Basic Mechanisms: Total Ionizing Dose

LANL Radiation Effects Summer School

Josh Pritts, ISR-3 Radiation Effects & Reliability June 10th, 2019

Overview

- Introduction
 - Dose vs. Radioactivity
 - Unit Considerations
- Ionization
 - Gross Oversimplification
 - Total Ionizing Dose (TID)
 - Direct Ionization
 - Indirect Ionization
- Materials and Devices
 - Parametric Shifts in CMOS and Bipolar Devices
 - Bandgap Diagram of MOS Stack
- Total Ionizing Dose (TID) Effects
- Enhanced Low Dose Rate Sensitivity (ELDRS)
- Annealing and Unbiased Irradiation
- Occurrence
- Q&A (throughout discussion, don't wait until the end)

Introduction: Dose vs. Radioactivity

- What is absorbed dose?
 - It's how we measure energy deposited in a unit mass

- What is radioactivity?
 - It's how we measure energy released over a period of time

• What is the difference between dose and radioactivity?

Introduction: Unit Considerations

- Absorbed Dose (Ionization)
 - ergon (erg) = 10^{-7} joules/gram [J/g]
 - Greek for "work" or "task"
 - radiation absorbed dose (rad) = 100 ergs per gram [erg/g]
 - 1000 rad(Si) = 1 krad(Si)
 - 1000 rad(SiO₂) = 1 krad(SiO₂)
 - Gray (Gy) = joules per kilogram [J/kg] << SI unit</p>
- Radioactivity
 - Becquerel (Bq) = number of transformations per second << SI unit</p>
 - Curie (Ci) = $3.7x10^{10}$ transformations per second
 - Rutherford (Rd) = 10⁶ transformations per second
- Which to use? well, it depends who you are talking to…
 - biology or medical professional? try Gray & Becquerel.
 - particle physics, aerospace, or electronics professional? try krad & Curie.

Ionization: Gross Oversimplification

- Photons (X-rays and gamma rays)
 - **Direct ionization** occurs and negligible mass activation

- Charged particles (electrons, protons, and heavy ions)
 - Direct ionization occurs, indirect ionization negligible, and mass activated

- Uncharged particles (neutrons)
 - Indirect ionization negligible and mass activated

Ionization: Total Ionizing Dose (TID)

- Total Ionizing Dose (TID) is the summation of the overall accumulated dose from various sources (electrons, protons, heavy ions, x-rays, gamma rays, etc.)
- Sensitivity to TID can affect reliability and functionality of microelectronics

Ionization: Direct Ionization

- Ionization of a target material is caused by the interaction of high-energy photons or charged particles
- Photon and charged-particle induced ionization are the result of electron-holepair (ehp) generation along a track of secondary electrons emitted via material interactions
- Stopping power or Linear Energy Transfer (LET) expresses the energy loss per unit length (dE/dx)
 - LET, in preferred units of MeV-cm²/mg, is a function of particle mass and energy as well as the target material's density

lonization: Direct Ionization

- At a given energy, LET for protons is greater than electrons due to more mass
- Also, for higher energy charged particles, energy deposited in a material is lower
 - Think about kinetic energy, $E_k = \frac{1}{2}mv^2$ (higher energy = higher velocity)
 - At higher velocities, a charged particle spends less time within a material

lonization: Direct Ionization

• The fraction of unrecombined holes in silicon varies with the energy of the photon or particle and the electric field generated by excess charge

Ionization: Indirect Ionization

- We were just talking about direct ionization
- What is indirect ionization?
- Why is indirect ionization negligible for this discussion regarding Total Ionizing Dose (TID)?
- Any guesses at the ratio between direct and indirect ionization?
 - -Protons
 - -Neutrons
 - -Heavy Ions
 - –Can indirect ionization even happen with photons?

Materials and Devices: Parametric Shifts in CMOS and Bipolar Devices

H. J. Barnaby, IEEE TNS 2006

- Accumulated dose effects are characterized by lasting parametric shifts, which eventually cause semiconductor devices to drift out of tolerance and ultimately fail
- In metal-oxide semiconductor field-effect transistors (MOSFETs) and bipolar junction transistors (BJTs), radiation exposure generates excess charge

Materials and Devices: Parametric Shifts in CMOS and Bipolar Devices

- The holes generated by radiation exposure are relatively immobile in comparison to electrons
- The basic mechanism is hole generation and transport in silicon, then holes being trapped in doped silicon and insulation material (SiO₂)
 - gate and isolation oxides in metal-oxide semiconductor (MOS)
 - at or near silicon-oxide interfaces in bipolar
- In complementary MOS (CMOS), absorbed dose results in leakage currents in isolation layers that lead to functional failures
- In bipolar transistors, oxide charge and interface states in the isolation will increase e-h pair recombination rate, which causes increased base and collector currents that lead to reduced gain

Materials and Devices: Bandgap Diagram of MOS Stack

- The previous bandgap diagram illustrates excess charge generation by exposure to radiation, and the subsequent transport and trapping of that excess charge at or near the interface of SiO₂ and silicon
- The diagram represents distance (or depth) on the horizontal axis and electron energy on the vertical axis
- More energetic electrons appear higher on the diagram, and a positive voltage pulls the energy bands down

Materials and Devices: Bandgap Diagram of MOS Stack

- The positively biased polysilicon (or metal) gate electrode is to the left with an insulator layer in the middle
- The insulator energy bands are slanted electric field from the gate and silicon electrodes
- Energy from incident radiation is absorbed in the insulator by the formation of electron-hole (e-h) pairs
- Approximately 17 eV of energy is required for the production of each single e-h pair in silicon oxide
- The creation of excess charge occurs on the femtosecond timescale

Total Ionizing Dose (TID) Effects

- Oxide Trapped Charge
 - -Typically net positive charge due to hole capture by oxygen atoms
 - Fixed oxide trapped charge can result in DC parameter shifts in CMOS device and integrated circuits (ICs)
- Interface Traps
 - Charge exchange with adjacent Si layers that drastically effect carrier mobility and ehps recombination rates
- 1/f noise in MOS Devices
 - -Switching charge exchanges at oxide interfaces that cause noise

Enhanced Low Dose Rate Sensitivity (ELDRS)

- Some devices (mostly bipolar) are affected by receiving ionizing dose at very low rates
 - During accelerated terrestrial testing, a High Dose Rate (HDR) of >50 rad(Si)/s is the accepted worst-case scenario by convention
 - In space, a Low Dose Rate (LDR) of ~0.01 rad(Si)/s is more typical
 - During non-accelerated terrestrial testing, ELDRS has been observed in devices containing bipolar elements
 - As result, HDR and LDR testing may be necessary for these devices
- Need a weak electric field and an oxide with a "large density of defects"
- This is an area of active research no one is quite certain what causes this sensitivity in some devices
- CMOS products can withstand a much higher TID at low dose rates than at high dose rates due to self-annealing effects

Annealing and Unbiased Irradiation

- Annealing is the process of e-h pair recombination
 - -Often occurs at room temperature and can be accelerated via heating
 - When a CMOS device is irradiated at an HDR and is then biased after the radiation source is removed, the device may begin to functionally recover
- Unbiased irradiation of devices yields lower rates of long lasting e-h pair generation
 - –Unbiased = not powered
 - A lack of an electric field (think back to the bandgap diagram) makes electrons less mobile and therefore increases e-h pair recombination

Occurrence

- TID effects are a common problem in space
 - Some parts can withstand 1 Mrad(Si) of dose
 - -Other parts can only withstand 5 krad(Si) of dose
- Mission duration and location, and shielding are used to determine the amount of dose your system will get
- Some missions require at least a minimum of 25 krad(Si) of dose, but 100 krad(Si) is often the 'magic number' for multi-year missions
 - Rad-hard parts are typically qualified to 100 krad(Si) of dose

Q&A

Questions, comments, and concerns?

Thank you!