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0.1 Approaches to Solving the T-BMT Equation

The dynamics of the spin vector ~S of a charged particle having mass m and
charge q in the laboratory frame is described by the Thomas-BMT (T-BMT)
equation,

d~S

dt
=

q

γm
~S ×

(
(1 +Gγ) ~B⊥ + (1 +G) ~B‖

)
. (1)

Here γ denotes the relativistic Lorentz factor, G the particle’s anomalous gyro-
magnetic ratio, ~B⊥ and ~B⊥ respectively the magnetic field components perpen-
dicular and parallel to the particle’s velocity. In addition, we have assumed the
absence of electric fields. We can transform this equation by expanding about
a reference orbit described by a Frenet-Serret coordinate system. See figure 1.
Thus we have

dx̂

ds
=
ŝ

ρ
,

dŝ

ds
= − x̂

ρ
, and

dẑ

ds
= 0, (2)

Particle motion can be parameterized in this coordinate system as

~r = ~ro(s) + xx̂+ zẑ, (3)

where ~ro(s) is the reference orbit, and ŝ = d~ro/ds.

Figure 1: The curvilinear coordinate system for particle motion in a circular
accelerator. The unit vectors x̂, ŝ and ẑ are the transverse radial, longitudinal,
and transverse vertical basis vectors; and ~r0(s) is the reference orbit.

1) Show that in the absence of solenoid magnets and vertical bends, the
T-BMT equation can, to first order in the coordinates (x, s, z), be rewritten as

d~S

ds
≈ v

(
dt

ds

)
~S × ~F ≈ ~S × ~F

Fx = −(1 +Gγ)z′′

Fs = (1 +Gγ)z′/ρ− (1 +G)

(
z

ρ

)′
Fz = x′′(1 +Gγ)− 1 +Gγ

ρ
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Here you will use the fact that Bρ = γmv/e and approximate dt
ds ≈ 1/v since the

other terms will introduce orders of x, s, z and 1/ρ beyond our approximation.
To accomplish this, first express the perpendicular and parallel magnetic field
components in the forms

~B⊥ =
1

v2
(~v × ~B)× ~v, ~B‖ =

1

v2
(~v · ~B) ~B. (4)

Then use the Lorentz force equation to express ~v × ~B, hence also ~B⊥ in terms
of d~v/dt:

d~v

dt
=

q

mγ
~v × ~B, (5)

~B⊥ =
mγ

qv2
d~v

dt
× ~v. (6)

In addition, make use of the fact that

ds

dt
=

v[(
1 + x

ρ

)2
+ x′2 + z′2

]1/2 , (7)

where ρ denotes the radius of curvature of the local Frenet-Serret coordinate
system. Now use (2) together with (4) through (7) in the T-BMT equation (1)
to obtain the first-order result (4). In the present context, “first-order” means
drop all terms of second order and higher in x, z, 1/ρ and their derivatives.
Also remember to make use of the initial assumption that solenoids and vertical
bends are absent.

Accounting for the derivatives of the x, s, z basis vectors of ~S we can obtain,

dSx
ds

= Ss(Fz + 1/ρ)− FsSz
dSs
ds

= −Sx(Fz + 1/ρ) + FxSz

dSz
ds

= SxFs − FxSs

If we change to a basis vector which rotates with the beam (ê1, ê2, ê3) we obtain,

d~S

ds
= ~f × ~S,

f1 = (1 +Gγ)z′′,

f2 = −(1 +Gγ)z′/ρ+ (1 +G)

(
z

ρ

)′
,

f3 = −(1 +Gγ)x′′ +
Gγ

ρ
.

(8)
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2) Define a two-component spinor Ψ such that the j-th component of the
spin vector is given by

Sj = 〈Ψ|σj |Ψ〉 = Ψ†σjΨ. (9)

Here Ψ denotes a classical vector with components u and d, which are related
to the three components of ~S by

S1 = u∗d+ ud∗

S2 = −i(u∗d− ud∗)
S3 = |u|2 − |d|2.

(10)

Using ~σ = (σx, σs, σz), the vector of the Pauli spin matrices, and ζ(s) = −f1 +
if2, show that equation 8 can be transformed into,

dΨ

ds
= − i

2
(~σ · ~f)Ψ = − i

2
HΨ = − i

2

(
Gγ
ρ −ζ(s)

−ζ(s)∗ −Gγρ

)
Ψ, (11)

where we have dropped the first term in f3, −(1 + Gγ)x′′, since it is small
compared to Gγ.

3) Using the differential relation dθ = ds/ρ, one may transform (11) so as
to make θ the independent variable. Then, considering the effects of a single
resonance, wherein ζ(θ) becomes εKe

−iKθ, the T-BMT equation becomes

dΨ

dθ
= − i

2

(
Gγ −εKe−iKθ

−ε∗KeiKθ −Gγ

)
Ψ. (12)

At this point, assume Gγ = constant, and transform the spinor equation (12)
into the resonance precessing frame by defining

ΨK(θ) = e
i
2KθσzΨ(θ). (13)

Show that
dΨK

dθ
=

i

2

(
K −Gγ εK
ε∗K Gγ −K

)
ΨK . (14)

4) The code SpinTrack.cc integrates the single-resonance T-BMT equation
(14) with two orthogonal snakes located at θ = 0 and θ = π, with an axis of
rotation oriented at angle φ = ±π/4, as is the case in RHIC. The code takes as
input the file Resonance.in:

k0: 452

w0R,w0I: 0.0 0.0

k1: 453

w1R,w1I: 0.0 0.0

k2: 393

w2R,w2I: 0.432733 0.112896

k3: 392

w3R,w3I: 0.0 0.0
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k4: 394

w4R,w4I: 0.0 0.0

k5: 422

w5R,w5I: 0.0 0.0

k6: 423

w6R,w6I: 0.0 0.0

In this version of the code, we integrate the single-resonance T-BMT equation by
taking the matrix exponential of equation 14. [In this case, our single resonance
is located at K = k2 = 393 + Qy = 422.67 (Qy = 29.67), with strength εK =
0.432 733 + i 0.112 896). The code’s default initial value for Gγ0 is 414.8, with
an acceleration rate of dGγ

dθ = 3.741 18× 10−6 rad−1 (as in RHIC). The default
number of turns is NT = 670 000.

• Compile the code:
mpic++ SpinTrack.cc -o SpinTrack

• With Resonance.in in your directory, run the code using
mpiexec -n 1 ./SpinTrack

This will generate a file called:
TBTAmp1.000Tau5.000Qs8.900CV2.00Q29.670R0.dat

After some header information, it lists the turn number, value of Gγ,
vertical component of the spin vector Sy, and the estimated Envelope of
the Spin vector given by the following equation:

δ = K −Gγ

λ =
√
δ2 + |εk|2

b =
|εK |
λ

sin
λπ

2

Senv = 1− 8b2(1− b2)

(15)

Identify the locations of the nodes and anti-nodes.

• Now run the same code using the command
mpiexec -n 1 ./SpinTrack \
nstrobe= 1 Ggam0= 420.0 NT= 250000

In this case, you are now starting around an anti-node and turning off
stroboscopic averaging to orient your initial spin vector. What is differ-
ent about this tracking? How do you think you could compute the final
polarization in this case?

• Run it again turning back on stroboscopic averaging by using:
mpiexec -n 1 ./SpinTrack Ggam0= 420.0 NT= 250000

How does the spin vector behave now?
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• Run the code again, now using more particles:
mpiexec -n 20 ./SpinTrack Ggam0= 420.0 NT= 250000

Now the code should produce 20 files one for each particle where the
complex phase of the spin resonance is distributed evenly over 0 to 2π.
The “R0”, “R1” indicate the particle number for each file. The python
script AvgFiled.py lists all the TBT*.dat files in the current directory and
then reads them in calculating an average for the vertical Spin component.
Run it using:

python AvgFiled.py > YourFileName.dat

It generates a file listing turn number, Gγ, and average vertical Spin.
Notice how the average trajectory converges.


