Predicting the Effect on Electronics

Dr. Heather Quinn

Predicting TID Failures

- There are two things we need to know:
 - How much ionizing dose can the components tolerate before failing
 - What is the radiation environment for each component
- We determine the radiation tolerance of the components using these methods:
 - Vendor data sheets
 - Our testing
 - Radiation testing databases
- We determine the radiation environment on the components through modeling
 - This allows us to determine if there is a pin hole that causes a particular component to fail early

Predicting DD Failures

- There is generally no first step: most of this radiation cannot be shielded in a satellite, likely need to actually know it in an accelerator environment
- We check to make certain the components can tolerate enough 1-MeV neutron equivalents as specified in the requirements
 - DD tends to be a step function (functional, non-functional)

Approach to SEE in Satellites

Here are the steps:

- Model the radiation environment
- Transport the model through the shielding
- Convolve the SEE cross sections with the transported radiation model
- The modeling and the transporting will be handed to you
- You are going to have to figure out how you want to convolve this:
 - By hand
 - By Excel
 - By programming
- This convolution will give you an error rate
 - But there is still a lot of stochastic processes in the prediction

Measured upset error cross section and particle flux for a hypothetical space environment. The error rate is determined by convolving the environment model with the error cross section. [J. R. Schwank, M. R. Shaneyfelt and P. E. Dodd, "Radiation Hardness Assurance Testing of Microelectronic Devices and Integrated Circuits: Radiation Environments, Physical Mechanisms, and Foundations for Hardness Assurance," in IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 2074-2100, June 2013.]

Numerical Integration

• Thoughts about it?

Active Volumes

- The entire slab of silicon is not sensitive to SEE only the active volume
- The cross section is the measurement of the size of the active volume
- Do the Silicon overlayers matter?

Poisson Statistics

Poisson Statistics

- "The probability of a number of events occurring in a fixed period of time if these events occur with a known average rate and independently of the time since the last event"
- One of the thing is predicts is the probability of a certain amount of radiation within a given time
 - Since Poisson statistics affects how much radiation emits at any given time, it affects the error rates
 - For TID the Poisson statistics mostly normalizes
 - For SEE the Poisson statistics causes constant variation in the error rates

Poisson Probability Law

- The Poisson probability law tells us the probability that given
 - The average number of events per unit time, λ
 - The time τ, and
 - The number of events, k
- The probability of k events during time τ is

$$P(k; t, t + \tau) = e^{-\lambda t} \frac{(\lambda \tau)^k}{k}$$

Inter-arrival time of SEEs

- Average rate only provides the "meanaverage arrival rate" that upsets will occur at
- Errors will arrive based on the Poisson random process
 - MTTU gives the likely interval that errors will arrive at
 - Poisson determines when the errors will manifest
- There is an equal chance that no events and one event occur in one time period
- There is a 26% chance that 2 or more events occur

Inter-arrival time of SEEs

- Just because the sortie length < MTTU does not mean there will not be inflight upsets
- At 20,000 feet, there is a 5% chance of having an upset in the first flight
- Each subsequent flight, it becomes increasingly less likely to not have an upset

Poisson Examples

- CREME-MC and QARM will provide you an estimate of what the error rate.
- You can convert that error rate into mean time to upset (MTTU) by inverting it:
 - -MTTU = 1/SER
- Once you get to MTTU, then you can start asking questions like
 - Given time T, what is the probability that the system is still working?
 - Given time T, what is the probability that X upsets have happened?

What is the probability the system is still working?

- Assume that the system will fail if there are any errors. The error rate is 1 error per hour and we are interested in the first hour of operation. What is the chance that the system is still working in one hour?
- First off, our variables lambda and tau are:

$$\lambda = 1$$
errorperhour

$$\tau = 1hour$$

$$P(0errors; 0,1hour) = e^{-1*1} \frac{(1*1)^0}{0!} = e^{-1} = .36$$

What is the probability the system is still working after two hours?

- Same setup, except tau is different
- First off, our variables lambda and tau are:

$$\lambda = 1$$
errorperhour

$$\tau = 2hour$$

$$P(0errors; 0,2hour) = e^{-1*2} \frac{(1*2)^0}{0!} = e^{-2} = .14$$

What is the probability there are two errors in 1 hour?

- Same setup, except k is different
- First off, our variables lambda and tau are:

$$\lambda = 1$$
errorperhour

$$\tau = 1hour$$

$$P(0errors; 0,1hour) = e^{-1*1} \frac{(1*1)^2}{2!} = \frac{e^{-1}}{2!} = .18$$

Homework

- Figure out how you are going to convolve the Weibull Curves for SEE events with a radiation environment:
 - Reminder: the SEE curves are fit to this Weibull equation
 - $F(L) = 1 \exp{-[(L-L0)/W]^s}$, if L > L0
 - F(L) = 0, if L < L0
 - Reminder: make certain your units match
 - What is the effect of onset, width and saturation on the error rate?
- Figure out how you are going to calculate probability of failure given mean-time-to-event, the amount of time, and the number of events

