transverse beam size and 
presence of conducting pipe   

sin(2πnζ / L) ≈ 2πnζ / L

d 2ζ
dt 2

+ω p
2{

8 J1
2 (υo1

R
a
)

υo1
2 J1

2 (υo1)[1+ (
υo1γ
2π

L
a
)2 ]

sin(2π l
L
)

(2π l
L
)
}ζ = 0

sin(2π l
L
)

(2π l
L
)

≈ 0.5

ω q = Fpω p

Fp = 2.56
J1
2 (2.4 R

a
)

1+ 5.76

(γ ωa
βc

)2

Reduced Plasma Frequency
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Longitudinal Bunched Beam Oscillations in 
Presence of Conducting Tube

d 2zp
dt 2

+ωq
2zp = 0

zp = Bo sinωq (t − t1)

dzp
dt

= Boωq cosωq (t − t1)

dzp
dt
(t1) = Boωq = v1 sinωt1

Bo =
v1
ωq

sinωt1

Longitudinal plasma oscillations in tube

Longitudinal particle oscillations under space charge forces

Longitudinal velocity of particle oscillations under 
space charge forces:

Constant Bo is defined from initial conditions for 
particle velocity after first RF gap:
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Effect of Space Charge Repulsion on Beam Bunching

15Y.K. Batygin Acceleration of Intense Beams  USPAS 2019



zp =
v1
ωq

sinωq (t − t1)sinωt1

z = vo(t2 − t1)+ zp

z = vo(t2 − t1)+
v1
ωq

sinωq (t2 − t1)sinωt1

ωz
vo

=ωt2 −ωt1 +
ωv1
ωqvo

sinωq (t2 − t1)sinωt1

ωt2 −θ =ωt1 − X 'sinωt1

X ' = ωv1
ωqvo

sinωq (t2 − t1)

X ' = X
sin(ωq

z
vo
)

ωq
z
vo

Finally, particle oscillations under space charge forces 
in the moving system

Particle drift

Multiply by 

RF phase in the second gap

Modified bunching parameter in 
presence of space charge 
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Effect of Space Charge Repulsion on Beam Bunching
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Hamiltonian of Particle Motion in RF FieldHamiltonian of Particle Motion in RF Field
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Traveling wave can be represented by an 
effective potential of accelerating field

Actually, equations for particle 
momentum

Ua = E 
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γ
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d!p
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= −qgradUa

Equations of motion in
equivalent traveling wave:
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Hamiltonian of Particle Motion in RF Field (cont.)

dpζ
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= qE[Io(
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)cos(ϕ s − kzζ )− cosϕ s ]+ qEc (r,ζ )

Equations of particle motion around 
synchronous particle in presence of 
space charge forces

Space charge field is expressed through 
potential of self-field of a bunch

Potential of external focusing field

Hamiltonian of particle motion in RF 
field with quadrupole focusing:

dζ
dt

=
pζ
mγ 3

Uel − βcAzmagn = βcG(z) x
2 − y2

2

Ec (r,ζ ) = − 1
γ 2

∂Ub

∂ζ

H =
px
2 + py

2

2mγ
+

pζ
2

2mγ 3 +
qE
kz
[Io(

kzr
γ
)sin(ϕs − kzζ )+ kzζ cosϕs ]+ qβcG(z)

x2 − y2

2
+ qUb

γ 2

18Y.K. Batygin Acceleration of Intense Beams  USPAS 2019



Hamiltonian of Small Amplitude Particle Motion in 
RF Field
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4
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For small bunches 

kzRx <<1, kzRy <<1, kzRz <<1

Hamiltonian describes particle dynamics in three-dimensional linear external field 

Generalization of KV approach for 3-dimensional case is not possible.
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APPENDICES

The Nonexistence of Uniformly ChargedA.

Three-Dimensional Beams

We are given an ensemble of three-dimensional harmonic

oscillators with the Hamiltonian

H(p, <1), =
2 2
P + q , O~H<l (Al)

Because of the inequality, the accessible region in phase space is a

six-dimensional unit sphere; in configuration space it is a 3-sphere.

Does there exist a spherically symmetric distribution
2 2

f(p + q ) that

has a uniform projection onto the 3-sphere? The following necessary

condition for the existence of such a distribution has been found by

Maurice Neuman.

Theorem: The spherically symmetric distribution
2 2

f(p + q ) does not

exist if its projection
2

p(q ) = 223
Jf(p + q )d P violates any of the

following inequalities:

~ 42(
3

)

3/2

:n: 4T '

3
0~T~4'

n_~ -----------

peT)

- 8
~--2-Vl - T'

:n:

,
3
4~T~1 (A2)

The maximum permissible value of peT), which corresponds to the equal

sign, is shown in Fig. (AI). An immediate consequence of this theorem

is the nonexistence of a spherically symmetric distribution
2 2

f(p + q )

with a uniform projection,
2

p(q ) = constant.

Bunched Beam in RF Field: Problems with 
Ellipsoidal Bunch Model

1. There is no 6D distribution 
function which results in 3D 
uniformly charged ellipsoid in 
linear field (see F.Sacherer
Thesis, 1968).

2. RF fields across separatrix are 
essentially non-linear.
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While there is no complete 6D self-consistent treatment of bunched beam 
dynamics in linear field, we can formally include linear space charge into 
equations of motion. 

Potential of 3D uniformly charge ellipsoid:
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1
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∞
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Potential of 3D Uniformly Charge Ellipsoid

ρ = 3
4π
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Ub (x, y,ζ ) = − ρ
2εo

[Mxx
2 +Myy

2 +Mzγ
2ζ 2 ]

Coefficients:

Space charge density:
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3D envelope equations

Focusing functions in 
presence of RF field: 

3D Envelope Equations
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3D averaged envelope 
equations 

Smoothed focusing 
function in presence of 
RF field: 

3D Averaged Envelope Equations
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x = Rx r cosϕ sinθ

y = Ry r sinϕ sinθ

ζ = Rz r cosθ

Introduce spherical coordinates

according to transformation:

Volume element is transformed as

Rms beam size:

Ellipsoid size is related to rms size:

Assuming elliptical beam distribution in 
transverse momentum, the emittance of 
uniform bunched beam :

dxdydζ = RxRyRz r
2 sinθ dr dϕ dθ

0 ≤ r ≤1, 0 ≤ϕ ≤ 2π , 0 ≤θ ≤ π

< x2 > =
Rx
3RyRz
Ve

r4 dr
0

1

∫ cos2ϕ dϕ
0

2π

∫ sin3θ dθ
0

π

∫ = Rx
2

5

Rx = 5 < x2 >

ε = 5ε rms

Rms Beam Emittance of Ellipsoid Bunch

24Y.K. Batygin Acceleration of Intense Beams  USPAS 2019



Consider matched beam, Rx
" = Ry

" = Rz
" = 0 , with equal transverse emittances 

ε x = ε y = ε 	and	 equal	 averaged	 transverse	 sizes	Rx = Ry = R .	 Such	 beam	 is	 a	
uniformly	charged	spheroid.	For	such	spheroid,	coefficients	in		
	

Mx = My =
(1−Mz )
2

	
	

Potential	of	the	uniformly	charged	spheroid	
	

																																													
Ub (r,ζ ) = − ρ

2εo
[Mzγ

2ζ 2 +
1−Mz

2
r2 ] 	

	

where						Mz =
γ R2Rz
2

ds
(R2 + s)(γ 2Rz

2 + s)3/2o

∞

∫ = 1−ς
2

ς 2
( 1
2ς
ln1+ς
1−ς

−1)	

	 	 	 	 	 	

where	ς 	is	the	eccentricity	of	spheroid:												 ς = 1− ( R
γ Rz

)2 						

	

For	most	of	the	beam	parameters,															 Mz ≈
R
3γ Rz

			

Uniformly Charged Spheroid
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3D Matched Beam

− ε 2

(βγ )2R 3 +
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µoψ
2 ]
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2 [1− 3I
Ic (βγ )

3 (
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Rz
)( S
R
)2 Mz
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2 ]

Equilibrium envelope equations

Equilibrium conditions can be 
rewritten as

Depressed transverse and 
longitudinal phase advances per 
focusing period

Rmax = R (1+υmax )

Rmin = R (1−υmax )
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Transverse and Longitudinal Beam Current Limit

Imax,  t =
Ic
3π
(βγ )3(a

S
)2

µoψ
2 ϕs

(1−Mz )
 (1− ε 2

εψ
2 )

εψ ≈
βγ a2µoψ

S
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Ic
6π
(βγ )3(a

S
)2
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2 ϕs

Mz

 (1− ε z
2

⌢εacc
2 )

 

⌢εacc ≈
1
2π

β 2γ 3(Ω
ω
)ϕ s

2 λ

Transverse current limit

Longitudinal current limit

Transverse normalized 
acceptance

Longitudinal normalized 
acceptance
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Transverse and Longitudinal Beam Current Limit 
(cont.)

Focusing period usually contains N
accelerating periods, S=Nβλ . The 
value of transverse limited beam 
current can be re-written as

Using the approximation for 
ellipsoid parameter

and expression for longitudinal 
phase advance, the longitudinal 
beam current limit  can be written 
as 

Τhe impedance of free space

Imax,  t =
4
3
(mc

2

qZo

)βγ 3 ϕ s µoψ
2

(1−Mz )N
2 (
a
λ
)2 (1− ε 2

εψ
2 )

Zo = (cεo )
−1 = 376.73Ω

 
Imax,l =

2βγ E sinϕ s ϕ s
2a

Zo

(1− ε z
2

⌢εacc
2 )

Mz ≈
R
3γ Rz
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Condition for Equal Tune Depression in 
Transverse and Longitudinal Directions

µψ
2

µoψ
2 = 1− 3

2
I

Ic (βγ )
3 (
βλ
Rz
)( S
R
)2 (1−Mz )

µoψ
2

µl
2

µol
2 = 1− 3I

Ic (βγ )
3 (
βλ
Rz
)( S
R
)2 Mz

µol
2

Depressed transverse phase advance

Depressed longitudinal phase advance

Condition for equal tune depression in transverse 
and longitudinal directions:

Coefficient of ellipsoid providing equal tune 
depression (Y.B., NIM-A 483 (2002), 611-628)

Ratio of ellipsoid semi-axis providing equal tune 
depression

Mz =
µol
2

2µo
2

R
3γ Rz

≈ µol
2

2µo
2
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Equal Transverse and Longitudinal Beam Current 
Limit

Imax =
Ic
3π
(βγ )3(R

S
)2µo

2 ϕ s =
2βγ E sinϕ s ϕ s

2R
Zo

Equal depressed tune in transverse
and longitudinal directions

Equal current limit in transverse and
longitudinal directions for negligible
beam emittance with respect to
acceptance of the channel (R is the
beam radius which maximum value
is Rmax= a)
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Deviation from matched solution

results in excitation of envelope modes with eigenfrequencies [M.Pabst, K.Bongart, 
A.Letchford, Proceedings EPAC98, p.146]: 

µenv,Q = 2µψ

µ
env , H

2 = A + B

µ
env , L

2 = A − B

A = µo
2 + µψ

2 + 1
2
µlo
2 + 3

2
µl
2

B = (µo
2 + µψ

2 − 1
2
µlo
2 − 3

2
µl
2 )2 + (µo

2 − µψ
2 )(µlo

2 − µl
2 )

Envelope Modes of Mismatched Bunched Beam

Rx = Rx +ξx Ry = Ry +ξy Rz = Rz +ξz
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Beam Funneling
Beam funneling is a technique to combine 
two and more beams in one beam. According 
to Liouville’s theorem, additional particles 
cannot be inserted into 6-dimensional (6D) 
phase-space volume already occupied by 
other particles. However, 2D and 4D 
projections of beams can be overlapped.

Beam Funneling 
Experiment at 
Frankfurt University 
(A.Schempp, NIM-A 
464 (2001) p.395)
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FOM-MEQUALAC Experiment
(R.W.Thomae et.al, AIP Conference 
Proceedings 139 (1985), p. 95)

Beam Funneling (cont.)
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Parameters of FOM-MEQUALAC Experiment
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Space Charge Dominated Bunched Beam in RF Field*

Sequence of bunches in RF field.

1. Beam is accelerated in traveling wave with constant amplitude E

2 .    Beam is bunched at RF frequency . Particles between bunches are 
removed.

3.     Focusing is provided by a continuous z-independent focusing structure

4. Beam is matched with the structure, i.e. there are no envelope oscillations 
(both transverse and longitudinal) 

What is the self-consistent particle distribution within the bunch and what is 
the limited beam current?       

ω = 2πc
λ

* Y.B., NIM-A 483 (2002), 611-628.35
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Equation for Field of Moving Bunch
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Self - Consistent Problem for Bunched Beam 
Equation (5.53) has to be solved together with the Vlasov equation for the beam distribution 
function: 
 

df
dt

= 1
mγ

(∂ f
∂x

px +
∂ f
∂y

py +
∂ f

γ 2 ∂ζ
pζ )− q(

∂ f
∂px

∂U
∂x

+ ∂ f
∂py

∂U
∂y

+ ∂ f
∂pζ

∂U
∂ζ
)
          

(5.54) 

	
where U = Uext + γ  - 2Ub is a total potential of the structure. Eqs (5.53), (5.54) define the self-
consistent distribution of a stationary beam which acts on itself in such a way, that this 
distribution is conserved. 
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Hamiltonian of Averaged Particle Motion in RF Field

Particle motion is governed by the single-particle Hamiltonian (Kapchinsky, “Theory of resonance 
linear accelerators”, Harwood, 1985):  

 

H = 
px
2 + py

2

2 m γ
  + pz

2

2 m γ 3
 + q Uext + q Ub

γ 2  

 
Uext = E

kz
 [ Io(kzr

γ
) sin(ϕs- kzζ) - sinϕs+ kzζ cosϕs] + Gt r

2

2  

 
px ,  py     transverse momentum 

pz = Pz - Ps      longitudinal momentum deviation from synchronous particle 
ζ = z - zs  deviation from synchronous particle  
ϕ s     synchronous phase 

kz =
2π
βλ

     wave number 

Uext       potential of external field 
Ub         space charge potential of the beam 
E      amplitude of accelerating wave  
Gt       gradient of the focusing field 
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Let us rewrite the distribution function, Eq. (5.55) 
 

f  = fo exp (- 2 
px
2 + py

2

pt
2

  - 2 pz
2

pl
2
  - q Uext + Ubγ  -2

Ho
),                   (5.56) 

 
where pt = 2 <px

2>  = 2 <py
2>  and pl = 2 <pz2> are double root-mean-square (rms) beam sizes in 

phase space. Transverse, εt, and longitudinal, εl, rms beam emittances are: 
 

ε t = 2 pt
mc

 <x 2>  = 2 pt
mc

 <y 2>,                                      (5.57) 

 

ε z = 2
pl
mc

<ζ 2 > .                                                   (5.58) 

The value of Ho can be expressed as a function of the beam parameters: 
 

16Ho =
mc2

γ
ε 2

< x2 >
=
mc2

γ
ε 2

< y2 >
=
mc2

γ 3

ε z
2

<ζ 2 >
.                               (5.59) 

 
Equation (5.59) can be rewritten as 

ε
R
=

ε z
γ Rz

,     (5.60) 

Beam Equipartitioning in RF field
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Self-Consistent Solution for Beam Distribution

Total field within the bunch.
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Analogy with Plasma Physics: Debye Screening
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Space Charge Density of the Bunch

ρ(r,ζ) = - εo [1
r
 ∂
∂r

 (r ∂Ub

∂r
) + ∂

2Ub

γ 2∂ζ 2
]

The self consistent space charge density 
distribution of a matched beam can be found 
from Poisson's equation:

Space charge density of stationary bunch is 
close to constant

ρ(r,ζ ) = 2γ 2Gtεo {1−
δ

(1+δ )2 − 2Vext
− δ 2

32γ
ε 2

< x2 >
( mc

2

qGta
2 )
(∂Vext
∂ξ

)2 + (∂Vext
γ ∂η

)2

[(1+δ )2 − 2δVext ]
3/2 }
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Stationary Bunch Profile

Bunch boundary is not an equipotential surface; 
therefore Uext(r, z) = const does not coincide with 
bunch profile. To find the self-consistent bunch 
profile, consider a uniformly populated bunch with 
boundary defined by the following nonlinear equation

The self-consistent bunch profile in real space is 
close to separatrix shape in longitudinal phase space 

Io(kzr
γ
)sin(ϕs-kzζ) - sinϕs+ kzζcosϕs + Gtkz

2 E
 r2 = const

Equation Uext(r, z) = const gives the family of 
equipotential lines of the space charge field of 
the beam:
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Bunch Profile as a Function of Accelerator Parameters
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Transverse and Longitudinal Bunch Sizes
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(Left) initial and (right) final beam distribution in RF field. (Courtesy of Sergey Kurennoy.)

Initial and Final Bunch in RF Field
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Kapchinsky Model for Self-Consistent Bunched Beam
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Representation of the Bunch as a Uniformly-
Charged Cylinder with Variable Density Along z

Transverse distribution Longitudinal distribution
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Analysis based on Kapchinsky’s model for beam distribution indicates that synchronous 
phase is shifted in space charge dominated beam and phase width of the bunch decreases with 
current but much slower than the vertical size of the separatrix.

The separatrix shape for different values of 
space charge parameter (from Kapchinsky, 
1985).

The potential function and separatrix 
of the beam with high space-charge 
density (from Kapchinsky, 1985).

Separatrix as a Function of Beam Current
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