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0.1 Approaches to Solving the T-BMT Equation

The dynamics of the spin vector S of a charged particle having mass m and
charge ¢ in the laboratory frame is described by the Thomas-BMT (T-BMT)
equation,
S q . ; )
= LG (A+GNBL+(1+G)B). 1
&~ m (1+Gv)BL+(1+G)By (1)
Here ~ denotes the relativistic Lorentz factor, G the particle’s anomalous gyro-
magnetic ratio, B} and B, respectively the magnetic field components perpen-
dicular and parallel to the particle’s velocity. In addition, we have assumed the
absence of electric fields. We can transform this equation by expanding about
a reference orbit described by a Frenet-Serret coordinate system. See figure 1.
Thus we have i 3 da ) &
—x—f, —S:—E, and —220, (2)
ds p’° ds p ds

Particle motion can be parameterized in this coordinate system as
7 =15(s) + a2 + 22, (3)
where 7,(s) is the reference orbit, and § = d7,/ds.

Particle Position

Reference Orbit

Figure 1: The curvilinear coordinate system for particle motion in a circular
accelerator. The unit vectors &, § and Z are the transverse radial, longitudinal,
and transverse vertical basis vectors; and 7(s) is the reference orbit.

1) Show that in the absence of solenoid magnets and vertical bends, the
T-BMT equation can, to first order in the coordinates (z, s, z), be rewritten as

as at\ = = = =
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Here you will use the fact that Bp = ymuv/e and approximate % ~ 1/v since the
other terms will introduce orders of z, s,z and 1/p beyond our approximation.
To accomplish this, first express the perpendicular and parallel magnetic field
components in the forms

_ _ 1 -
BL:f(ﬁX B)Xﬁ, B||:7(ﬁB)B (4)
v

Then use the Lorentz force equation to express ¢ X g, hence also B, in terms
of do/dt:

W_ 9405 (5)
dt  my

— mydv

BJ_ = q?& X V. (6)

In addition, make use of the fact that

ds v
= 1/2° (7)

- [(1+ %>2+x’2 +z’2]

where p denotes the radius of curvature of the local Frenet-Serret coordinate
system. Now use (2) together with (4) through (7) in the T-BMT equation (1)
to obtain the first-order result (4). In the present context, “first-order” means
drop all terms of second order and higher in z, z, 1/p and their derivatives.
Also remember to make use of the initial assumption that solenoids and vertical
bends are absent.

Accounting for the derivatives of the x, s, z basis vectors of S we can obtain,

dsS,

= = s FZ 1 _FS z
= S(E.+1/p) - S
dsS;

dS‘ = —S.(F.+1/p)+ F,S.
dSZ = Ssz_Fach

ds

If we change to a basis vector which rotates with the beam (é1, é2, é3) we obtain,

a5 - -
E: xS,
fi=(1+Gv)7",
' 8
o= —(14 G o+ (14C) (p) , ¥

f3=—(1+Gy)" + %.
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2) Define a two-component spinor ¥ such that the j-th component of the
spin vector is given by
Sj = (¥o;|¥) = ¥lo;v. 9)

Here ¥ denotes a classical vector with components v and d, which are related
to the three components of S by

S1 = u'd + ud*
Sy = —i(u*d — ud") (10)
S = |ul? — |d|?.
Using & = (0,05, 0), the vector of the Pauli spin matrices, and ((s) = —f1 +
ifs, show that equation 8 can be transformed into,
dv i L= i i 9 ((s)
(g W =—_HU=_°" p L 11
ds 2( ) 2 2 (—((s)* —% ’ (11)

/

where we have dropped the first term in f3, —(1 + Gv)z’
compared to G7.

3) Using the differential relation dd = ds/p, one may transform (11) so as
to make 6 the independent variable. Then, considering the effects of a single
resonance, wherein ¢ (#) becomes exe K¢ the T-BMT equation becomes

dv B i G'y —eKe_iK9
460~ 2 (—6}6”{9 —Gy . (12)

, since it is small

At this point, assume G~y = constant, and transform the spinor equation (12)
into the resonance precessing frame by defining

U (0) = e K075 (h). (13)
Show that 4w
K i (K — G"}/ €K
—K - Uk 14
a2 ( G Gy- K) K (14)

4) The code SpinTrack.cc integrates the single-resonance T-BMT equation
(14) with two orthogonal snakes located at # = 0 and § = 7, with an axis of
rotation oriented at angle ¢ = +x/4, as is the case in RHIC. The code takes as
input the file Resonance.in:

kO: 452

wOR,wOI: 0.0 0.0

ki: 453

wiR,w1I: 0.0 0.0

k2: 393

w2R,w2I: 0.432733 0.112896
k3: 392

w3R,w3I: 0.0 0.0



k4: 394
w4R,w4I: 0.0 0.0
k5: 422
wbR,wbI: 0.0 0.0
k6: 423

w6R,w6I: 0.0 0.0

In this version of the code, we integrate the single-resonance T-BMT equation by
taking the matrix exponential of equation 14. [In this case, our single resonance
is located at K = k2 = 393 + Q, = 422.67 (Q, = 29.67), with strength ex =
0.432733 +10.112896). The code’s default initial value for Gvq is 414.8, with
an acceleration rate of <Y = 3.74118 x 10 %rad ™! (as in RHIC). The default
number of turns is NT = 670 000.

e Compile the code:
mpic++ SpinTrack.cc -o SpinTrack

e With Resonance.in in your directory, run the code using
mpiexec -n 1 ./SpinTrack
This will generate a file called:
TBTAmp1.000Taub.000Qs8.900CV2.00Q29.670R0.dat
After some header information, it lists the turn number, value of G~,
vertical component of the spin vector Sy, and the estimated Envelope of
the Spin vector given by the following equation:

0=K -Gy

A= \/52+|6k|2

b—@sin)\j (15)
DY 2

Seny = 1 — 8b%(1 — b?)
Identify the locations of the nodes and anti-nodes.

e Now run the same code using the command
mpiexec -n 1 ./SpinTrack \
nstrobe= 1 GgamO= 420.0 NT= 250000
In this case, you are now starting around an anti-node and turning off
stroboscopic averaging to orient your initial spin vector. What is differ-
ent about this tracking? How do you think you could compute the final
polarization in this case?

e Run it again turning back on stroboscopic averaging by using:
mpiexec -n 1 ./SpinTrack GgamO= 420.0 NT= 250000
How does the spin vector behave now?
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e Run the code again, now using more particles:

mpiexec -n 20 ./SpinTrack GgamO= 420.0 NT= 250000
Now the code should produce 20 files one for each particle where the
complex phase of the spin resonance is distributed evenly over 0 to 2.
The “R0”, “R1” indicate the particle number for each file. The python
script AvgFiled.py lists all the TBT*.dat files in the current directory and
then reads them in calculating an average for the vertical Spin component.
Run it using:

python AvgFiled.py > YourFileName.dat
It generates a file listing turn number, Gv, and average vertical Spin.
Notice how the average trajectory converges.



