

EUROPEAN SPALLATION SOURCE

Cryogenic Properties of Materials

J. G. Weisend II

- Describe the issues associated with use of materials at cryogenic temperatures
- List suitable and unsuitable materials for use in cryogenic systems
- Give the physical explanation behind the variation of some material properties with temperature
- Provide pointers to material properties

Issues with Materials at Cryogenic Temperatures

- Material properties change significantly with temperature. These changes must be allowed for in the design.
- Many materials are unsuitable for cryogenic use.
- Material selection must always be done carefully. Testing may be required.

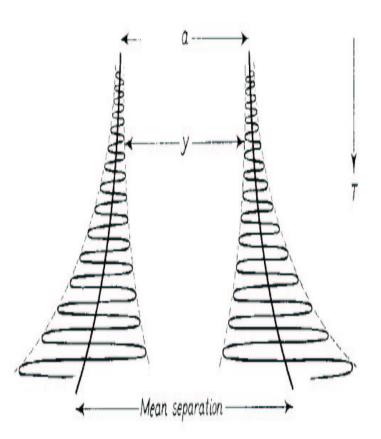
Material Selection

- Some suitable materials for cryogenic use include:
 - Austenitic stainless steels e.g. 304, 304L, 316, 321
 - Aluminum alloys e.g. 6061, 6063, 1100
 - Copper e.g. OFHC, ETP and phosphorous deoxidized
 - Brass
 - Fiber reinforced plastics such as G –10 and G –11
 - Niobium & Titanium (frequently used in superconducting RF systems)
 - But becomes brittle at cryogenic temperatures
 - Invar (Ni /Fe alloy) useful in making washers due to its lower coefficient of expansion
 - Indium (used as an O ring material)
 - Kapton and Mylar (used in Multilayer Insulation and as electrical insulation
 - Quartz (used in windows)

Material Selection

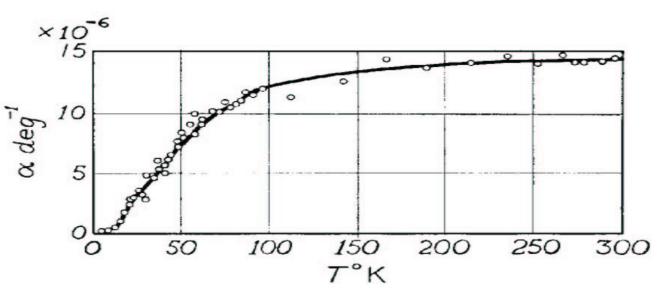
- Unsuitable materials include:
 - Martensitic stainless steels Undergoes ductile to brittle transition when cooled down.
 - Cast Iron also becomes brittle
 - Carbon steels also becomes brittle. Sometimes used in 300 K vacuum vessels but care must be taken that breaks in cryogenic lines do not cause the vacuum vessels to cool down and fail.
 - Rubber, Teflon and most plastics (important exceptions are Kel-F and UHMW used as seats in cryogenic valves)

- Large amounts of contraction can occur when materials are cooled to cryogenic temperatures.
- Points to consider:
 - Impact on alignment
 - Development of interferences or gaps due to dissimilar materials
 - Increased strain and possible failure
 - Impact on wiring
 - Most contraction occurs above 77 K



Thermal Expansivity

EUROPEAN SPALLATION SOURCE


 α =1/L (δ L/ δ T) Results from anharmonic component in the potential of the lattice vibration

Thermal Expansivity

- α goes to 0 at 0 slope as T approaches 0 K
- α is T independent at higher temperatures
- For practical work the integral thermal contraction is more useful

Integral Thermal Contraction

Material	$\Delta L / L (300 - 100)$	ΔL / L (100 – 4)
Stainless Steel	296 x 10 ⁻⁵	35 x 10 ⁻⁵
Copper	326 x 10 ⁻⁵	44 x 10 ⁻⁵
Aluminum	415 x 10 ⁻⁵	47 x 10 ⁻⁵
Iron	198 x 10 ⁻⁵	18 x 10 ⁻⁵
Invar	40 x 10 ⁻⁵	-
Brass	340 x 10 ⁻⁵	57 x 10 ⁻⁵
Epoxy/ Fiberglass	279 x 10 ⁻⁵	47 x 10 ⁻⁵
Titanium	134 x 10 ⁻⁵	17 x 10 ⁻⁵

Heat Capacity or Specific Heat of Solids

- C = dU/dT or Q/mDT
- In general, at cryogenic temperatures, C decreases rapidly with decreasing temperature.
- This has 2 important effects:
 - Systems cool down faster as they get colder
 - At cryogenic temperatures, small heat leaks may cause large temperature rises
- Where is the heat stored ?
 - Lattice vibrations
 - Electrons (metals)
- The explanation of the temperature dependence of the specific heat of solids was an early victory for quantum mechanics

Lattice Contribution

- Dulong Petit Law
- Energy stored in a 3D oscillator = 3NkT = 3RT
- Specific heat = 3R = constant
 - Generally OK for T= 300 K or higher
 - Doesn't take into account quantum mechanics

Einstein & Debye Theories

• Einstein explains that atoms may only vibrate at quantized amplitudes. Thus:

$$U = \left(n + \frac{1}{2}\right)hv$$

- This results in a temperature dependent specific heat
- Debye theory accounts for the fact that atoms in a solid aren't independent & only certain frequencies are possible

Debye Theory

• The Debye theory gives the lattice specific heat of solids as:

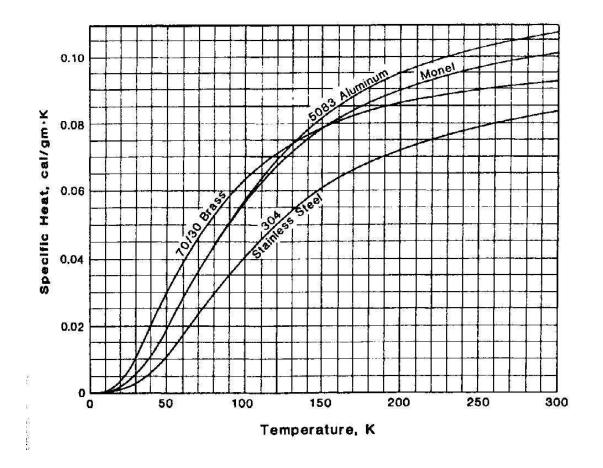
$$C = 9R\left(\frac{T}{\Theta}\right)^{3} \int_{0}^{x_{\text{max}}} \frac{e^{x}x^{4}}{\left(e^{x}-1\right)^{2}} dx$$

- As T ~ 300 K C~ 3R (Dulong Petit)
- At T< θ /10 C varies as T ³

Impact of Electrons in Metals on Specific Heat

- Thermal energy is also stored in the free electrons in the metal
- Quantum theory shows that electrons in a metal can only have certain well defined energies
- Only a small fraction of the total electrons can be excited to higher states & participate in the specific heat
- It can be shown that $C_e = \gamma T$

- The total specific heat of metals at <u>low temperatures</u> may be written:
- $C = AT^3 + BT$ the contribution of the electrons is only important at < 4 K
- Paramagnetic materials and other special materials have anomalous specific heats -always double check

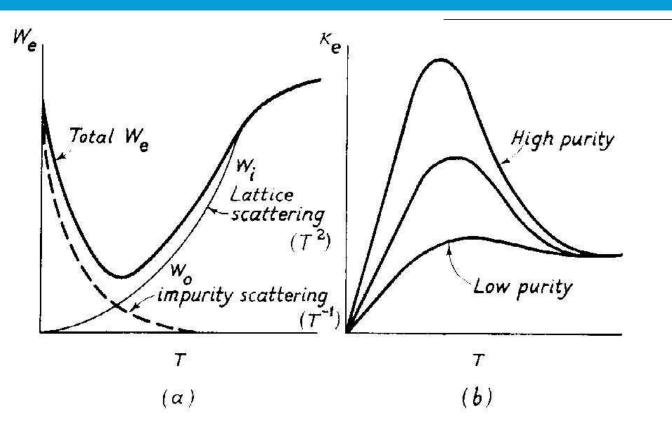


EUROPEAN SPALLATION SOURCE

Transport Properties of Solids

Thermal Conductivity

- Q = -K(T) A(x) dT/dx
- K Varies significantly with temperature
- Temperature dependence must be considered when calculating heat transfer rates


- Energy is transferred both by lattice vibrations (phonons) and conduction electrons
- In "reasonably pure" metals the contribution of the conduction electrons dominates
- There are 2 scattering mechanisms for the conduction electrons:
 - Scattering off impurities (W_o = β /T)
 - Scattering off phonons ($W_i = \alpha T^2$)
- The total electronic resistivity has the form : W_e = αT^2 + β/T

Thermal Conductivity of Metals Due to Electrons

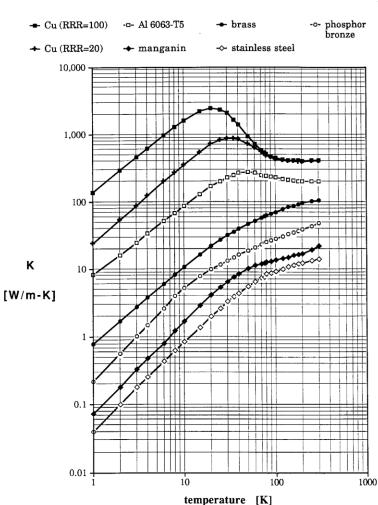
EUROPEAN SPALLATION SOURCE

From Low Temperature Solid State Physics – Rosenburg

• The total electronic resistivity has the form : $W_e = aT^2 + b/T$ K~

K~ 1/We

J. G. Weisend II



- Another mechanism for heat transfer in metals are lattice vibrations or phonons
- The main resistance to this type of heat transfer is scattering of phonons off conduction electrons
- This resistance is given by $W = A/T^2$
- Phonon heat transfer in metals is generally neglected

From Lakeshore Cryotronics

EUROPEAN SPALLATION

SOURCE

Thermal Conductivity Integrals

- The strong temperature dependence of K makes heat transfer calculations difficult
- The solution is frequently to use thermal conductivity integrals
- The heat conduction equation is written as:

 $Q = -G(\theta_2 - \theta_1)$

Thermal Conductivity Integrals

EUROPEAN SPALLATION SOURCE

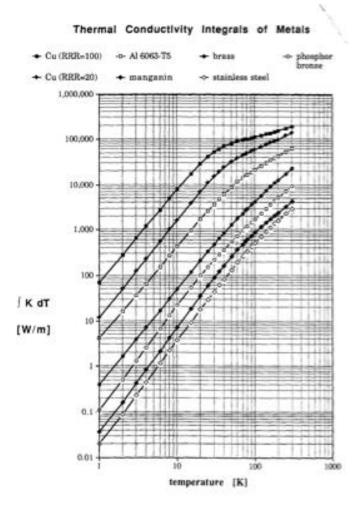
• G is the geometry factor

$$G = \frac{1}{\int\limits_{x_1}^{x_2} \frac{dx}{A(x)}}$$

• θ is the thermal conductivity integral

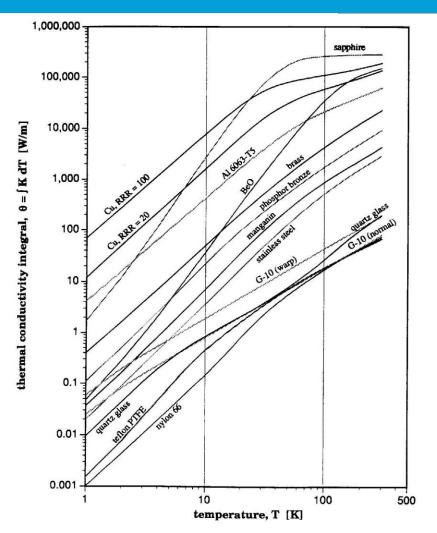
$$\theta_i = \int_0^{T_i} K(T) dT$$

Thermal Conductivity Integrals


- Advantages:
 - Simple
 - Only end point temperatures are important. (assuming there are no intermediate heat sinks) The actual temperature distribution is not.
 - Thermal conductivity integrals have been calculated for many engineering materials
 - This is quite useful for heat leak calculations

Thermal Conductivity Integrals of Metals

EUROPEAN SPALLATION SOURCE



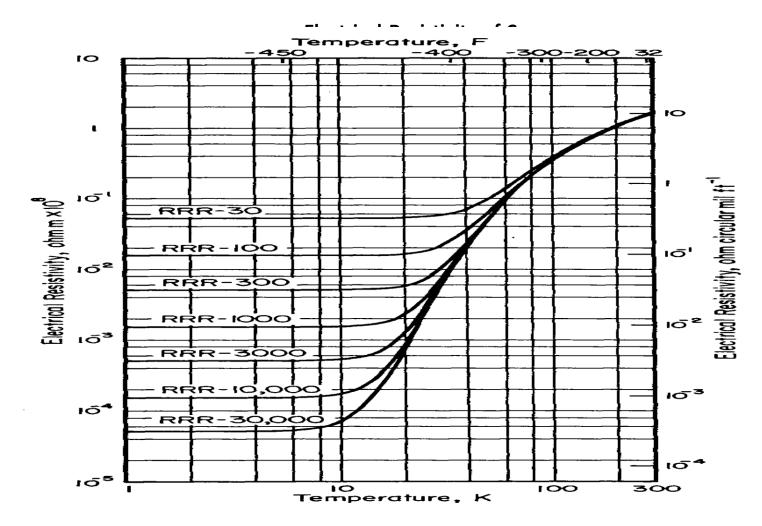
From <u>Handbook of Cryogenic</u> <u>Engineering</u>, J. Weisend II (Ed)

Thermal Conductivity Integrals of Metals & Nonmetals

Electrical Resistivity

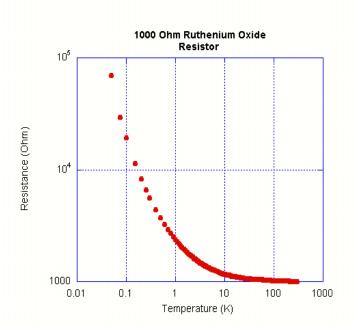
- Ohm's Law V=IR
 - R= ρ L/A where ρ is the electrical resistivity
- Conduction electrons carry the current & there are 2 scattering mechanisms
 - Scattering of electrons off phonons
 - Scattering of electrons off impurities or defects (e.g. dislocations)

Electrical Resistivity of Metals



- For T ~ θ phonon scattering dominates
 - ρ is proportional to T
- For T<< θ impurity scattering dominates
 ρ is constant
- Between these two regions (T~ θ /3)
 - ρ is proportional to T^{5} for metals
- RRR = ρ (300 K)/ ρ (4.2K) an indication of metal purity

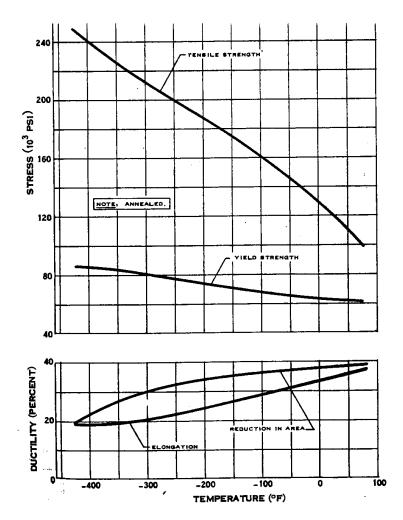
Electrical Resistivity of Copper



Electrical Resistivity of Other Materials

- Amorphous materials & semiconductors have very different resistivity characteristics than metals
- The resistivity of semiconductors is very non linear & typically **increases** with decreasing T due to fewer electrons in the conduction band
- Superconductivity A later lecture

Material Strength



- Tends to increase at low temperatures (as long as there is no ductile to brittle transition)
- 300 K values are typically used for conservative design. Remember all systems start out at 300 K & may unexpectedly return to 300 K.
- Always look up values or test materials of interest

Typical Properties of 304 Stainless Steel From <u>Cryogenic Materials Data Handbook (Revised)</u> Schwartzberg et al (1970)

Sources of Data for the Cryogenic Properties of Material

- "A Reference Guide for Cryogenic Properties of Materials", Weisend, Flynn, Thompson; SLAC-TN-03-023
- <u>Cryogenic Materials Data Handbook</u>: Durham et al. C13.6/3.961 :
- MetalPak: computer code produced by CryoData <u>http://www.htess.com/software.htm</u>
- CryoComp: computer Code produced by Eckels Engineering
- http://www.eckelsengineering.com/
- Proceedings of the International Cryogenic Materials Conferences (ICMC)