Proton and Ion Linear Accelerators

Yuri Batygin,¹ Sergey Kurennoy,¹ Dmitry Gorelov,¹ Vyacheslav Yakovlev ², Tyler Fronk³

¹Los Alamos National Laboratory ²Fermi National Accelerator Laboratory ³Sandia National Laboratories

> U.S. Particle Accelerator School June 7 – July 2, 2021

Proton and Ion Linear Accelerators

13. RF accelerating structures, Lecture 5

Vyacheslav Yakovlev, Fermilab U.S. Particle Accelerator School (USPAS) Education in Beam Physics and Accelerator Technology June 25, 2021

RF accelerating structures

Outline:

- Architecture of modern SRF proton accelerators;
- SRF around the world
- Επιλογος
- Home tasks.

Chapter 9.

Architecture of SRF accelerators.

- a. proton/ion SRF linacs:
- RT or SRF front end?
- choice of beamline elements;
- lattice design.
- **b. electron SRF linacs.**

Architecture of a GeV–range proton SRF accelerator:

Layout of typical modern proton SRF accelerator.

52 Fermilah

Linac Design Philosophy:

□ RT or SRF frontend?

- For low duty factor RT frontend (up to ~200 MeV) may be used
- For high DF or CW SRF is necessary from the beginning
- Choice of beam line elements
 - Accelerating RF Cavities
 - Focusing Magnets

Lattice Design

- Focusing Period
- Transition Energy between Sections

RF cavities:

- Lower RF frequency provides better interaction with beam.
- RF defocusing factor is inversely proportional to frequency.
- Lower frequency implies larger RF bucket and hence larger longitudinal acceptance.

🛟 Fermilab

RF cavities:

- The frequency choices for multi-cell:
- Cavity length is about the same for the same β_G (the same number of couplers, tuners, etc). Typical length ~0.8-1 m depending on β_G (from iris to iris)
- Lower frequencies → bigger size, higher cost, more difficult handling, microphonics

but: lower losses per unit length (smaller R/Q, but lower R_s); larger aperture (current interception), smaller beam defocusing; smaller number of cells and therefore, smaller a/λ , smaller K_m and K_e and smaller numbers of cavity types.

• Typically , they use 650 – 800 MHz, and 5-7 cells/cavity:

SNS: 804 MHz, 6 cells/cavity (in operation)ESS: 704 MHZ, 5 cells/cavity (under construction)PIP II: 650 MHz, 5 cells/cavity (under development)

🗲 Fermilab

- The frequency choices for the front end:
- Subharmonics of the main frequency.
- Acceleration gradient choice (high DF, CW):
- Quench, B_{peak} ≈70-80 mT
- Field emission, $E_{peak} \approx 40 \text{ MV/m}$
- Thermal breakdown typically is not an issue for proton linacs.

RF cavities:

- Selection of the maximum accelerating gradients in cavities are made on the basis of :
 - Peak surface magnetic field
 - Peak surface Electrical field
- Choices of peak magnetic fields are derived from:
 - Dynamics heat load due to accelerating mode
 - Cavity quenching.
- Choices of peak surface field is made to avoid field emission

CW Linac assumptions:

- 162.5 MHz: H_{pk} < 50mT
- 325 MHz: $H_{pk} < 60 mT$
- 650 MHz: $\dot{H}_{pk} < 70 mT$
- $E_{pk} < 40 \text{ MV/m}.$

Accelerating Gradient in PIP-II Linac

	HWR	SSR1	SSR2	LB650	HB650
Gradient (MV/m)	9.7	10	11.4	15.9	17.8

Focusing elements:

- Normal conducting magnets are cheaper but superconducting magnets are:
 - > Compact in size
 - Provide intense magnetic field with low power consumption.
- Low energy part of SRF linac typically has solenoidal focusing:
 - Provide radial focusing
- Intermediate and high energy section of linac use normal conducting doublet focusing.
 - Simplify cavity magnetic shielding requirements
- Correctors are built in each magnets.
- Solenoidal and doublet focussing keeps the beam round in transverse planes.
 - Focusing magnets in each section

Section	HWR	SSR1	SSR2	LB650	HB650
Magnet	S	S	S	FD	FD

S – *solenoid, FD* – *doublet (F : focusing and D: Defocusing quadrupole).*

🛠 Fermilab

Focusing elements:

□ Solenoid: Solenoid focal length *f*: (non-relativistic case, *T* is a particle kinetic energy, $T=mv^2/2$.)

$$\frac{1}{f} = \frac{q^2}{8Tm} \int B_z^2 dz$$

- Focal length is proportional to β^2 ;
- Focal length is inversed proportional to $B_z^2 L$, L is the solenoid length;
- Therefore, solenoid can be used for low β ($\beta < 0.5$). For higher β quad is used.

Quadrupole lens: Quad focal length *f*:

$$\frac{l}{f} = \frac{qB'L}{\gamma\beta mc}$$

Focusing elements:

For low section SC solenoids are used.

- Simple and inexpensive;
- Filed up to 6-8 T;
- SRF cavity should have < 10 mT on the SRF cavity surface: remnant solenoid field should be compensated
- Solenoid contains correction coils (steering dipoles)
- Alignment (typically <0.3- 0.5 mm, <5 mrad tilt);
- Quench protection;
- Leads

Lattice Design: Focusing Periods

 Length of the focusing period is kept short, especially in the low energy section where beam is non-relativistic and non-linear force may be significant.
 Cryomodule Arrangement

Lattice Design: Focusing Period in High Energy Section

- Frequency jump from 325 MHz to 650 MHz at LB650 MHz section
- Solenoidal focusing is replaced with quadrupole doublet.
- Same family of doublet is used in both LB650 and HB650 sections.

🛟 Fermilab

Transition Energy between Sections :

- Transition Energy between Sections (type cavity change). Optimization in order to minimize the number of cavities.
- Beam matching between sections and cryomodules are achieved using elements of each side of transitions. Avoiding abrupt changes in beam envelopes to reduce possibility of halo formations.
- Adiabatic variation in phase advance along linac. Reduces possibility of beam mismatch.

Number of cavities required for acceleration from 185 to 800 MeV versus cavity beta in the LB650 and HB650 sections (left) and the energy gain per cavity versus particle energy (right) for LB650 (red curve) and HB650 (blue curve) cavities.

🚰 Fermilab

15 5/25/2021 V. Yakovlev | RF Accelerating Structures, Lecture 5

Architecture of a GeV–range proton SRF accelerator:

Correct selections of transitional energy provide better optimization of real estate gradient and reduction in total number of beam line elements.

Sections	Initial Energy (MeV)	Design Beta	Beta range
HWR	2.1	0.094	0.067 -0.147
SSR1	10.3	0.186	0.147-0.266
SSR2	35	0.398	0.266-0.55
LB 650	185	0.61	0.55-0.758
HB 650	500	0.92	0.758-0.842

Acceleration voltage distribution

Voltage Amplitude in Cavities

Voltage gain by beam

• Maximum Energy gain in PIP-II SC cavities

	HWR	SSR1	SSR2	LB650	HB650
Max. Egain (MeV)	2	2.05	5	11.9	19.9

Summary:

- Architecture of a big SRF linac is determined by:
- accelerated particles electrons, protons or ions;
- accelerator operation regime pulsed or CW;
- accelerator parameters energy and power.
- For a proton accelerator the choice of the front end RT or SRF depends on the operation regime, pulsed or CW.
- The frequencies and cavity types for a proton or an ion accelerator should be determined;
- The types of the focusing elements should be selected.
- The lattice should be designed, which provides
- acceleration
- focusing
- bunching.
- Break points between the section with different cavity types should be optimized;
- The sections should be matched to each other to provide required beam quality.

Chapter 10.

SRF around the world

SRF around the world

Global view Distribution of superconducting particle accelerators using SRF structures for electrons (orange), protons (purple) and heavy ions (pink). More than 30 SRF accelerators are in operation (circles), approximately 15 are presently under construction (triangles) and more than 10 future projects are under consideration (squares). *Credit: CERN*

🚰 Fermilab

20 5/25/2021 V. Yakovlev | RF Accelerating Structures, Lecture 5

Big SRF Accelerator Facilities:

Linac	Laboratory	Application	Acc. Particle	Operation	Status
SNS	ORNL, USA	Neutron Source	H-	pulsed	Operation
ESS	ESS, Sweden	Neutron Source	р	pulsed	Construction
CIADS	IMP, China	ADS	р	CW	R&D
ISNS	Indore, India	Neutron Source	р	pulsed	R&D
ADSS	BARC, India	ADS	р	CW	R&D
PIP II	FNAL, USA	Neutrino/Muons	H	CW/pulsed	R&D
FRIB	MSU, USA	Nucellar physics	lons	CW	Commissioning
RAON	RISP, S.Korea	Nucellar physics	lons	CW	Construction
CEBAF	JLAB, USA	Nucellar physics	e⁻	CW	Operation
XFEL	DESY, Germany	FEL	e	pulsed	Operation
SHINE	SINAP, China	FEL	e-	CW	Construction
LCLS II	SLAC, USA	FEL	e	CW	Construction

‡ Fermilab

21 5/25/2021 V. Yakovlev | RF Accelerating Structures, Lecture 5

New large SRF accelerator installations

CEBAF Upgrade - JLAB Upgrade 6.5 GeV => 12 GeV electrons	80 cavities	Electrons
XFEL – Hamburg, Germany 17.5 GeV electrons – Pulsed X-ray FEL	840 cavities	
LCLS-II (+ LCLS-II-HE) – SLAC 4 GeV electrons – CW X-ray FEL	296 (+184) cavities	
SPIRAL-II – France 30 MeV, 5 mA protons -> Heavy Ions	28 cavities	lons
FRIB – MSU 500 kW, heavy ion beams for nuclear astrophysics	340 cavities	
ESS – Sweden 1 – 2 GeV, 5 MW Pulsed spallation source	150 cavities	Protons
PIP-II – Fermilab 800 MV High intensity proton linac for neutrino beams	115 cavities	

<u>Coming up</u>: SHINE in China, EIC at BNL, ILC in Japan, FCC-ee/FCC-hh at CERN, CEPC-SPPC in China, Accelerator complex upgrade to 2.4 MW at Fermilab

SRF gradient achievements and applications

Credit: Source: R Geng/ORNL

Gradient growth SRF linac accelerating gradient achievements and application specifications since 1970.

CW SRF Linacs – SCA: Stanford Superconducting Accelerator; MUSL: Ilinois Microtron Using a Superconducting Linac; CEBAF: Continuous Electron Beam Accelerator Facility; JLab FEL: JLab Free Electron Laser; ELBE: HZDR Electron Linear accelerator with high Brillance and Low Emittance; ALICE: STFC Accelerators and Lasers In Combined Experiments; ARIEL: TRIUMF Advanced Rare IsotopE Laboratory; LCLS-II:

Linac Coherence Light Source extension; SHINE: Shanghai High Brightness Photon Facility. *Pulsed SRF Linacs* – FAST: Fermilab Accelerator Science and Technology Facility; STF: KEK Superconducting RF Test Facility; E-XFEL: European Xray Free Electron Laser; ILC: International Linear Collider.

23 5/25/2021 V. Yakovlev | RF Accelerating Structures, Lecture 5

Fermilab PIP-II

Architecture of Facility for Rare Isotope Beams (FRIB, MSU)

FRIB linac is successfully commissioned in May 2021!

Architecture of LCLS II (electron SRF Linac for FEL)

🛟 Fermilab

European XFEL

View Along the 1 km Long Superconducting Accelerator

EXFEL is the world largest SRF application at 17.5 GeV (800 cavities).
Operating gradient is 23.5 MV/m.
Construction is complete, commissioning has started.
First lasing in May 2017!

Επιλογος

"The internal machinery of life, the chemistry of the parts, is something beautiful. And it turns out that all life is interconnected with all other life." *Richard Feynman*

🊰 Fermilab

5/25/2021

- SRF Liner Accelerator is self-consistent system, parts of it strongly depend on each other. Deep understanding and careful analysis of subsystems and components as well as their interaction are necessary to achieve required beam parameters and facility reliability at minimal capital and operation cost.
- The design process will never be reduced to just a few simple rules or recipes. Using an existing design as a base for developing a new system is OK and can shorten the new system development time, but the system designers should be aware that even seemingly small changes could bring big consequences.
- As accelerator application demands continue to increase (higher energy, higher luminosity, brighter beams, more efficient accelerators, ...) there will be no shortage of new challenges to tackle in the future.
- The field of RF superconductivity is very active. The SRF technology is the technology of choice for many types of accelerators.

There will always be ample opportunities for imagination, originality, and common sense.

The end

31 5/25/2021 V. Yakovlev | RF Accelerating Structures, Lecture 5

Fermilab **Energy** Office of Science

Tasks for Homework

Task 1. Lecture

SRF 5-cell cavity designed for PIP II has the following parameters:

- Operating frequency is 650 MHz
- Acceleration voltage V is 20 MV
- *R/Q* is 620 Ohm
- Q_0 at operation voltage is 3e10
- The beam current *I* is 2 mA

Estimate for CW operation:

- The cavity loaded quality factor, $Q_L = V/(I \cdot (R/Q))$
- The cavity time constant, $\tau = 2Q_L/\omega$.
- The cavity bandwidth , $\delta f = f/Q_L$;
- Loss power in the cavity walls;
- The power transferred to the beam;
- Power required for refrigeration; take Coefficient of Performance CoP= 1.e3 W/W,
 i.e., in order to remove 1 W from the cavity wall one needs wall plug power of 1 kW);
- Acceleration efficiency, the beam power over the sum of the RF power and power required for refrigeration.

Task 2.

PIP II SRF accelerator has CW capability, but will operate in the pulsed mode as an injector to the booster ring. The beam and cavity parameters are the same as for CW, Task 1. The beam pulse t_{heam} is 0.55 msec, repletion rate is 20 Hz. The beam appears when the cavity voltage reaches the operating value V, and backward wave (from the cavity to the RF source) is zero. Note that this wave is a sum of the reflection from the coupling element (which is equal to the incident wave), and the wave radiated from the cavity to the line. In the beginning of the cavity filling, the radiation is zero (the cavity is empty), and the backward wave is equal to reflection from the coupling element, and thus, to the incident wave. If there is no beam, the backward wave is again equal to the incident wave (no losses in the cavity) after the voltage reaches its maximal value, but it is again the sum of the wave reflected from the coupling element and radiated wave. It can be only if the radiated wave is two times larger than the wave reflected from the coupling element, and has opposite sign. It means that the beam appears when the cavity field reaches half of the maximal value (zero backward wave, the reflected wave is equal to the radiated wave, and they compensate each other). The cavity voltage, thus, increases during the filling as $V(t) = 2V(1-exp(-t/\tau))$, τ is the time constant, $\tau = 2Q_1/\omega$. Filling is over when V(t_{fill}) =V, and therefore, the filling time t_{fill} is equal to $\tau \cdot \ln 2$. After the beam ends, the RF source is turned off, and cavity discharges as $V(t) = Vexp(-t/\tau)$. Thus, the cavity voltage has the following behavior:

Task 2 (cont.)

- $V(t) = 2V(1 exp(-t/\tau)), t < t_{fill} = \tau \cdot ln2$ filling; RF is on, no beam;
- V(t) = V, the beam acceleration; RF is on; $0 < t < t_{beam}$, t=0 corresponds to the end of filling process
- V(t) = Vexp(-t/τ), cavity discharge; RF is off, no beam. t=0 corresponds to the end of acceleration

Estimate:

- Energy, delivered by the RF source to the beam during the pulse
- Total energy, delivered by the RF source during the pulse;
- Total energy dissipated in the cavity wall during the pulse;
- Energy, required for refrigeration;
- Beam power /cavity (20 Hz repetition rate);
- Average RF power/cavity;
- Power necessary for refrigeration/cavity;
- Acceleration efficiency, the beam power over the sum of the RF power and power required for refrigeration.

Task 3

The ideal HWR cavity for β = 0.112 operates at frequency f = 162.5 MHz. It provides the energy gain (acceleration voltage) V = 2 MeV. The inner radius is a, the outer radius is b.

Estimate:

- The cavity length *L*;
- Effective cavity length;
- Acceleration gradient
- The optimal ratio b/a to achieve minimal surface electric field (on the inner electrode) at fixed b, taking into account that in a coaxial line E_r ~1/r;
- *b* and *a* to get maximal energy gain;
- The voltage difference U between the inner and outer electrodes at z=0.
- The coaxial impedance Z_c .
- The energy stored in the cavity;
- *R/Q;*
- The Ohmic loss in the cavity taking R_s =3 nOhm.
- Unloaded quality factor Q_0 and G-factor
- Maximal surface electric and magnetic fields and field enhancement factors K_B and K_E .

Si(x) calculator: https://keisan.casio.com/exec/system/1180573420

Homework

Task 4 (bonus problem)

Calculate the maximum temperature rise δT and maximum surface magnetic field H_{b} in the cavity, when cavity has thermal breakdown. For estimations take the following parameters:

- Operating frequency: f=3.9 GHz
- Helium temperature: $T_0 = 2^{\circ}K$ d=3 mm
- Niobium thickness:
- Thermal conductivity*: $k(T_0)=30 W/(m \cdot K)$
- Kapitsa resistance*: $h(T_0) = 10^4 W/(m^2 \cdot K)$
- BCS surface resistance for Nb :

$$R_{s}(T) = R_{0} \cdot \left[\frac{f(GHz)}{1.3}\right]^{2} \cdot \left(\frac{T_{c}}{T}\right) \cdot e^{-\Delta \cdot \frac{T_{c}}{T}} , T << T_{c}$$

Temperature T_{bath} Helium Bath $\Delta T_{\rm Kapitza}$ Superconductor Tsurface

🚰 Fermilab

where: $R_0 = 10^{-5} [\Omega]; \Delta = 1.8; T_c = 9.2\%$

Use assumption, that temperature rise δT is small compared to T_0 . Therefore, neglect temperature dependence of k and h (but not R_s !).

Appendixes

Appendix 1, Vector calculus

$ abla \cdot (\psi \mathbf{A}) = \mathbf{A} \cdot abla \psi + \psi abla \cdot \mathbf{A}$	$\mathbf{div}(\psi\mathbf{A}) = \mathbf{A}\cdot\mathbf{grad}\psi + \psi \mathbf{divA}$	
$ abla imes (\psi {f A}) = abla \psi imes {f A} + \psi abla imes {f A}$	$\mathbf{rot}(\psi\mathbf{A})=\mathbf{grad}\psi imes\mathbf{A}+\psi\mathbf{rot}\mathbf{A}$	
$egin{aligned} abla (\mathbf{A} \cdot \mathbf{B}) &= (\mathbf{A} \cdot abla) \mathbf{B} + (\mathbf{B} \cdot abla) \mathbf{A} + \ + \mathbf{A} imes (abla imes \mathbf{B}) + \mathbf{B} imes (abla imes \mathbf{A}) \end{aligned}$	$\mathbf{grad}(\mathbf{A} \cdot \mathbf{B}) = (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A} +$ + $\mathbf{A} \times \mathbf{rot}\mathbf{B} + \mathbf{B} \times \mathbf{rot}\mathbf{A}$	P.W.
$rac{1}{2} abla A^2 = {f A} imes (abla imes {f A}) + ({f A} \cdot abla) {f A}$	$rac{1}{2} {f grad} A^2 = {f A} imes ({f rot} {f A}) + ({f A} \cdot abla) {f A}$	
$ abla \cdot (\mathbf{A} imes \mathbf{B}) = \mathbf{B} \cdot abla imes \mathbf{A} - \mathbf{A} \cdot abla imes \mathbf{B}$	$\mathbf{div} \left(\mathbf{A} imes \mathbf{B} ight) = \mathbf{B} \cdot \mathbf{rot} \ \mathbf{A} - \mathbf{A} \cdot \mathbf{rot} \ \mathbf{B}$	*
$egin{aligned} abla imes (\mathbf{A} imes \mathbf{B}) &= \mathbf{A} (abla \cdot \mathbf{B}) - \mathbf{B} (abla \cdot \mathbf{A}) + \ + (\mathbf{B} \cdot abla) \mathbf{A} - (\mathbf{A} \cdot abla) \mathbf{B} \end{aligned}$	$egin{aligned} \mathbf{rot}(\mathbf{A} imes \mathbf{B}) &= \mathbf{A} \; (\mathbf{div} \; \mathbf{B}) - \mathbf{B} \; (\mathbf{div} \; \mathbf{A}) + \ + (\mathbf{B} \cdot abla) \mathbf{A} - (\mathbf{A} \cdot abla) \mathbf{B} \end{aligned}$	

Appendix 1. Vector calculus

$$\nabla \psi = \operatorname{grad} \psi$$

$$\nabla \cdot \mathbf{A} = \operatorname{div} \mathbf{A}$$

$$\nabla \times \mathbf{A} = \operatorname{rot} \mathbf{A} \equiv \operatorname{curl} \mathbf{A}$$

$$\Delta = \nabla^2 = \nabla \cdot \nabla$$

$$\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k},$$

$$\nabla \times (\nabla \psi) = 0$$

$$rot(\operatorname{grad} \psi) = 0$$

$$div(\operatorname{rot} \mathbf{A}) = 0$$

$$div(\operatorname{rot} \mathbf{A}) = 0$$

$$\Delta \psi = \operatorname{div}(\operatorname{grad} \psi)$$

$$\nabla \times \nabla \times \mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

$$rot(\operatorname{rot} \mathbf{A}) = \operatorname{grad}(\operatorname{div} \mathbf{A}) - \Delta \mathbf{A}$$

$$\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k},$$

$$\int \operatorname{rot} \mathbf{F} \cdot dS = \oint \mathbf{F} \cdot dI, \quad \int \operatorname{div} \mathbf{F} \, dV = \int \mathbf{F} \cdot dS$$

$$\text{Stokes theorem}$$

$$Gauss theorem$$

Fermilab

40 5/25/2021 V. Yakovlev | RF Accelerating Structures, Lecture 5

Appendix 1. Vector calculus

Differential operators in different coordinates:

$_{x}\mathbf{\hat{x}}+A_{y}\mathbf{\hat{y}}+A_{z}\mathbf{\hat{z}}$	$A_{\alpha}\hat{\boldsymbol{\rho}} + A_{\alpha}\hat{\boldsymbol{\rho}} + A_{\alpha}\hat{\boldsymbol{z}}$	<u>^</u>
	$-pp$ $+ -\varphi \varphi$ $+ -z \varphi$	$A_r oldsymbol{\hat{r}} + A_ heta oldsymbol{ heta} + A_arphi oldsymbol{\hat{arphi}}$
$rac{f}{x} {f \hat{x}} + rac{\partial f}{\partial y} {f \hat{y}} + rac{\partial f}{\partial z} {f \hat{z}}$	$rac{\partial f}{\partial ho} oldsymbol{\hat{ ho}} + rac{1}{ ho} rac{\partial f}{\partial arphi} oldsymbol{\hat{arphi}} + rac{\partial f}{\partial z} oldsymbol{\hat{z}}$	$rac{\partial f}{\partial r} oldsymbol{\hat{r}} + rac{1}{r} rac{\partial f}{\partial heta} oldsymbol{\hat{ heta}} + rac{1}{r \sin heta} rac{\partial f}{\partial arphi} oldsymbol{\hat{arphi}}$
$rac{A_x}{\partial x} + rac{\partial A_y}{\partial y} + rac{\partial A_z}{\partial z}$	$rac{1}{ ho}rac{\partial\left(ho A_{ ho} ight)}{\partial ho}+rac{1}{ ho}rac{\partial A_{arphi}}{\partialarphi}+rac{\partial A_{z}}{\partial z}$	$rac{1}{r^2}rac{\partial\left(r^2A_r ight)}{\partial r}+rac{1}{r\sin heta}rac{\partial}{\partial heta}\left(A_ heta\sin heta ight)+rac{1}{r\sin heta}rac{\partial A_arphi}{\partialarphi}$
$egin{array}{ll} \displaystyle rac{\partial A_z}{\partial y} - rac{\partial A_y}{\partial z} ig) {f \hat x} & + \ \displaystyle rac{\partial A_x}{\partial z} - rac{\partial A_z}{\partial x} ig) {f \hat y} & + \ \displaystyle rac{\partial A_y}{\partial x} - rac{\partial A_x}{\partial y} ig) {f \hat z} \end{array}$	$egin{array}{lll} \left(rac{1}{ ho}rac{\partial A_z}{\partial arphi}-rac{\partial A_arphi}{\partial z} ight) oldsymbol{\hat{ ho}} &+ \ \left(rac{\partial A_ ho}{\partial z}-rac{\partial A_z}{\partial ho} ight) oldsymbol{\hat{ ho}} &+ \ rac{1}{ ho} \left(rac{\partial (ho A_arphi)}{\partial ho}-rac{\partial A_ ho}{\partial arphi} ight) oldsymbol{\hat{z}} \end{array}$	$egin{aligned} &rac{1}{r\sin heta}\left(rac{\partial}{\partial heta}\left(A_arphi\sin heta ight)-rac{\partial A_ heta}{\partialarphi} ight)oldsymbol{\hat{r}}&+\ &rac{1}{r}\left(rac{1}{\sin heta}rac{\partial A_r}{\partialarphi}-rac{\partial}{\partial r}\left(rA_arphi ight) ight)oldsymbol{\hat{ heta}}&+\ &rac{1}{r}\left(rac{\partial}{\partial r}\left(rA_ heta ight)-rac{\partial A_r}{\partial heta} ight)oldsymbol{\hat{arphi}} \end{aligned}$
$rac{\partial^2 f}{\partial x^2}+rac{\partial^2 f}{\partial y^2}+rac{\partial^2 f}{\partial z^2}$	$rac{1}{ ho}rac{\partial}{\partial ho}\left(horac{\partial f}{\partial ho} ight)+rac{1}{ ho^2}rac{\partial^2 f}{\partialarphi^2}+rac{\partial^2 f}{\partial z^2}$	$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial f}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial\varphi^2}$
$A_x \mathbf{\hat{x}} + \Delta A_y \mathbf{\hat{y}} + \Delta A_z \mathbf{\hat{z}}$	$egin{array}{lll} \left(\Delta A_ ho - rac{A_ ho}{ ho^2} - rac{2}{ ho^2}rac{\partial A_arphi}{\partial arphi} ight) oldsymbol{\hat{ ho}} & + \ \left(\Delta A_arphi - rac{A_arphi}{ ho^2} + rac{2}{ ho^2}rac{\partial A_ ho}{\partial arphi} ight) oldsymbol{\hat{ ho}} & + \ \left(\Delta A_z ight) oldsymbol{\hat{ ho}} & + \end{array}$	$egin{aligned} &\left(\Delta A_r - rac{2A_r}{r^2} - rac{2}{r^2\sin heta} rac{\partial(A_ heta\sin heta)}{\partial heta} - rac{2}{r^2\sin heta} rac{\partial A_arphi}{\partialarphi} ight) \hat{oldsymbol{r}} &+ \ &\left(\Delta A_ heta - rac{A_ heta}{r^2\sin^2 heta} + rac{2}{r^2} rac{\partial A_r}{\partial heta} - rac{2\cos heta}{r^2\sin^2 heta} rac{\partial A_arphi}{\partialarphi} ight) \hat{oldsymbol{ heta}} &+ \ &\left(\Delta A_arphi - rac{A_arphi}{r^2\sin^2 heta} + rac{2}{r^2} rac{\partial A_r}{\partial heta} - rac{2\cos heta}{r^2\sin^2 heta} rac{\partial A_arphi}{\partialarphi} ight) \hat{oldsymbol{ heta}} &+ \ &\left(\Delta A_arphi - rac{A_arphi}{r^2\sin^2 heta} + rac{2}{r^2} rac{\partial A_r}{\partial heta} - rac{2\cos heta}{r^2\sin^2 heta} rac{\partial A_arphi}{\partialarphi} ight) \hat{oldsymbol{ heta}} &+ \ &\left(\Delta A_arphi - rac{A_arphi}{r^2\sin^2 heta} + rac{2}{r^2\sin heta} rac{\partial A_r}{\partialarphi} + rac{2\cos heta}{r^2\sin^2 heta} rac{\partial A_arphi}{\partialarphi} ight) \hat{oldsymbol{ heta}} &+ \ &\left(\Delta A_arphi - rac{A_arphi}{r^2\sin^2 heta} + rac{2}{r^2\sin heta} rac{\partial A_r}{\partialarphi} + rac{2\cos heta}{r^2\sin^2 heta} rac{\partial A_arphi}{\partialarphi} ight) \hat{oldsymbol{ heta}} &+ \ &\left(\Delta A_arphi - rac{A_arphi}{r^2\sin^2 heta} + rac{2}{r^2\sin heta} rac{\partial A_r}{\partialarphi} + rac{2\cos heta}{r^2\sin^2 heta} rac{\partial A_arphi}{\partialarphi} ight) \hat{oldsymbol{ heta}} &+ \ &\left(\Delta A_arphi - rac{A_arphi}{r^2\sin^2 heta} + rac{2}{r^2\sin heta} rac{\partial A_r}{\partialarphi} + rac{2\cos heta}{r^2\sin^2 heta} rac{\partial A_arphi}{\partialarphi} ight) \hat{oldsymbol{ heta}} &+ \ &\left(\Delta A_arphi - rac{A_arphi}{r^2\sin^2 heta} + rac{2}{r^2\sin heta} rac{\partial A_r}{\partialarphi} + rac{2}{r^2\sin^2 heta} rac{\partial A_r}{\partialarphi} ight) \hat{oldsymbol{ heta}} &+ \ &\left(\Delta A_arphi + rac{2}{r^2\sin^2 heta} + rac{2}{r^2\sin^2 heta} + rac{2}{r^2\sin^2 heta} + rac{2}{r^2\sin^2 heta} + rac{2}{r^2\cos^2 heta} + rac{2}{r^2\sin^2 heta} + rac{2}{r^2\cos^2 heta} + ra$
$\frac{f}{x} \frac{A}{\partial a} \frac{\partial}{\partial a} \frac{\partial}{\partial$	$egin{aligned} \hat{\mathbf{x}} &+ rac{\partial f}{\partial y} \hat{\mathbf{y}} + rac{\partial f}{\partial z} \hat{\mathbf{z}} \ rac{\partial A_x}{\partial x} &+ rac{\partial A_y}{\partial y} + rac{\partial A_z}{\partial z} \ rac{\partial A_z}{\partial y} &- rac{\partial A_y}{\partial z} ig) \hat{\mathbf{x}} &+ rac{\partial A_z}{\partial z} &+ rac{\partial A_z}{\partial z} - rac{\partial A_z}{\partial x} ig) \hat{\mathbf{y}} &+ rac{\partial A_y}{\partial x} - rac{\partial A_z}{\partial y} ig) \hat{\mathbf{z}} \ rac{f}{2} &+ rac{\partial^2 f}{\partial y^2} + rac{\partial^2 f}{\partial z^2} \ rac{\partial A_x}{\partial y} \hat{\mathbf{y}} &+ \Delta A_z \hat{\mathbf{z}} \end{aligned}$	$\begin{split} \hat{\mathbf{x}} &+ \frac{\partial f}{\partial y} \hat{\mathbf{y}} + \frac{\partial f}{\partial z} \hat{\mathbf{z}} & \frac{\partial f}{\partial \rho} \hat{\rho} + \frac{1}{\rho} \frac{\partial f}{\partial \varphi} \hat{\varphi} + \frac{\partial f}{\partial z} \hat{\mathbf{z}} \\ \frac{\partial f}{\partial \varphi} \hat{\mathbf{y}} + \frac{\partial A_z}{\partial z} & \frac{1}{\rho} \frac{\partial (\rho A_\rho)}{\partial \rho} + \frac{1}{\rho} \frac{\partial A_\varphi}{\partial \varphi} + \frac{\partial A_z}{\partial z} \\ \frac{A_z}{\partial y} - \frac{\partial A_y}{\partial z} \hat{\mathbf{x}} &+ & \left(\frac{1}{\rho} \frac{\partial A_z}{\partial \varphi} - \frac{\partial A_\varphi}{\partial z} \right) \hat{\rho} &+ \\ \frac{A_x}{\partial z} - \frac{\partial A_z}{\partial x} \hat{\mathbf{y}} &+ & \left(\frac{\partial (\rho A_\rho)}{\partial \rho} - \frac{\partial A_z}{\partial \rho} \right) \hat{\varphi} &+ \\ \frac{A_y}{\partial x} - \frac{\partial A_x}{\partial y} \hat{\mathbf{z}} && \frac{1}{\rho} \left(\frac{\partial (\rho A_\varphi)}{\partial \rho} - \frac{\partial A_z}{\partial \rho} \right) \hat{z} \\ \hline f \\ \frac{f}{2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} && \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{\partial^2 f}{\partial z^2} \\ A_x \hat{\mathbf{x}} + \Delta A_y \hat{\mathbf{y}} + \Delta A_z \hat{\mathbf{z}} && \left(\Delta A_\rho - \frac{A_\rho}{\rho^2} - \frac{2}{\rho^2} \frac{\partial A_\varphi}{\partial \varphi} \right) \hat{\rho} &+ \\ & (\Delta A_z) \hat{\mathbf{z}} \end{split}$

enn

41 5/25/2021 V. Yakovlev | RF Accelerating Structures, Lecture 5

Appendix 2, Panofsky-Wenzel theorem

Let's consider the particle transverse momentum change causes by the cavity RF field. The particle moves on the trajectory z=vt parallel to the axis, but is displaced from it by \vec{r}_{\perp} .

Force acting on the particle is

$$\vec{F}(\vec{r}) = e\left[\vec{E}(\vec{r}) + \vec{v} \times \vec{B}(\vec{r})\right]e^{i\omega t}.$$
From Maxwell equation $rot\vec{E}(\vec{r}) = -i\omega\vec{B}(\vec{r})$ one has:

$$\vec{F}(\vec{r}) = e\left[\vec{E}(\vec{r}) + \vec{v} \times \frac{i}{\omega}rot\vec{E}(\vec{r})\right]e^{i\omega t} = e\left[\vec{E}(\vec{r}) + \frac{i}{\omega}\vec{\nabla}(\vec{v}\cdot\vec{E}(\vec{r})) - (\vec{v}\cdot\vec{\nabla})\cdot\vec{E}(\vec{r})\right]e^{i\omega t}.$$

If $\vec{v} = \vec{i}_z v$, then

$$F_{z}(\vec{r}) = eE_{z}(\vec{r})e^{i\omega t}$$
$$F_{\perp}(\vec{r}) = e\left[\vec{E}_{\perp}(\vec{r}) + v\frac{i}{\omega}\left(\vec{\nabla}_{\perp}E_{z}(\vec{r}) - \frac{\partial\vec{E}_{\perp}(\vec{r})}{\partial z}\right)\right]e^{i\omega t}$$

The differential operator $\vec{\nabla}_{\perp}$ acts on the transverse coordinates \vec{r}_{\perp} only.

🗲 Fermilab

Appendix 2

If the particle velocity and particle transverse coordinates do not change significantly in the cavity, longitudinal and transverse momentum changes are:

$$\Delta p_{||} = e \int_{-\infty}^{\infty} E_z(\vec{r}) e^{i\omega t} dt |_{t=z/v} = \frac{e}{v} \int_{-\infty}^{\infty} E_z(\vec{r}) e^{i\omega z/v} dz;$$

$$\Delta \vec{p}_{\perp} = e \int_{-\infty}^{\infty} \left[\vec{E}_{\perp}(\vec{r}) + \frac{iv}{\omega} \vec{\nabla}_{\perp} E_z(\vec{r}) - \frac{iv}{\omega} \frac{\partial \vec{E}_{\perp}(\vec{r})}{\partial z} \right] e^{i\omega t} dt |_{t=z/v}$$

However,

$$\frac{iv}{\omega}\int_{-\infty}^{\infty}\frac{\partial\vec{E}_{\perp}(\vec{r})}{\partial z}e^{i\omega t}dt|_{t=z/v} = \frac{i}{\omega}\int_{-\infty}^{\infty}\frac{\partial\vec{E}_{\perp}(\vec{r})}{\partial z}e^{i\omega z/v}dz = \frac{1}{v}\int_{-\infty}^{\infty}\vec{E}_{\perp}(\vec{r})e^{i\omega z/v}dz = \int_{-\infty}^{\infty}\vec{E}_{\perp}(\vec{r})e^{i\omega t}dt|_{t=z/v}$$

and

$$\Delta \vec{p}_{\perp} = e \frac{iv}{\omega} \int_{-\infty}^{\infty} \vec{\nabla}_{\perp} E_{z}(\vec{r}) e^{i\omega t} dt |_{t=z/v} = e \frac{i}{\omega} \int_{-\infty}^{\infty} \vec{\nabla}_{\perp} E_{z}(\vec{r}) e^{i\omega z/v} dz$$

Finally, we have:

$$\Delta \vec{p}_{\perp} = \frac{iv}{\omega} \vec{\nabla}_{\perp} (\Delta p_{\parallel}).$$

This relation between transverse and longitudinal momentum changes in an RF field is known as Panofsky – Wenzel theorem.

V. Yakovlev | RF Accelerating Structures, Lecture 5

🚰 Fermilab

Appendix 3. Eigen modes properties:

Eigenmodes in a cavity. $\operatorname{rot} \vec{E} = -i\omega\mu_0\vec{H}, \quad \operatorname{rot} \vec{H} = i\omega\varepsilon_0\vec{E}$ $\operatorname{rot} \operatorname{rot} \vec{E} - k^2 \vec{E} = 0$, $\operatorname{rot} \operatorname{rot} \vec{H} - k^2 \vec{H} = 0$. (1)Here $k^2 = \omega^2 \varepsilon_0 \mu_0$ Boundary conditions: $\vec{E}_t = 0, H_n = 0$ or $\vec{n} \times \vec{E} = 0, \vec{n} \cdot \vec{H} = 0$ Equations (1) has non-trivial solutions only for defined k_m^2 eigenvalues. Corresponding solutions $\vec{E}_m(x,y,z)$ and $\vec{H}_m(x,y,z)$ -eigenfunctions. There are infinite number of eigenvalues. Eigenvalues are **real** and **positive**. From (1) and vector theorem (App.1) $\operatorname{div}(\vec{A} \times \vec{B}) = \vec{B} \cdot \operatorname{rot} \vec{A} - \vec{A} \cdot \operatorname{rot} \vec{B}$ (2) one has: $\operatorname{div}(\vec{H}_{m}^{*} \times \operatorname{rot} \vec{H}_{m}) = \operatorname{rot} \vec{H}_{m} \cdot \operatorname{rot} \vec{H}_{m}^{*} - \vec{H}_{m}^{*} \cdot \operatorname{rot} \operatorname{rot} \vec{H}_{m} = |\operatorname{rot} \vec{H}_{m}|^{2} - k_{m}^{2} \cdot |\vec{H}_{m}|^{2}.$ $k_m^2 \int_V |\vec{H}_m|^2 \, dV = \int_V |\operatorname{rot} \vec{H}_m|^2 \, dV - \oint_S (\vec{H}_m^* \times \operatorname{rot} \vec{H}_m) \vec{n} \, dS. \qquad k_m^2 = \frac{\int_V |\operatorname{rot} \vec{H}_m|^2 \, dV}{\int_V |\vec{H}_m|^2 \, dV}.$

🛠 Fermilab

Appendix 3. Eigen modes properties

Eigenmodes are orthogonal:

 $\operatorname{rot}\operatorname{rot}\vec{E}_m - k_m^2\vec{E}_m = 0, \quad k_m^2 \neq k_m^2$ (3) $\operatorname{rot}\operatorname{rot}\vec{E}_n - k_n^2\vec{E}_n = 0.$ Let's calculate using (2) $\operatorname{div}\left(\vec{E}_{n} \times \operatorname{rot} \vec{E}_{m}\right) - \operatorname{div}\left(\vec{E}_{m} \times \operatorname{rot} \vec{E}_{n}\right) = \operatorname{rot} \vec{E}_{m} \cdot \operatorname{rot} \vec{E}_{n} - \vec{E}_{n} \cdot \operatorname{rot} \operatorname{rot} \vec{E}_{m} -$ $-\operatorname{rot} \vec{E}_n \cdot \operatorname{rot} \vec{E}_m + \vec{E}_m \cdot \operatorname{rot} \operatorname{rot} \vec{E}_n = \vec{E}_m \cdot \operatorname{rot} \operatorname{rot} \vec{E}_n - \vec{E}_n \cdot \operatorname{rot} \operatorname{rot} \vec{E}_m.$ Using (3) we have: $\operatorname{div}\left(\vec{E}_n \times \operatorname{rot} \vec{E}_m\right) - \operatorname{div}\left(\vec{E}_m \times \operatorname{rot} \vec{E}_n\right) = (k_n^2 - k_m^2)\vec{E}_m \cdot \vec{E}_n.$ $(k_n^2 - k_m^2) \int_V \vec{E}_m \cdot \vec{E}_n \, dV = \oint_C (\vec{E}_n \times \operatorname{rot} \vec{E}_m - \vec{E}_m \times \operatorname{rot} \vec{E}_n) \vec{n} \, dS.$ $\int \vec{E}_m \cdot \vec{E}_n \, dV = 0 \, . \quad \text{and the same} \quad \int_U \vec{H}_m \cdot \vec{H}_n \, dV = 0.$ 🛟 Fermilab

Appendix 3. Eigen modes properties

Let's consider again the equation we got

$$k_m^2 \int\limits_V |\vec{H}_m|^2 \, dV = \int\limits_V |\operatorname{rot} \vec{H}_m|^2 \, dV$$

Taking into account $\operatorname{rot} \vec{H}_m = i \omega_m \varepsilon_0 \vec{E}_m$ and $k_m^2 = \omega_m^2 \cdot \mu_0 \varepsilon_0$, we have:

$$\int_{V} \frac{\mu_{\theta} |H_m|^2}{4} dV = \int_{V} \frac{\varepsilon_{\theta} |E_m|^2}{4} dV,$$

The time-average electrical stored energy is equal to the timeaverage magnetic stored energy.

Appendix 3. Eigen modes properties:

Variation properties of the eigenmodes:

$$k^{2} = \frac{\int |\operatorname{rot} H|^{2} dV}{\int |H|^{2} dV}, \qquad \operatorname{rot rot} \vec{H} - k^{2} \vec{H} = 0$$

boundary conditions: $\vec{n} \times \operatorname{rot} \vec{H} = 0$

Variation gives:

$$\begin{split} \delta k^2 \int\limits_V |\vec{H}|^2 \, dV &= 2 \int\limits_V (\operatorname{rot} \operatorname{rot} \vec{H} - k^2 \vec{H}) \cdot \delta \vec{H} \, dV + \int\limits_V \operatorname{div} \left(\delta \vec{H} \times \operatorname{rot} \vec{H} \right) dV \\ \delta k^2 \int\limits_V |H|^2 \, dV + 2k^2 \int\limits_V \vec{H} \, \delta \vec{H} \, dV &= 2 \int\limits_V \operatorname{rot} \vec{H} \operatorname{rot} \delta \vec{H} \, dV. \end{split}$$

The vector theorem has been used: $\operatorname{div}(\delta \vec{H} \times \operatorname{rot} \vec{H}) = \operatorname{rot} \vec{H} \cdot \operatorname{rot} \delta \vec{H} - \delta \vec{H} \cdot \operatorname{rot} \operatorname{rot} \vec{H}$ Using Gauss theorem on has:

$$\begin{split} \delta k^2 \int\limits_V |\vec{H}|^2 \, dV &= 2 \int\limits_V (\operatorname{rot} \operatorname{rot} \vec{H} - k^2 \vec{H}) \cdot \delta \vec{H} \, dV - \oint\limits_S (\vec{n} \times \operatorname{rot} \vec{H}) \cdot \delta \vec{H} \, dS = 0 \\ & \bullet \\ \delta k^2 &= 0 \end{split}$$

🚰 Fermilab

47 5/25/2021 V. Yakovlev | RF Accelerating Structures, Lecture 5

Small perturbations of the cavity geometry:

$$\begin{array}{c} & V \\ V \\ V_{l} \\ V_{l$$

Fermilab

Appendix 4: Accelerating voltage and transit time factor:

For arbitrary axial distribution of the axisymmetric accelerating filed the voltage $V(\varphi)$ at arbitrary phase φ is the following:

$$V(\varphi) = Re \int_{-\infty}^{\infty} E_{z}(\rho = 0, z)e^{i(k_{z}z+\varphi)}dz =$$

$$= \int_{-\infty}^{\infty} Re[E_{z}(\rho = 0, z)]\cos(k_{z}z+\varphi) dz - \int_{-\infty}^{\infty} Im[E_{z}(\rho = 0, z)]\sin(k_{z}z+\varphi) dz =$$

$$= \int_{-\infty}^{\infty} Re[E_{z}(\rho = 0, z)]\cos(k_{z}z+\varphi) dz - \int_{-\infty}^{\infty} Im[E_{z}(\rho = 0, z)]\sin(k_{z}z+\varphi) dz =$$

$$= \cos(\varphi) \left(\int_{-\infty}^{\infty} Re[E_{z}(\rho = 0, z)]\cos(k_{z}z) dz - \int_{-\infty}^{\infty} Im[E_{z}(\rho = 0, z)]\sin(k_{z}z) dz\right) -$$

$$-\sin(\varphi) \left(\int_{-\infty}^{\infty} Re[E_{z}(\rho = 0, z)]\sin(k_{z}z) dz - \int_{-\infty}^{\infty} Im[E_{z}(\rho = 0, z)]\cos(k_{z}z) dz\right)$$
Maximal voltage V is, therefore,

$$V = \left[\left(\int_{-\infty}^{\infty} Re[E_{z}(\rho = 0, z)]\sin(k_{z}z) dz - \int_{-\infty}^{\infty} Im[E_{z}(\rho = 0, z)]\sin(k_{z}z) dz \right)^{2} + \left(\int_{-\infty}^{\infty} Re[E_{z}(\rho = 0, z)]\sin(k_{z}z) dz - \int_{-\infty}^{\infty} Im[E_{z}(\rho = 0, z)]\cos(k_{z}z) dz \right)^{2} \right]^{1/2}$$
If $E_{z}(\rho, z)$ is real, $V = \left[\left(\int_{-\infty}^{\infty} E_{z}(\rho = 0, z)\cos(k_{z}z) dz \right)^{2} + \left(\int_{-\infty}^{\infty} E_{z}(\rho = 0, z)\sin(k_{z}z) dz \right)^{2} \right]^{1/2}$

辈 Fermilab

Appendix 5. Modes in a pillbox cavity:

In a pillbox cavities resonance field satisfies wave equations:

$$\Delta \vec{E} + k^2 \, \vec{E} = 0$$
, $\Delta \vec{H} + k^2 \, \vec{H} = 0$, where $k = rac{\omega}{c}$ - wavenumber.

For an ideally conductive wall components of electric field tangential to the surface is zero. The pillbox cavity may be considered as a part of a waveguide having circular cross section, shortened at both ends. The fields in this waveguide may be described in cylindrical coordinates, (r, φ, z) . In cylindrical coordinates longitudinal field components satisfy scalar wave equations:

$$\Delta E_z + k^2 E_z = 0, \Delta H_z + k^2 H_z = 0$$
 (1)

For the waveguide, the fields have translation symmetry along \vec{z} , i.e., in two points having the same transverse coordinate, but different z, the fields differ by phase $\psi = k_z z$; *i.e.*, \vec{E} , $\vec{H} \sim e^{ik_z z}$. In this case:

• Equations (1) have solution

 $E_z(r, \varphi, z), H_z(r, \varphi, z) = J_m(k_r r)e^{im\varphi}e^{ik_z z}; J_m(k_r r)$ are Bessel functions;

- $k_r^2 + k_z^2 = k^2;$
- All transverse components (E_r, E_{φ}, H_r and H_{φ}) may be expressed through the longitudinal field components, E_z and H_z ;
- At r=b (*b* is the waveguide radius) $E_z=0$ and $\frac{\partial H_z}{\partial n}=0$. \vec{n} is normal to the waveguide surface.

🛠 Fermilab

50 5/25/2021 V. Yakovlev | RF Accelerating Structures, Lecture 5

 E_z and H_z satisfy the same equation, but have different boundary conditions, and therefore, different k_r :

Electric field:

Equation: Equation: $\Delta E_z + k^2 E_z = 0$ Boundary condition: $E_z(r, \varphi, z) = 0, r = a;$ or $J_m(k_r b) = 0;$ and $k_r = \frac{\nu_{mn}}{b}; J_m(\nu_{mn}) = 0;$ Magnetic field. $<math display="block">\Delta H_z + k^2 H_z = 0$ $\partial H_z(r, \varphi, z) / \partial r = 0, r = a$ $J'_m(k_r b) = 0,$ $k_r = \frac{\mu_{mn}}{b}; J'_m(\mu_{mn}) = 0.$

For the pillbox cavity having end walls at z=0 and z=d; therefore $k_z d = \pi p$ and $E_z = C I_m(k_r r) e^{im\varphi} \cos(\pi p z/d); H_z = I_m(k_r r) e^{im\varphi} \sin(\pi p z/d),$

and resonant frequencies are:

 $\sqrt{\left(\frac{\mu_{mn}}{h}\right)^2 + \left(\frac{\pi p}{d}\right)^2}$ 0.1....∞: 1.2....∞: 1,2,...,∞; mnp-modes

Magnetic field:

🗲 Fermilab

		Roots of J_n^{\prime}	n(x) = 0.		
m	μ_{m1}	μ_{m2}	μ_{m3}	μ_{m4}	
0	3.832	7.016	10.174	13.324	
1	1.841	5.331	8.536	11.706	
2	3.054	6.706	9.970	13.170	\mathbf{N}
3	4.201	8.015	11.346	14.586	\mathbf{X}
4	5.318	9.282	12.682	15.964	
5	6.416	10.520	13.987	17.313	
I				<u> </u>	$\mu_{0n} = \nu_{1n}!$
		Roots of J	$M_m(x) = 0.$		
m	V_{m1}	V_{m2}	V_{m3}	V_{m4}	
0	2.405	5.520	8.654	11.792	
1	3.832	7.016	10.174	13.324	TM _{1np} and TE _{0np}
2	5.135	8.417	11.620	14.796	are degenerated!
3	6.380	9.761	13.015	16.223	are degenerated:
4	7.588	11.065	14.373	17.616	<i>n=1,2,,∞;</i>
5	8.771	12.339	15.700	18.980	p=1,2,,∞*
	m 0 1 2 3 4 5 m 0 1 2 3 4 5 4 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Roots of J_p^{\prime} m $\mu m1$ $\mu m2$ 0 3.832 7.016 1 1.841 5.331 2 3.054 6.706 3 4.201 8.015 4 5.318 9.282 5 6.416 10.520 Roots of J m V_{m1} V_{m2} 0 2.405 5.520 1 3.832 7.016 2 5.135 8.417 3 6.380 9.761 4 7.588 11.065 5 8.771 12.339	Roots of $J'_m(x) = 0.$ m μ_{m1} μ_{m2} μ_{m3} 0 3.832 7.016 10.174 1 1.841 5.331 8.536 2 3.054 6.706 9.970 3 4.201 8.015 11.346 4 5.318 9.282 12.682 5 6.416 10.520 13.987 Roots of $J_m(x) = 0.$ m V_{m1} V_{m2} V_{m3} 0 2.405 5.520 8.654 1 3.832 7.016 10.174 2 5.135 8.417 11.620 3 6.380 9.761 13.015 4 7.588 11.065 14.373 5 8.771 12.339 15.700	Roots of $J'_m(x) = 0.$ m $\mu m1$ $\mu m2$ $\mu m3$ $\mu m4$ 0 3.832 7.016 10.174 13.324 1 1.841 5.331 8.536 11.706 2 3.054 6.706 9.970 13.170 3 4.201 8.015 11.346 14.586 4 5.318 9.282 12.682 15.964 5 6.416 10.520 13.987 17.313 Roots of $J_m(x) = 0.$ m $Vm1$ $Vm2$ V_m3 V_m4 0 2.405 5.520 8.654 11.792 1 3.832 7.016 10.174 13.324 2 5.135 8.417 11.620 14.796 3 6.380 9.761 13.015 16.223 4 7.588 11.065 14.373 17.616 5 8.771 12.339 15.700 18.980

Fermilab

*Note that TE_{0n0} does not exist because of boundary conditions for magnetic field on the end walls.

(6) TE₃₁

 $(12) TE_{51}$

(18) TE₃₂

 $(24) TE_{42}$

(30) TE₀₃

Field plots for the pillbox modes

🗕 🛟 Fermilab

54 5/25/2021 V. Yakovlev | RF Accelerating Structures, Lecture 5

Appendix 6: RF cavity excitation by the beam:

(2)

- RF cavity having eigenmodes: eigen fields satisfy Maxwell equations: rot $\mathbf{E}_s = -i\omega_s \mu \mathbf{H}_s$, rot $\mathbf{H}_s = i\omega_s \epsilon \mathbf{E}_s$. (1)
- The field excited by the beam: rot $\mathbf{E} = -i\omega\mu\mathbf{H}$,

 $\operatorname{rot} \mathbf{H} = i\omega \varepsilon \mathbf{E} + \mathbf{J}_e$

• The excited field may be expanded over the eigenmodes:

$$\mathbf{E} = \sum_{s} A_{s} \mathbf{E}_{s} - \operatorname{grad} \boldsymbol{\varphi}_{e}, \quad \mathbf{H} = \sum_{s} B_{s} \mathbf{H}_{s} \quad (3)$$

Here φ_e^s is space charge potential, typically its impact is small.

• From (1) and (2) one has: $div (\mathbf{E}_{s}^{*} \times \mathbf{H}) = \mathbf{H} \cdot (i\omega_{s}\mu\mathbf{H}_{s}^{*}) - \mathbf{E}_{s}^{*} \cdot (i\omega\varepsilon\mathbf{E} + \mathbf{J}_{e}) =$ $= i\omega_{s}\mu\mathbf{H} \cdot \mathbf{H}_{s}^{*} - i\omega\varepsilon\mathbf{E} \cdot \mathbf{E}_{s}^{*} - \mathbf{J}_{e} \cdot \mathbf{E}_{s}^{*}, \qquad (4)$ $div (\mathbf{E} \times \mathbf{H}_{s}^{*}) = \mathbf{H}_{s}^{*} \cdot (-i\omega\mu\mathbf{H}) - \mathbf{E} \cdot (-i\omega_{s}\varepsilon\mathbf{E}_{s}^{*}) =$ $= -i\omega\mu\mathbf{H} \cdot \mathbf{H}_{s} + i\omega\varepsilon\mathbf{E} \cdot \mathbf{E}_{s}^{*}.$

All the fields have zero tangential electric field components on the wall.

J_e – the beam current density spectrum component oscillating at the frequency ω

Substituting (3) to (4) one has:

$$A_{s} = -\frac{\omega}{i(\omega^{2} - \omega_{s}^{2})} \cdot \frac{\int_{V} \mathbf{J}_{e} \mathbf{E}_{s}^{*} dV}{\mu \int_{V} \mathbf{H}_{s} \cdot \mathbf{H}_{s}^{*} dV}, \qquad B_{s} = -\frac{\omega_{s}}{i(\omega^{2} - \omega_{s}^{2})} \cdot \frac{\int_{V} \mathbf{J}_{e} \mathbf{E}_{s}^{*} dV}{\mu \int_{V} \mathbf{H}_{s} \cdot \mathbf{H}_{s}^{*} dV},$$

Note that

 $\mu \int_{V} \mathbf{H}_{s} \cdot \mathbf{H}_{s}^{*} \, dV = 2W_{s}$

If there are wall losses,
$$\omega_s^2 \to \omega_s^2 \left(1 + \frac{i}{Q_0}\right)$$

and for thin beam having the <u>average</u> current I_0 on the axis one has:

$$A_{s} = -\frac{i\omega}{\omega^{2} - \omega_{s}^{2} - i\frac{\omega\omega_{s}}{Q_{s}}} \times \frac{\int \mathbf{J}_{e}\mathbf{E}_{s}dV}{2W_{s}} = -\frac{i\omega}{\omega^{2} - \omega_{s}^{2} - i\frac{\omega\omega_{s}}{Q_{s}}} \times \frac{I_{0}\left|\int_{-\infty}^{\infty}E_{sz}(z)e^{ikz}dz\right|}{W_{s}}, \ k = \frac{\omega_{s}}{C}$$
(5)

From (5) and (3) one has for the cavity voltage on the axis for the sth mode:

$$V_{s} = \frac{\Delta p_{||}c}{e} = \int_{-\infty}^{\infty} E_{sz} e^{ikz} dz \approx \frac{i\omega_{s}^{2}}{\omega^{2} - \omega_{s}^{2} - i\frac{\omega\omega_{s}}{Q_{s}}} \cdot \frac{I_{0} \left| \int_{-\infty}^{\infty} E_{sz}(z) e^{ikz} dz \right|^{2}}{\omega_{s} W_{s}} = \frac{i\omega_{s}^{2}}{\omega^{2} - \omega_{s}^{2} - i\frac{\omega\omega_{s}}{Q_{s}}} \cdot I_{0}\left(\frac{R}{Q}\right)_{s},$$

here

$$\left(\frac{R}{Q}\right)_{s} = \frac{\left|\int_{-\infty}^{\infty} E_{sz}(z)e^{ikz}dz\right|^{2}}{\omega_{s}W_{s}}$$

At the resonance one has

$$V_{s} = -Q_{s}I_{0}\left(\frac{R}{Q}\right)_{s} = -I_{0}R_{s}$$

where

$$R_{s} = Q_{s} \left(\frac{R}{Q}\right)_{s}$$

is a shunt impedance of the sth mode.

- This coincides to the voltage excited by the AC current $I = -2I_0$ in a parallel resonance circuit.
- Note that for a short bunch the beam current spectrum is $I(\omega) \approx I_0 + 2I_0 \sum \delta(\omega_s),$

 ω_s is the bunch sequence frequency; the equivalent circuit describes the cavity excitation by imaginary current, it gives the sign "-".

• From Kirchhoff theorem one has

 $I_C + I_L + I_R = iV\omega C + V/R + V/i\omega L = -2I_0$, and taking into account that $\omega_s = (LC)^{-1/2}$, we get

$$V_{s} = \frac{i\omega_{s}^{2}}{\omega^{2} - \omega_{s}^{2} - i\frac{\omega\omega_{s}}{Q_{s}}} \cdot I_{0}\left(\frac{R}{Q}\right)_{s},$$

if $\omega_s \approx \omega$. Here are the equivalent circuit parameters:

$$L=(R/Q)_{s}/2\omega;$$

$$C=2/\omega(R/Q)_{s};$$

$$R=(R/Q)Q_s/2.$$

Appendix 7: The cavity coupled to the line.

Let's consider the cavity coupled to the feeding line: Coupling slot

Consider another problem – the cavity coupled to the line shortened by a perfectly conducting plane S_1 placed such a way, that the electric field at the coupling slot has no tangential component:

- The eigenfrequency of the new problem will be the same as for uncoupled cavity;
- The fields inside the cavity will be the same as for uncoupled cavity;
- The magnetic field on will be proportional to WG magnetic transverse eigenfunction *h*, *H_t=ikh(x,y)*; *k* is coefficient (real for convenience). Tangential electric field is zero.

For the cavity excited by the line (problem 1) one has on S_1 for transverse fields: $E_t = U \cdot e(x, y), H_t = I \cdot h(x, y),$ (1)

where e(x,y) is the electric WG transverse eigenfunction, $\int_{S_1} (e \times h) dS = 1$.

The field in the cavity H is proportional to the eigenfunction H_s of the cavity coupled to the shortened line (see previous slide):

$$H = B \cdot H_s = ikBh(x,y)$$

From (1) and (2) one can find that

$$I=ikB$$
 (3)

Following the procedure from Appendix 1 for the Lecture 2, we have, see Formulas 1,2 and 3 from this Appendix 1 and (1-3):

(2)

(4)

🔀 Fermilab

$$B = \frac{i\omega_s}{\omega^2 - \omega_s^2} \cdot \frac{\int_{S_I} \left(\vec{E} \times \vec{H}_s^* \right) \cdot dS}{2W_s} = -\frac{\omega_s}{\omega^2 - \omega_s^2} \cdot \frac{Uk}{2W_s}$$

and

$$I = -\frac{i\omega_s}{\omega^2 - \omega_s^2} \cdot \frac{Uk^2}{2W_s}$$

If there is wall loss in the cavity, $\omega_s^2 \rightarrow \omega_s^2 \left(1 + \frac{i}{o_0}\right)$ and

$$I = -\frac{i\omega_s}{\omega^2 - \omega_s^2 - \frac{i\omega_s^2}{Q_0}} \cdot \frac{Uk^2}{2W_s}.$$

The cavity impedance at S_1 is therefore

$$Z_1 = -R\left(\frac{\omega^2 - \omega_s^2 - \frac{i\omega_s^2}{Q_0}}{i\omega_s^2}\right) \approx R_1(1 + iQ_0x),$$

where

$$R_{1} = \frac{2\omega_{s}W_{s}}{Q_{0}k^{2}}, x = \frac{\omega^{2}}{\omega_{s}^{2}} - 1 \approx \frac{2(\omega - \omega_{s})}{\omega_{s}}.$$
The impedance (5) coincides to the impedance
of a serial resonance circuit . At the distance of
 $\Lambda/4$ (Λ is wavelength in the WG) the cavity impedance ic

$$Z_{2} = \frac{Z_{0}^{2}}{Z_{1}} = \frac{Z_{0}^{2}}{R_{1}(1 + iQ_{0}x)} = \frac{R_{2}}{(1 + iQ_{0}x)}, R_{2} = \frac{Z_{0}^{2}Q_{0}k^{2}}{2\omega_{s}W_{s}}$$
(6)

$$L_{2} \equiv C_{2} = \frac{R_{2}}{R_{2}}$$
It is the impedance of a parallel resonance circuit
(Z_{0} is the WG impedance).

(5)

 \downarrow C_l

🚰 Fermilab

If the line is matched, the equivalent circuit is

- Power P_R dissipated in R corresponds to the Ohmic losses in the cavity walls;
- Power P_{Z_0} dissipated in Z_0 corresponds to radiation in the line.

One can see:

$$\frac{P_{Z_0}}{P_R} = \frac{R}{Z_0} = \frac{Q_0}{Q_{ext}},$$

External quality factor, Q_{ext} describes radiation to the line:

$$Q_{ext} = \frac{\omega_s W_s}{P_{Z_0}}$$

Note that $Q_0 = \frac{\omega_S W_S}{P_R}$. The total loss is described by the loaded quality factor, Q_{load} $\frac{1}{Q_{load}} = \frac{P_{Z_0} + P_R}{\omega_S W_S} = \frac{1}{Q_{ext}} + \frac{1}{Q_0}$ (7) Ratio of Q_0 to Q_{ext} is called coupling, β : $\frac{Q_0}{Q_{ext}} = \frac{R}{Z_0} \equiv \beta$ (8)

🚰 Fermilab

Let's estimate the reflection coefficient Γ of the parallel resonance circuit connected to the line:

$$\Gamma = \frac{Z - Z_0}{Z + Z_0},$$

According to (6)

$$Z = \frac{R}{(1 + iQ_0 x)}$$

At resonance (*x*=0)

$$\Gamma_0 = \frac{R - Z_0}{R + Z_0} = \frac{\frac{R}{Z_0} - 1}{\frac{R}{Z_0} + 1} = \frac{\beta - 1}{\beta + 1}.$$

For $x \neq 0$ one has

$$\Gamma = \frac{R - Z_0(1 + iQ_0x)}{R + Z_0(1 + iQ_0x)} = \frac{\Gamma_0 + 1}{1 + iQ_0x/(1 + \beta)} - 1 = \frac{\Gamma_0 + 1}{1 + iQ_{load}x} - 1$$

(from (7) and (8) it follows that $Q_0/(1 + \beta) = Q_{load}$).

The power P dissipated in the cavity exited by the input power P_{in} is the following:

$$P = P_{in}(1 - |\Gamma|^2) = P_{in} \frac{1 - \Gamma_0^2}{1 + Q_{load}^2 x^2}.$$

🌫 Fermilab

Appendix 8: Beam Loading

- RF source and beam $\omega_g = \omega_b = \omega$;
- Cavity: ω_0
- Cavity voltage : V_c
- Shunt impedance: R_{sh}
- Losses: $P_c = V_c^2 / R_{sh} = V_c^2 / (Q_0 \cdot R / Q)$
- Radiation to the line: $V_c^2/(Q_{ext} \cdot R/Q)$
- Coupling: $\beta = Q_0 / Q_{ext}$
- Loaded Q: $Q_L = Q_0/(1+\beta)$
- Average beam current: I_b
- Synchronous phase: φ
- Power consumed by the beam: $P_b = I_b V_c cos \varphi$
- Input power P_g
- Reflected power: $P_r = P_g P_c P_b$

Equivalent circuit for the cavity excited by a WG and loaded by the beam (transformed to the cavity):

• The WG impedance transformed to the cavity is $Z_{WG} = R_c / \beta$ (radiated power is $\frac{V_c^2}{R_c / \beta}$);

- The WG is terminated by the cavity impedance* $Z_0 = \frac{R_c}{1+iQ_0x}$ in parallel to the beam impedance $Z_b = \frac{V_c}{I_b e^{i\varphi}}$, φ is the beam phase versus the voltage V_c .
- The total load impedance is $Z = \left(\frac{1}{Z_0} + \frac{1}{Z_b}\right)^{-1} = \left(\frac{1+iQ_0x}{R_c} + \frac{I_be^{i\varphi}}{V_c}\right)^{-1}$.
- Reflection for this load is $\Gamma = \frac{V_{ref}}{V_{forw}} = \frac{Z Z_{WG}}{Z + Z_{WG}} = \frac{1 \frac{Z_{WG}}{Z}}{1 + \frac{Z_{WG}}{Z}}.$
- The cavity voltage is $V_c = V_{ref} + V_{forw} = V_{forw}(1 + \Gamma) = V_{forw} \frac{2}{1 + \frac{Z_{WG}}{Z}}$ and

*See Formulas (5-6), Appendix 7

‡ Fermilab

 $V_{forw} = \frac{V_c}{(1+\Gamma)} = \frac{V_c}{2} \left(1 + \frac{Z_{WG}}{Z} \right).$

Therefore, the input power is:

$$P_{g} = \frac{\left|V_{forw}\right|^{2}}{Z_{WG}} = \frac{V_{c}^{2}}{4Z_{WG}} \left|1 + \frac{Z_{WG}}{Z}\right|^{2} = \frac{V_{c}^{2}}{4(\frac{R}{Q})\beta Q_{0}} \left[\left(1 + \frac{I_{b}cos\varphi\left(\frac{R}{Q}\right)Q_{0}}{(1+\beta)V_{c}}\right)^{2} + \left(\frac{Q_{0}}{1+\beta} \cdot \frac{2\Delta f}{f} + \frac{I_{b}sin\varphi\left(\frac{R}{Q}\right)Q_{0}}{1+\beta}\right)^{2}\right].$$
The formula works next to resonance: approximation is used for *x*:
$$x = \frac{\omega^{2}}{\omega_{0}^{2}} - 1 \approx \frac{2(\omega - \omega_{0})}{\omega_{0}} = \frac{2(f - f_{0})}{f_{0}} \approx \frac{2(f - f_{0})}{f} = \frac{2\Delta f}{f}.$$
Note that $P_{g} = \frac{\left|V_{forw}\right|^{2}}{Z_{WG}}$ does not contain factor of 2 in the denominator because of the cavity impedance $\left(\frac{R}{Q}\right)$ definition.

Appendix 9: Transverse impedance:

Let's consider a cavity excited by a beam current I_0 having offset x_0 . If \vec{E} is a dipole eigenmode, the field \vec{E} in the cavity in one-mode approximation may be expressed as $\vec{E} \approx A(\omega, \omega_0)\vec{E}$, where ω is the bunch sequence harmonic frequency, ω_0 is the resonant frequency, and

$$A = -\frac{i\omega}{\omega^2 - \omega_0^2 - i\frac{\omega\omega_0}{Q}} \times \frac{\int \vec{J} \cdot \vec{E}dV}{2W} = -\frac{i\omega}{\omega^2 - \omega_0^2 - i\frac{\omega\omega_0}{Q}} \times \frac{I_0 \left| \int_{-\infty}^{\infty} E_z(x, y, z)e^{ikz} dz \right|}{W}$$

where $W = \frac{\varepsilon_0}{2} \int \left| \vec{E} \right|^2 dV$ and I_0 is an average current

Appendix 10:

RF-kick at $x = x_0$ and y = 0 may be obtained using Panofsky-Wenzel theorem:

$$\begin{aligned} U_{kick} &= \frac{\Delta p_{\perp}c}{e} = \frac{ic}{\omega} \left| \nabla_{\perp} \int_{-\infty}^{\infty} \mathbb{E}_{z} e^{ikz} dz \right| \approx \frac{c}{x_{0} \left(\omega^{2} - \omega_{0}^{2} - i\frac{\omega\omega_{0}}{Q} \right)} \times \frac{I_{0} \left| \int_{-\infty}^{\infty} \mathbb{E}_{z} \left(x_{0}, 0, z \right) e^{ikz} dz \right|^{2}}{W} \\ &\approx \frac{c\omega_{0}}{\left(\omega^{2} - \omega_{0}^{2} - i\frac{\omega\omega_{0}}{Q} \right)} \times \frac{x_{0}I_{0} \left| \int_{-\infty}^{\infty} \left(\frac{\partial E_{z} \left(x, 0, z \right)}{\partial x} \right)_{x=x_{0}} e^{ikz} dz \right|^{2}}{W\omega_{0}} = \frac{\omega_{0}^{2}}{\left(\omega^{2} - \omega_{0}^{2} - i\frac{\omega\omega_{0}}{Q} \right)} \times \left(\frac{x_{0}}{k} \right) I_{0} \left(\frac{r_{\parallel}}{Q} \right) \end{aligned}$$

where
$$\left(\frac{r_{||}}{Q}\right) \equiv \frac{\left|\int_{-\infty}^{\infty} \left(\frac{\partial E_z(x,0,z)}{\partial x}\right)_{x=x_0} e^{ikz} dz\right|^2}{W\omega_0}$$

is dipole longitudinal impedance. and $k = \omega_0 / c$. Dipole $\left(\frac{r_{||}}{q}\right)$ is measured in Ohm/m².

Appendix 10:

RF-kick may be expressed through the transverse impedance:

$$U_{kick} = \frac{\omega_0^2}{\left(\omega^2 - \omega_0^2 - i\frac{\omega\omega_0}{Q}\right)} \times x_0 I_0\left(\frac{r_\perp}{Q}\right),$$

where
$$\left(\frac{r_{\perp}}{Q}\right) \equiv \left(\frac{r_{||}}{Q}\right) \times \frac{1}{k} = \frac{\left|\int_{-\infty}^{\infty} \left(\frac{\partial E_z(x,0,z)}{\partial x}\right)_{x=x_0} e^{ikz} dz\right|^2}{kW\omega_0}$$
.

Note that $\left(\frac{r_{\perp}}{q}\right)$ is measured in <u>Ohm/m</u>. At resonance

$$U_{kick} = i\left(\frac{x_0}{k}\right)I_0Q\left(\frac{r_{||}}{Q}\right) = ix_0I_0Q\left(\frac{r_{\perp}}{Q}\right).$$

Appendix 10:

Sometimes they use other transverse impedance, that is determined as:

$$\left(\frac{r_{\perp}}{Q}\right)_1 = \frac{|U_{kick}|^2}{\omega_0 W_0},$$

where W_0 is the energy, stored in the cavity at the RF field amplitude which provides given transverse kick U_{kick} , $W_0 = |A|^2 W$. At the resonance one has

$$|A|^{2} = \frac{\left|x_{0}I_{0}Q\int_{-\infty}^{\infty}\left(\frac{\partial E_{z}(x,0,z)}{\partial x}\right)_{x=x_{0}}e^{ikz}dz\right|^{2}}{(W\omega_{0})^{2}} = \left(\frac{r_{||}}{Q}\right)\frac{(x_{0}I_{0}Q)^{2}}{W\omega_{0}}$$

and

$$\omega_0 W_0 = \omega_0 W |A|^2 = \left(\frac{r_{||}}{Q}\right) (x_0 I_0 Q)^2. \text{ On the other hand, } |U_{kick}|^2 = \frac{1}{k^2} \left(x_0 I_0 Q \left(\frac{r_{||}}{Q}\right)\right)^2$$

and

$$\left(\frac{r_{\perp}}{Q}\right)_1 = \frac{|U_{kick}|^2}{\omega_0 W_0} = \left(\frac{r_{\parallel}}{Q}\right) \times \frac{1}{k^2}.$$

 $\left(\frac{\mathbf{r}_{\perp}}{\mathbf{Q}}\right)_{1}$ is measured in <u>Ohm</u>. Note that

$$U_{kick} = i(kx_0)I_0Q\left(\frac{r_\perp}{Q}\right)$$

Appendix 11: Travelling–Wave acceleration structures:

 S_i is the cell metallic surface, $\,S_j^{\,\prime}$ and $S_j^{\,\prime\prime}$ are the coupling holes; V is the cell volume.

🛠 Fermilab

 \vec{E}_j , \vec{H}_j - fields in the jth pillbox cell oscillate at frequency ω ; $\vec{E}_{j,n}$, $\vec{H}_{j,n}$ - eigenmodes in the jth pillbox cell oscillate at frequency ω_n ; All the fields satisfy Maxwell Equations. Boundary conditions:

$$\vec{E}_j \times n = 0$$
 on $S_j; \vec{E}_{j,n} \times n = 0$ on $S_j + S_j' + S_j''$.

Appendix 11: Travelling–Wave acceleration structures.

We consider the following:

$$\int_{V_j} \vec{\nabla} \cdot \left(\vec{E}_j \times \vec{H}_{j,n}^*\right) dV = \int_{V_j} \left[\vec{H}_{j,n}^* \cdot \left(\vec{\nabla} \times \vec{E}_j\right) - \vec{E}_j \cdot \left(\vec{\nabla} \times \vec{H}_{j,n}^*\right)\right] dV$$
$$= \int_{V_j} \left[-i\omega\mu_0 \vec{H}_j \cdot \vec{H}_{j,n}^* - i\omega_n \varepsilon_0 \cdot \vec{E}_{j,n}^* \cdot \vec{E}_j\right] dV$$

Using Gauss theorem and boundary conditions we have

$$\omega_n \varepsilon_0 \int_{V_j} \vec{E}_{j,n}^* \cdot \vec{E}_j \, dV - \omega \mu_0 \int_{V_j} \vec{H}_j \cdot \vec{H}_{j,n}^* \, dV = \frac{1}{i} \int_{S_j' + S_j''} (\vec{E}_j \times \vec{H}_{j,n}^*) \cdot dS \tag{1}$$

Similarly, by considering

$$\int_{V_j} \vec{\nabla} \cdot \left(\vec{H}_j \times \vec{E}_{j,n}^* \right) dV$$

we have

$$\omega \varepsilon_0 \int_{V_j} \vec{E}_{j,n}^* \cdot \vec{E}_j \ dV - \omega_n \mu_0 \int_{V_j} \vec{H}_j \cdot \vec{H}_{j,n}^* \ dV = 0$$

The eigenmode expansion:

$$\vec{E}_{j} = \sum X_{j,n} \vec{E}_{j,n}$$
$$\vec{H}_{j} = \sum Y_{j,n} \vec{H}_{j,n}$$

(2)

🛟 Fermilab
By using (1) and (2) we obtain

$$X_{j,n} = -\frac{i\omega_n}{\omega^2 - \omega_n^2} \cdot \frac{\int_{S'_j + S''_j} \left(\vec{E}_j \times \vec{H}_{j,n}^*\right) \cdot dS}{2W_{j,n}}$$
(3)
$$Y_{j,n} = \frac{i\omega}{\omega^2 - \omega_n^2} \cdot \frac{\int_{S'_j + S''_j} \left(\vec{E}_j \times \vec{H}_{j,n}^*\right) \cdot dS}{2W_{j,n}}$$

The eigenmode amplitudes are determined by tangential electric field on the holes, E_{ri}

How to find E_{rj} for small holes? 1. Quasi-static approximation: We have: $\Delta \vec{E}_j + k^2 \vec{E}_j = 0$, $k^2 = \frac{\omega^2}{c^2}$ For a small hole, $a < <\lambda_a$. It means that $\Delta \vec{E}_j \sim \frac{\vec{E}_j}{a^2} \gg k^2 \vec{E}_j = \left(\frac{\omega}{c}\right)^2 \vec{E}_j$ and $\Delta \vec{E}_j \approx 0$ i.e., it means that $\vec{E}_j = \vec{\nabla} \Phi$, $\Delta \Phi = 0$ or electric field is quasi-static. Far from the holes electric field has only longitudinal (accelerating) component!

🚰 Fermilab

73 5/25/2021 V. Yakovlev | RF Accelerating Structures, Lecture 5

2. Superposition:

3. Electrostatic problem: conducting sheet at z=0 with a circular hole of the radius a, at $z=-\infty$ the field is homogeneous, $E_z=E_0$; at $z=\infty$ the field E=0: problem A above. The problem has analytical solution.*

We need to define the radial electric field at the hole, or at z=0.

🛟 Fermilab

* W.R. Smythe, Static and Dynamic Electricity, 1939, p. 159

Oblate spheroidal coordinates:

$$\frac{z^{2}}{\zeta^{2}} + \frac{r^{2}}{1+\zeta^{2}} = a^{2} \text{ spheroids}$$

$$-\frac{z^{2}}{\xi^{2}} + \frac{r^{2}}{1-\xi^{2}} = a^{2} \text{ hyperboloids}$$

$$r = a[(1+\zeta^{2})(1-\xi^{2})]^{1/2}$$

$$z = a\zeta\xi$$

$$\Delta \Phi = 0$$

$$\Phi(\xi,\zeta) = aE_{0}\xi \left[\zeta - \frac{1}{\pi}(\zeta \cot^{-1}\zeta - 1)\right]$$

$$E_{r}(r,0) = \frac{1}{h_{1}} \nabla_{\xi}(\Phi(\xi,\zeta)|_{\zeta=0} = E_{0}\frac{(1-\xi^{2})^{\frac{1}{2}}}{\pi\xi} = E_{0}\frac{r}{\pi(a^{2}-r^{2})^{1/2}}$$

$$E_{z}(r,0) = \frac{1}{h_{2}} \nabla_{\zeta}(\Phi(\xi,\zeta)|_{\zeta=0} = \frac{1}{2}E_{0}$$

Lamet coefficients

 $h_{1} = a \left(\frac{\xi^{2} - \zeta^{2}}{1 - \xi^{2}}\right)^{1/2}$ $h_{2} = a \left(\frac{\xi^{2} - \zeta^{2}}{1 + \zeta^{2}}\right)^{1/2}$

‡ Fermilab

For TM₀₁₀ mode in a pillbox near the axis (see slide 32):

$$\begin{split} E_{j,r}(r)|_{S'_{j}} &= E_{0} \frac{r}{\pi (a^{2} - r^{2})^{1/2}} [X_{j-1} - X_{j}] \\ E_{j,r}(r)|_{S''_{j}} &= E_{0} \frac{r}{\pi (a^{2} - r^{2})^{1/2}} [X_{j} - X_{j+1}] \\ H_{j,\varphi}(r) &\approx -iE_{0} \frac{(\frac{\omega_{0}}{c})r}{2Z_{0}} \end{split}$$

and from (3), slide 69, we have:

THE PHYSICAL REVIEW

 ${\cal A}$ journal of experimental and theoretical physics established by E. L. Nichols in 1893

Second Series, Vol. 66, Nos. 7 and 8

OCTOBER 1 AND 15, 1944

Theory of Diffraction by Small Holes

H. A. BETHE Department of Physics, Cornell University, Ithaca, New York (Received January 26, 1942)

$$X_{j}\left[1-(1+K)\frac{\omega_{0}^{2}}{\omega^{2}}\right]+\frac{1}{2}K\frac{\omega_{0}^{2}}{\omega^{2}}\left[X_{j-1}+X_{j+1}\right]=0$$
 (1)

where *K* is the coupling, dimensionless parameter:

$$K = \frac{2E_0^2 a^3}{3Z_0 W_0 c} = \frac{2}{3} \cdot \frac{R/Q}{Z_0} \cdot \frac{k_0 a^3}{d^2 T^2} \quad k_0 = \frac{\omega_0}{c}$$

 $K \sim a^3$. For a thick wall $K \sim a^{\eta}$, $\eta > 3$ (field decays in the coupling hole).

In the infinite chain of cavities equation (1) has solution (travelling wave):

🛠 Fermilab

Appendix 11: Travelling–Wave acceleration structures. The 2d Bell theorem, illustration:

For a pillbox structure:

The fields on the hole are equal to

$$E_{j,r}(r)|_{S'_j} = E_0 \frac{r}{\pi (a^2 - r^2)^{1/2}} [X_{j-1} - X_j]$$

$$H_{j,\varphi}(r)|_{S'_j} \approx -iE_0 \frac{\left(\frac{\omega_0}{c}\right)r}{4Z_0} [X_{j-1} + X_j]$$

(E_z and H_ϕ on the hole are two times smaller than in the cell center , see slides 71-72). Therefore, we have

🚰 Fermilab

$$\begin{aligned} v_{gr} &= \frac{P}{\frac{|X_j|^2 W_0}{d}} = \frac{\frac{1}{2} Re \int E_r H_{\varphi}^* dS}{\frac{|X_j|^2 W_0}{d}} = \frac{\omega_0 E_0^2 a^3 d}{6Z_0 W_0 c} Re[i(X_{j-1} - X_j)(X_{j-1}^* + X_j^*)] = \\ &= \frac{\omega_0 E_0^2 a^3 d}{3Z_0 W_0 c} \sin(\varphi) = \frac{\omega_0 d}{2} Ksin(\varphi) = c \frac{\pi K d}{\lambda} sin(\varphi) = \frac{d\omega}{dk_z} \end{aligned}$$

I. Floquet Theorem

"For a given mode of propagation in a periodic system at given steady-state frequency the fields at one cross section differ from that one period away only by complex constant".

🔁 Fermilab

 $\vec{E}(x, y, z_2) = \vec{E}(x, y, z_1)e^{-ik_z L}$ $\vec{H}(x, y, z_2) = \vec{H}(x, y, z_1)e^{-ik_z L}$ $z_2 = z_1 + L$ (1)

II. 1st Bell Theorem

"The time-average electrical stored energy per period is equal to the time-average magnetic stored energy per period in the passband".

Consider the periodic structure to be divided by a series of surfaces perpendicular to the axis spaced by the periodic distance L. One cell of the structure having the volume V is surrounded by these surfaces S_I and S_2 and the ideal metal boundary S_0 . Let's consider the integral over the surface surrounding the cell, which equals to zero:

$$\oint \vec{E} \times \vec{H}^* \cdot d\vec{s} = \int_{S_0} \vec{E} \times \vec{H}^* \cdot d\vec{s} + \int_{S_1} \vec{E} \times \vec{H}^* \cdot d\vec{s} + \int_{S_2} \vec{E} \times \vec{H}^* \cdot d\vec{s} = 0$$
(2)

This is because we have

$$\int_{S_0} \vec{E} \times \vec{H}^* \cdot d\vec{s} = 0 \text{ because } E_t = 0 \text{ on } S_0$$

and
$$\int_{S_1} \vec{E} \times \vec{H}^* \cdot d\vec{s} + \int_{S_2} \vec{E} \times \vec{H}^* \cdot d\vec{s} = 0 \text{ because of (1) and } d\vec{s}_2 = -d\vec{s}_1$$

From Maxwell equations $rot\vec{E} = -i\omega\mu_0\vec{H}$ (3) $rot\vec{E}^* = i\omega\mu_0\vec{H}^*$ and (2) we have $\oint \vec{E} \times rot \vec{E}^* \cdot d\vec{s} = 0$ Applying Gauss's theorem, we get: $\int_{V} div (\vec{E} \times rot \vec{E}^*) dv = 0.$ (4) Using the vector theorem (see Appendix 1) $div(\vec{A}\times\vec{B})=\vec{B}\cdot rot\vec{A}-\vec{A}\cdot rot\vec{B},$ (5) we get: $\int_{V} (rot\vec{E}^{*}) \cdot (rot\vec{E})dv - \int_{V} \vec{E} \cdot (rot(rot\vec{E}^{*}))dv = 0.$ Using Maxwell's equations (3) and the homogenous wave equation derived therefrom (see Lecture 1) $rot(rot\vec{E}^*)) = \omega^2 \mu_0 \varepsilon_0 \vec{E}^*$ (6)we get $\int_{V} (-i\omega\mu_{0}\vec{H}) \cdot (i\omega\mu_{0}\vec{H}^{*})dv - \int_{V} \vec{E} \cdot (\omega^{2}\mu_{0}\varepsilon_{0}\vec{E}^{*})dv = 0$

Dividing through $4\omega^2\mu_0$ yields:

$$\frac{1}{4}\int_{V} \mu_{0} |\vec{H}|^{2} dv = \frac{1}{4}\int_{V} \varepsilon_{0} |E|^{2} dv = W/2,$$

quod erat demonstrandum.

Here W is total energy of electromagnetic field per period,

$$W = \frac{1}{2} \int_{V} \varepsilon_0 \vec{E} \cdot \vec{E}^* d\nu = \frac{1}{2} \int_{V} \mu_0 \vec{H} \cdot \vec{H}^* d\nu$$

III. 2^d Bell Theorem

"The time-average power flow in the pass band is equal to the group velocity times time-average electro-magnetic stored energy per period divided by the period."

Consider (4) wherein \vec{E} and \vec{E}^* are functions of frequency ω . Differentiate with respect to frequency: $\frac{\partial}{\partial \omega} \int_V div (\vec{E} \times rot \vec{E}^*) dv = 0.$ It gives:

$$\int_{V} div \left(\frac{\partial \vec{E}}{\partial \omega} \times rot \vec{E}^{*}\right) dv + \int_{V} div \left(\vec{E} \times rot \frac{\partial \vec{E}^{*}}{\partial \omega}\right) dv = 0.$$
Using the vector identity equation (5), we get
$$\int_{V} \left(rot \vec{E}^{*}\right) \cdot \left(rot \frac{\partial \vec{E}}{\partial \omega}\right) dv - \int_{V} \frac{\partial \vec{E}}{\partial \omega} \cdot \left(rot (rot \vec{E}^{*})\right) dv + .$$

$$+ \int_{V} \left(rot \vec{E}\right) \cdot \left(rot \frac{\partial \vec{E}^{*}}{\partial \omega}\right) dv - \int_{V} \vec{E} \cdot \left(rot (rot \frac{\partial \vec{E}^{*}}{\partial \omega}\right) dv = 0(7)$$
Differentiation (6) with respect to ω gives

Differentiation (6) with respect to
$$\omega$$
 gives

$$rot(rot \frac{1}{\partial \omega}) = 2\omega\mu_0\varepsilon_0E^* + \omega^2\mu_0\varepsilon_0\frac{1}{\partial \omega}$$

Using this in the second and fourth integrals of (7)

$$\int_{V} (rot\vec{E}^{*}) \cdot \left(rot\frac{\partial\vec{E}}{\partial\omega}\right) dv - \omega^{2}\mu_{0}\varepsilon_{0} \int_{V} \frac{\partial\vec{E}}{\partial\omega} \cdot \vec{E}^{*} dv + \int_{V} (rot\vec{E}) \cdot \left(rot\frac{\partial\vec{E}^{*}}{\partial\omega}\right) dv - 2\omega\mu_{0}\varepsilon_{0} \int_{V} \vec{E} \cdot \vec{E}^{*} dv - \omega^{2}\mu_{0}\varepsilon_{0} \int_{V} \frac{\partial\vec{E}^{*}}{\partial\omega}\vec{E} \cdot dv = 0$$
which is

$$2Re\left\{\int_{V} \left(rot\vec{E}^{*}\right) \cdot \left(rot\frac{\partial\vec{E}}{\partial\omega}\right) dv - \int_{V} \frac{\partial\vec{E}}{\partial\omega} \cdot \left(rot(rot\vec{E}^{*})\right) dv\right\} - 2\omega\mu_{0}\varepsilon_{0}\int_{V} \vec{E} \cdot \vec{E}^{*} dv = 0.$$

🗲 Fermilab

Using (5) in reverse, $2Re\left\{\int_{V} div\left(\frac{\partial \vec{E}}{\partial \omega} \times rot \vec{E}^{*}\right) dv\right\} - 2\omega\mu_{0}\varepsilon_{0}\int_{V} \vec{E} \cdot \vec{E}^{*} dv = 0.$ and using Gauss's theorem on the first term, $2Re\left\{\oint \frac{\partial \vec{E}}{\partial \omega} \times rot \vec{E}^* \cdot d\vec{s}\right\} - 2\omega\mu_0\varepsilon_0\int_V \vec{E} \cdot \vec{E}^* d\nu = 0.$ (8) Integral $\int_{S_{a}} \frac{\partial \vec{E}}{\partial \omega} \times rot \vec{E}^* \cdot d\vec{s} = 0$ because of boundary conditions on the ideal metal surface. From Floquet theorem (1) the following relation hold: $\vec{E}(x, y, z_2) = \vec{E}(x, y, z_1)e^{-ik_z L}$ $rot\vec{E}^{*}(x, y, z)|_{z=z_{2}} = rot\vec{E}^{*}(x, y, z)|_{z=z_{1}}e^{ik_{z}L}$ (9) $\vec{E}^{*}(x, y, z_{2}) = \vec{E}^{*}(x, y, z_{1})e^{ik_{z}L}$ $\frac{\partial \vec{E}(x,y,z_2)}{\partial \omega} = \frac{\partial \vec{E}(x,y,z_1)}{\partial \omega} e^{-ik_z L} - iL \frac{dk_z}{d\omega} \vec{E}(x,y,z_1) e^{-ik_z L}$ Separating the surface integral of (8) $2Re\left\{\int_{S_1} \frac{\partial \vec{E}(x,y,z_1)}{\partial \omega} \times rot \vec{E}^*(x,y,z)|_{z=z_1} \cdot d\vec{s} + \int_{S_2} \frac{\partial \vec{E}(x,y,z_2)}{\partial \omega} \times rot \vec{E}^*(x,y,z)|_{z=z_2} \cdot d\vec{s}\right\} 2\omega\mu_0\varepsilon_0\int_{\mathcal{V}}\vec{E}\cdot\vec{E}^*d\nu=0$ and substituting equations (9) $2Re\left\{\int_{S_1} \frac{\partial \vec{E}(x,y,z_1)}{\partial \omega} \times rot \vec{E}^*(x,y,z)\right|_{z=z_1} \cdot d\vec{s} + \frac{\partial \vec{E}(x,y,z_1)}{\partial \omega} + \frac{\partial \vec{E}(x,y,z_1)}{\partial \omega} \times rot \vec{E}^*(x,y,z)\right\}$ $\int_{S_2} \frac{\partial \vec{E}(x,y,z_1)}{\partial \omega} \times rot \vec{E}^*(x,y,z)|_{z=z_1} \cdot d\vec{s} - iL \frac{dk_z}{d\omega} \int_{S_2} \vec{E}(x,y,z_1) \times rot \vec{E}^*(x,y,z)|_{z=z_1} \cdot d\vec{s} \Big\{ - iL \frac{dk_z}{d\omega} \int_{S_2} \vec{E}(x,y,z_1) \times rot \vec{E}^*(x,y,z)|_{z=z_1} \cdot d\vec{s} \Big\} - iL \frac{dk_z}{d\omega} \int_{S_2} \vec{E}(x,y,z_1) \times rot \vec{E}^*(x,y,z)|_{z=z_1} \cdot d\vec{s} \Big\} - iL \frac{dk_z}{d\omega} \int_{S_2} \vec{E}(x,y,z_1) \times rot \vec{E}^*(x,y,z)|_{z=z_1} \cdot d\vec{s} \Big\} - iL \frac{dk_z}{d\omega} \int_{S_2} \vec{E}(x,y,z_1) \times rot \vec{E}^*(x,y,z)|_{z=z_1} \cdot d\vec{s} \Big\} - iL \frac{dk_z}{d\omega} \int_{S_2} \vec{E}(x,y,z_1) \times rot \vec{E}^*(x,y,z)|_{z=z_1} \cdot d\vec{s} \Big\} - iL \frac{dk_z}{d\omega} \int_{S_2} \vec{E}(x,y,z_1) \times rot \vec{E}^*(x,y,z)|_{z=z_1} \cdot d\vec{s} \Big\} - iL \frac{dk_z}{d\omega} \int_{S_2} \vec{E}(x,y,z_1) \times rot \vec{E}^*(x,y,z)|_{z=z_1} \cdot d\vec{s} \Big\} - iL \frac{dk_z}{d\omega} \int_{S_2} \vec{E}(x,y,z_1) \times rot \vec{E}^*(x,y,z)|_{z=z_1} \cdot d\vec{s} \Big\} - iL \frac{dk_z}{d\omega} \int_{S_2} \vec{E}(x,y,z_1) \times rot \vec{E}^*(x,y,z)|_{z=z_1} \cdot d\vec{s} \Big\} - iL \frac{dk_z}{d\omega} \int_{S_2} \vec{E}(x,y,z_1) \times rot \vec{E}^*(x,y,z)|_{z=z_1} \cdot d\vec{s} \Big\} - iL \frac{dk_z}{d\omega} \int_{S_2} \vec{E}(x,y,z_1) \times rot \vec{E}^*(x,y,z)|_{z=z_1} \cdot d\vec{s} \Big\}$ $2\omega\mu_0\varepsilon_0\int_{\mathcal{V}}\vec{E}\cdot\vec{E}^*d\nu=0$ 🚰 Fermilab

Since $d\vec{s}_2 = -d\vec{s}_1$ the first two integrals cancel. Using Maxwell equation (3) and condition s (9) we get $2Re\left\{\omega\mu_0 L \frac{dk_z}{d\omega}\int_{S_2}\vec{E}(x,y,z_2) \times \vec{H}^*(x,y,z_2) \cdot d\vec{s}\right\} - 2\omega\mu_0\varepsilon_0\int_V\vec{E}\cdot\vec{E}^*dv = 0$ Multiplying by $\frac{1}{4\omega\mu_0 L}\frac{d\omega}{dk_z}$ we finally have $\frac{1}{2}Re\left\{\int_{S_2}\vec{E}(x,y,z_2) \times \vec{H}^*(x,y,z_2) \cdot d\vec{s}\right\} = \frac{d\omega}{dk_z}\cdot\frac{1}{L}\cdot\frac{1}{2}\int_V\varepsilon_0\vec{E}\cdot\vec{E}^*dv = 0$ or

$$P = v_{gr} w$$
,

here

 $P = \frac{1}{2} Re \left\{ \int_{S_2} \vec{E}(x, y, z_2) \times \vec{H}^*(x, y, z_2) \cdot d\vec{s} \right\}$ is the time averaged power flaw in the passbands; $v_{gr} = \frac{d\omega}{dk_z}$ is a group velocity; $w = \frac{1}{L} \cdot \frac{1}{2} \int_V \varepsilon_0 \vec{E} \cdot \vec{E}^* dv = \frac{1}{L} \cdot \frac{1}{2} \int_V \mu_0 \vec{H} \cdot \vec{H}^* dv = \frac{W}{L}$ is the time-averaged stored electromagnetic energy per unit length.

[1] J.S. Bell, "Group velocity and energy velocity in periodic waveguides," Harwell, AERE-T-R-858 (1952)
[2] D.A. Watkins, Topics in Electromagnetic Theory, John Willey & Sons, Inc. London, 1958
[3] E. A. *Burshtein*, and G. B. *Voskresensky*, The Intensive Beam Electron Linear Accelerators, Atomizdat, Moscow, 1970.

🛠 Fermilab

Appendix 12: Standing –Wave acceleration structures. Perturbation theory. In matrix form Eq(1), see Lecture 2, Slide 44:

$$M\hat{X} - \frac{\omega_0^2}{\omega^2}\hat{X} = 0$$

here
$$M_{jj} = 1; \ j = 0, 1, ..., N;$$

 $M_{jj-1} = \frac{K}{2W(j)}; \ j = 1, 2, ..., N; \ M_{jj+1} = \frac{K}{2W(j)}; \ j = 0, 1, ..., N - 1.$
and $W(j) = 1, j = 1, 2, ..., N - 1 \quad W(j) = \frac{1}{2}, j = 0, N$
Eigenvectors and eigenvalues:

$$\hat{X}_{j}^{q} = \cos \frac{\pi q j}{N}; \ \omega_{q}^{2} = \frac{\omega_{0}^{2}}{1 + K \cos \frac{\pi q}{N}}, q = 0, 1, \dots N$$

Orthogonality:

$$\hat{X}^{q} \cdot \hat{X}^{r} \equiv \sum_{j=0}^{N} W(j) \, \hat{X}_{j}^{q} \hat{X}_{j}^{r} = \frac{N \delta_{qr}}{2W(q)}, \quad \delta_{qq} = 1, and \, \delta_{qr} = 0, if \ q \neq r$$

Contract Fermilab

Appendix 12: Standing – Wave acceleration structures. Perturbation theory

- Perturbation of the cell resonance frequencies causes perturbation of the mode resonance frequencies $\delta \omega_a$;
- the field distribution δX_{a} .

V

S

🛟 Fermilab

Appendix 13: Wake potentials

Loss and kick distribution along the bunch $V_z(s)$ and $V_{\perp}(s)$:

$$V_{z}(s) = \int_{0}^{\infty} ds' \ \lambda(s-s') \ W_{z}(s') = \int_{-\infty}^{s} ds' \ \lambda(s') \ W_{z}(s-s') \ ,$$

$$\overrightarrow{V}_{\perp}(s) = \int_{0}^{\infty} ds' \ \lambda(s-s') \ \overrightarrow{W}_{\perp}(s') = \int_{-\infty}^{s} ds' \ \lambda(s') \ \overrightarrow{W}_{\perp}(s-s') \ .$$

 $\lambda(s)$ is the charge distribution along the bunch. Total losses and kick:

$$\Delta U = \int_{-\infty}^{\infty} ds \,\lambda(s) \, V_z(s), \ k_\ell = \frac{\Delta U}{q^2} \equiv \frac{1}{q^2} \int_{-\infty}^{\infty} ds \,\lambda(s) \, V_z(s) \quad k_l - \text{loss factor}$$

$$k_{HOM} = k_l - \frac{1}{4} \, R/Q \cdot \omega|_{acc. \ mode}|$$

$$\vec{p}_{\perp} = q^2 \vec{k}_{\perp} / c \quad \vec{k}_{\perp} \equiv \frac{1}{q^2} \int_{-\infty}^{\infty} ds \,\lambda(s) \, \vec{V}_{\perp}(s) \quad \vec{k}_{\perp} - \text{kick factor}$$

$$\vec{p}_{\perp} = F^{2} \vec{k}_{\perp} / c \quad \vec{k}_{\perp} \equiv \frac{1}{q^2} \int_{-\infty}^{\infty} ds \,\lambda(s) \, \vec{V}_{\perp}(s) \quad \vec{k}_{\perp} - \text{kick factor}$$

87 5/25/2021 V. Yakovlev | RF Accelerating Structures, Lecture 5

Appendix 13: Wake potentials

Panofsky-Wenzel theorem for wakes:

$$\frac{\partial \overrightarrow{W}_{\perp}}{\partial s} = \frac{c}{eq} \frac{\partial \overrightarrow{p}_{\perp}}{\partial s} = -\frac{1}{q} \int_{0}^{L} dz \left[\overrightarrow{\nabla}_{\perp} E_{z}(z,t) \right]_{t=(s+z)/c} = \overrightarrow{\nabla}_{\perp} W_{z}.$$

Fermilab

Relation between wake and impedance:

$$Z(\omega) = \int_{0}^{\infty} W_{z}(\tau) \exp\{-i\omega\tau\} d\tau \equiv \widetilde{W}_{z}(\tau) ,$$

$$S = C\tau = Ct - 7$$

$$Z(k) = \int_{0}^{\infty} W_{z}(s) \exp\{-iks\} ds \equiv \widetilde{W}_{z}(s) = c [Z(\omega)]_{\omega=kc}$$

and

$$k_\ell = \frac{\Delta U}{q^2} = \frac{1}{\pi q^2} \int_0^\infty Z_R(\omega) I^2(\omega) d\omega$$
.

88 5/25/2021 V. Yakovlev | RF Accelerating Structures, Lecture 5