

Current leads for cryogenic systems

Ram C. Dhuley USPAS – Cryogenic Engineering June 21 – July 2, 2021

Goals of this lecture

- Learn about the applications of current leads in cryogenic systems
- Gain familiarity with different types of current leads
- Look at techniques for designing optimal current leads for cryogenic systems

Introduction

- Powering a superconducting device involves transfer of current into a cryogenic environment from an outside source. <u>Current leads</u> perform this function.
- The current can be DC or RF, and can greatly vary in magnitude depending on the application
 - μ A mA DC current for cryogenic sensors
 - 100s of A DC current for superconducting magnets
 - 100s of kW of RF (AC) power for SRF cavities
- In this lecture, we will focus on
 - DC leads for magnets carrying current from room temperature into a LHe environment at ~4.2 K
 - RF power for SRF cavities in covered in a separate USPAS class on RF power couplers

Configurations – conventional 'resistive' leads

- Usually made of low RRR copper
- Low material and fabrication cost; lots of design references available

🚰 Fermilab

Heat sinking can be tricky; improper design can result in thermal runaway

Configurations – conventional 'resistive' leads

Resistive current leads for orbital corrector magnet of the LHC (http://arxiv.org/abs/arXiv:1501.07166)

‡ Fermilab

Configurations – conventional 'resistive' leads

Resistive current lead package (Courtesy: Tom Peterson, SLAC)

Configurations – hybrid 'resistive + SC' leads

- Resistive: low RRR copper; HTS: Bi-2223 tapes matrixed in Ag-Au alloy
- Very low heat leak to 4 K at even at very high amperage
- HTS leads must be designed to accommodate a magnet quench or the leads turning resistive; need low resistance contacts at T_1 and T_c

🛠 Fermilab

Configurations – hybrid 'resistive + SC' leads

Helium cooled, 7.5 kA hybrid leads for LHC inner triplet magnet power distribution boxes (courtesy: Tom Peterson/SLAC)

Heat flow definitions

- Q_h = heat flow entering or leaving the lead from the ambient (T_{amb})
- q(l) = heat flow at location x
 - = $q_{cond}(I) + q_{Joule}(I)$
- Q_c = cryogenic load

 $\begin{tabular}{l} \hline Design goal : \mbox{minimize } Q_c \mbox{ for a given } \\ \mbox{operating current, } I \end{tabular}$

Parameter space:

Lead dimensions – length, L and cross section, A_{cs} Lead material – thermal conductivity, k(T) and electrical conductivity, $\sigma(T)$

🚰 Fermilab

Conditions for minimum Qc:

- The warmest point in the current lead is x = 0 at $T = T_H$
- No heat enters the lead at x = 0 (i.e., $T_H = T_{amb}$)

🗲 Fermilab

- For materials that obey Wiedeman-Franz law (k/ σ = L₀T), Q_{L,min} is independent of the material!
- However, the L/A for $Q_{L,min}$ depends on the material.

Solution technique for temperature dependent k and σ :

🛠 Fermilab

n ~ 10 gives reasonably accurate solutions

Deviation from the design current I_D

Resistive current lead in vacuum – temperature profile along the lead (From R. McFee (1959)) **= I**_D

• Qc is minimum

 $| > |_{D}$

 Qc increases due to an increase in Joule dissipation

 $| < |_{D}$

 Qc increases due to an increase in thermal conduction (steeper temperature gradient)

Design of gas cooled resistive current leads

1D model for self-cooled resistive current leads (<u>http://arxiv.org/abs/arXiv:1501.07166</u>)

Energy balance
for the lead
$$\frac{d}{dx} \left(k(T)A \frac{dT}{dx} \right) = -\frac{\rho(T)I^2}{A} + Ph(T)(T - \vartheta)$$

Energy balance
for coolant gas $mc_p(\vartheta) \frac{d\vartheta}{dx} = Ph(T)(T - \vartheta)$
Coolant boiloff $m = \frac{kA}{c_L} \frac{dT}{dx}$
Assuming
perfect heat $\frac{d}{dx} \left(k(T)A \frac{dT}{dx} \right) + \frac{\rho(T)I^2}{A} - mC_p(T) \frac{dT}{dx} = 0$
exchange (large h)

T_{amb},

Design of gas cooled resistive current leads

- Gas cooled leads also need Q_H = 0 to minimize Qc (like conduction cooled leads)
- Q_{c,min} independent of material
- L/A for Q_{c,min} depends on material

Resistive leads: minimum heat leak

Table 1: Minimum heat inleak (W kA⁻¹) of conventional current leads

Type of lead	<i>Q_{C,min}</i> (4.2 K)	<i>Q_{C,min}</i> (77 K)
Conduction-cooled	47	45
Gas-cooled	1.1 ^a	23 ^b

^aHelium gas cooling; ^bnitrogen gas cooling

(http://arxiv.org/abs/arXiv:1501.07166)

Design of hybrid current leads

The optimization of a hybrid current lead is done in two parts:

- Resistive part
 - Procedures described earlier
- HTS part considerations
 - Choice of HTS and matrix material and their size (L/A) to minimize conduction heat leak
 - Parallel shunt for current discharge during quench
 - Use configurations less sensitive to self-fields (eg. Bi2223 tapes are wound cylindrically to make the self-field parallel to the plane of the tapes)

Practical design considerations

- The analytical models presented earlier are a good starting point
- However, final optimization a current lead designed for transferring high currents must include 2D and possibly 3D finite element calculations for the detailed definition of the geometry
- Consider the modelling of
 - thermal performance temperature dependent thermal conductivity, heat transfer coefficient
 - electrical performance temperature dependent electrical resistivity, shunt for HTS leads
 - fluid dynamic performance pressure drop for gas cooled leads
 - Magnetization of HTS leads in self field
- Current leads design is a mature topic with lot of literature take benefit of this for your design!

Examples of HTS leads

- Fermilab tested and operated some HTS current leads at 4.5 kA to 6 kA for the Tevatron, and a few of them ran for many years in the Tevatron
 - LN2 cooled copper section
 - Small helium vapor flow up HTS section
 - Very stable and reliable
 - Design issues involved solder joints to various conductors (LTS – HTS – copper) and isolation of N2 from helium channels
 - See references 3 and 4 for more information

Examples of HTS leads

- CERN's LHC current leads for currents above a few 100 amps are HTS leads, helium gas cooled from nominally 20 K gas
 - See reference 5 for more information
- The Fermilab/Berkeley collaboration incorporated 7.5 kA HTS current leads into the DFBX feed boxes for the LHC inner triplet magnets, also helium cooled
 - <u>http://tdserver1.fnal.gov/peterson/tom/DFBXimages/HTS</u>
 <u>leads/index.html</u>

References and further reading

- 1. R. McFee, "Optimum Input Leads for Cryogenic Apparatus," *Review of Scientific Instruments*, 1959.
- 2. A. Ballarino, "Current Leads, Links, and Buses," <u>http://arxiv.org/abs/arXiv:1501.07166</u>.
- 3. G. Citver, S. Feher, T.J. Peterson, C.D. Sylvester, "Thermal Tests of 6 kA HTS Current Leads for the Tevatron," Advances in Cryogenic Engineering, Vol. 45B, pg. 1549.
- J. Brandt, S. Feher, T.J. Peterson, W.M. Soyars, "HTS Leads in the Tevatron," Advances in Cryogenic Engineering, Vol. 47A, pg. 567.
- 5. T.P. Andersen, V. Benda, B. Vullierme, "600 A Current Leads with Dry and Compact Warm Terminals," LHC Project Report 605.

