SPIN@USPAS Summer 2021 Graduate "Spin Dynamics" Homework

HOME WORK 2 / ex. 2.2: SYNCHRONIZED TORQUE SOLUTION

Actually the 3 energies concerned will be treated simultaneously, using a single simulation input data file.

1/ Finding the closed orbits for 200 keV, 108.412 MeV and 370.082556 MeV. From $R = B\rho/B_0$, with R the Y_0 coordinate under OBJET, $B_0 = 5$ kG the field value, one gets,

 $Y_0(200 \text{ keV}) = 12.924889 \text{ cm}, \qquad Y_0(108.412 \text{ MeV}) = 309.47295 \text{ cm}, \quad Y_0(370.082556 \text{ MeV}) = 608.30878 \text{ cm}$

The data file takes a reference $B\rho = 64.62444403717985$ kG cm (BORO quantity under OBJET), hence the relative $D = \frac{B\rho(E)}{BORO}$ values:

D(200 keV) = 1, D(108.412 MeV) = 23.943951797, D(370.082556 MeV) = 47.06491129

A FIT could be used instead, or both! to cross-check (FIT is helpful anyway if field is inhomogeneous - not the case, here).

Input data file:

Cyclotron, classical 'OBJET'	Synchronized spin kick in a uniform field						
64.62444403717985 2	! Reference Brho ("BORO" in the users' guide) -> 200keV proton.						
12.924889 0.0.0. 309.47295 0.0.0. 608.30878 0.0.0. 1 1	<pre>. 1. 'o' ! Ggamma=1.793229 -> 0.200MeV; . 23.943951797 'i' ! Ggamma=2 -> 108.411628MeV; . 47.064911290 'h' ! Ggamma=2.5 -> 370.082556MeV. ! For any particle: set to 1 to enable ray-tracing, or to -9 to ignore.</pre>						
'PARTICUL' PROTON 'SPNTRK' 4.1 0. 0. 1.	! This is required for spin motion to be computed ! - by default zgoubi otherwise only requires rigidity. ! Request spin tracking. ! All initial spins taken parallel to Z axis.						
'SPNPRT' PRINT	! Log spin coordinates in zgoubi.res; PRINT adds log in zgoubi.SPNPRT.Out.						
'INCLUDE' ! Grabs lines form a 1 ! sequence of lines comprised between #S_60degSectorUnifB and #E_60degSector 6* 60degSector.inc[#S_60degSectorUnifB:#E_60degSectorUnifB] ! a 60 degree sector, IN 'FAISCEAU' 'SPINR'							
0. 30.	! Spin rotation, 1 about the X-axis, by 10 degree here.						
'FIT' 3 1 30 0 .4 1 40 0 .4 1 50 0 .4 6 1e-15 3.1 1 2 #End 0.1.0 3.1 1 3 #End 0.1.0 3.1 2 3 #End 0.1.0 3.1 3 #End 0.1.0 3.1 3 #End 0.1.0	! To be uncommented for use. ! 3 variables. ! Y0 of particle 1, ! Y0 of particle 2, ! Y0 of particle 3. ! 6 constraints; penalty, all apply at end of sequence, which is here. ! Partilce 1 Y0 equal to current Y, right before FIT, ! partilce 1 T0 equal to current Y, right before FIT, ! Partilce 2 Y0 equal to current Y, right before FIT, ! Partilce 2 T0 equal to current Y, right before FIT, ! Partilce 3 Y0 equal to current Y, right before FIT, ! partilce 3 T0 equal to current Y, right before FIT.						
'FAISCEAU' 'FAISTORE' zgoubi.fai 1 'END'	! Log current coordinates in zgoubi.res execution listing. ! Create zgoubi.fai and log current coordinates therein (usually for ! graphic or data post-treatmet).						

The result of the FIT procedure can be found in zgoubi.res listing:

****	24 Keyword, label(s) : FIT IPASS= 1													
	Pgm main. FITING=.T., FIT procedure launched.													
STAT	FIT variables and constraints in good order, FIT will proceed. STATUS OF VARIABLES (Iteration # 1 / 999 max.)													
LMNT	VAR	PARAM	MINIMUM	INITIAL	FINAL	MAXIMUM	STEP	NAM	E LBL1	LBL2				
1	1	30	7.75	12.9	12.92488	9 18.1	3.447E-0	02 OBJET	-	-				
1	2	40	186.	309.	309.4729	5 433.	0.825	OBJET	-	-				
1	3	50	365.	608.	608.3087	8 852.	1.62	OBJET	-	-				
STAI	US O	F CONS	STRAINTS (1	arget penal	Lty = 1.0000	E-15)								
TYPE	I	J LMN	NT# DES	SIRED	WEIGHT	REACHED	KI2	NAME	LBL1	LBL2 Nb pa	ram. [value]			
3	1	2	23 0.00	0000E+00	1.000E+00	4.160228E-11	8.59E-05	FAISCEAU	-	=	0			
3	1	3	23 0.00	0000E+00	1.000E+00	4.489777E-09	1.00E+00	FAISCEAU	-	=	0			
3	2	2	23 0.00	0000E+00	1.000E+00	1.250555E-12	7.76E-08	FAISCEAU	-	=	0			
3	2	3	23 0.00	0000E+00	1.000E+00	1.015507E-11	5.12E-06	FAISCEAU	-	-	0			
3	3	2	23 0.00	0000E+00	1.000E+00	3.410605E-13	5.77E-09	FAISCEAU	-	=	0			
3	3	3	23 0.00	0000E+00	1.000E+00	2.747802E-12	3.75E-07	FAISCEAU	-	-	0			
Fit	reac	hed pe	enalty valu	ne 2.0160E	2-17									
*****	****	*****	********	*********	*******	*****	******	******	*****	****	*****			

Current particle coordinates after the FIT can also be found in zgoubi.res listing (right hand side columns):

* * * *	***	******** 6 Keywo:	************** rd, label(s)	: FAISCE	********* AU	*****	******	******	******	******	******	*****	**************************************	****
0	TRACE DU FAISCEAU (follows element # 25) 3 TRAJECTOIRES													
	OBJET								FAISCEAU					
		D	Y(cm)	T(mr)	Z(cm)	P(mr)	S(cm)	D-1	Y(cm)	T(mr)	Z(CM)	P(mr)	S(cm)	
0	1	1.0000	12.925 Time of fli	0.000 .ght (mus)	0.000	0.000 1675 mass	0.0000 (MeV/c2)	0.0000	12.925 272	0.000	0.000	0.000	8.120937E+01	1
i	1	23.9440	309.473	0.000	0.000	0.000	0.0000	22.9440	309.473	-0.000	0.000	0.000	1.944476E+03	2
h	1	47.0649	Time of fli 608.309 Time of fli	.ght (mus) 0.000 .ght (mus)	: 0.1463 0.000 : 0.1829	4703 mass 0.000 3379 mass	(MeV/c2) 0.0000 (MeV/c2)	: 938. 46.0649 : 938.	272 608.309 272	-0.000	0.000	0.000	3.822117E+03	3
****	***	*******	**********	********	********	*********	*******	*******	*******	********	*******	*******	************	****

2 to 4/ The 3 questions are answered using a single input data file.

SPINR is introduced, at the end of the sequence. REBELOTE is used for multiturn tracking. Note: A different possibility, instead of REBELOTE, could just be to INCLUDE the 60 deg dipole 6*N times, for N turns in the constant field.

Input data file:

```
Cyclotron, classical. Synchronized spin kick in a uniform field
 OBJET'
64.62444403717985
                                                   ! Reference Brho ("BORO" in the users' guide) -> 200keV proton.
3 1

      12.9248888074
      0.0.0.0.1.'m'
      ! Ggamma=1.793229,
      0.200MeV

      3.0947295453790e2
      0.0.0.0.23.943954880185'm'
      ! Ggamma=2,
      108.411628MeV

      6.08308775712857e2
      0.0.0.0.47.0649136542578'm'
      ! Ggamma=2.5
      370.082556MeV

1 1 1
                                        ! For any particle: set to 1 to enable ray-tracing, or -9 to ignore.
'PARTICUL'
                                                                    ! This is required for spin motion to be computed,
                                                               ! otherwise, by default zgoubi only requires rigidity.
! Request spin tracking.
PROTON
'SPNTRK'
                                                                            ! All initial spins taken parallel to Z axis.
4.1
0. 0. 1.
'SPNPRT' PRINT
'INCLUDE'
6* ./60degSector.inc[#S 60degSectorUnifB:#E 60degSectorUnifB]
                                                                                                             ! 360 degree sector.
'FAISCEAU
'SPINR'
                                                                                                                  ! Spin rotation,
0. 30.
                                                                                     1 about the X-axis, by 30 degree here.
'REBELOTE'
                                                                                                        ! Multiturn ray-tracing.
40 0.2 99
'SYSTEM'
gnuplot <./gnuplot_Zspnprt_spinOscillation.gnu</pre>
qnuplot < ./qnuplot Zplt spinTilt.qnu</pre>
gnuplot <./gnuplot_Zplt_spinTilt_3D.gnu</pre>
'END'
```

The 3 different types of figures at the bottom have been obtainde with the following gnuplot files: • Plot spin component oscillations:

gnuplot_Zspnprt_spinOscillation.gnu # set tit "Observation azimuth is at snake. \n If G.{/Symbol g}=half-int, spin precesses in (Y,Z) plane. set xlabel "turn"; set ylabel "S_X, S_Y, S_Z"; set key b l nbtrj=3 # number of trajectories tracked do for [it=1:nbtrj] {
 unset label; set label sprintf("particle %3.5g",it) at 10, 0.8
plot [] [-1:1] \
 in (iteration of the set of 'zgoubi.SPNPRT.Out' every nbtrj::(it+2) u (\$22):(\$13) w lp lw .3 pt 4 ps .8 lc rgb "red" ,\ 'zgoubi.SPNPRT.Out' every nbtrj::(it+2) u (\$22):(\$14) w lp lw .3 pt 6 ps .8 lc rgb "blue" ,\ ,\ 'zgoubi.SPNPRT.Out' every nbtrj::(it+2) u (\$22):(\$15) w lp lw .3 pt 8 ps .8 lc rgb "black" pause .5 set terminal postscript eps blacktext color enh set output sprintf('gnuplot_Zspnprt_spinOsc_trj%i.eps',it) replot set terminal X11 unset output

• Plot spin motion in X-Y plane, lab. coordinates:

3

```
# gnuplot_Zplt_spinTilt.gnu
# set tit "s_{/Symbol p} motion"
set xlabel "S_X"; set ylabel "S_Y"; set size ratio -1; set xrange [-1:1]; set yrange [-1:1]; set key t l
nbtrj=3 # number of trajectories tracked
do for [it=1:nbtrj] {
  unset label; set label sprintf("particle %i",it) at -.9, .8
plot 'zgoubi.plt' u ($19==it? $33 :1/0):($34) w lp lw .3 ps .2 lc rgb "blue"
  pause .5
  set terminal postscript eps blacktext color enh
  set output sprintf('gnuplot_Zplt_SX-SY_trj%i.eps',it)
replot; set terminal X11; unset output
• Plot spin motion on a sphere:
```

gnuplot_Zplt_spinTilt_3D.gnu
set xlabel "X"; set ylabel "Y"; set zlabel "Z"; set xrange [-1:1]; set yrange [-1:1]; set zrange [-1:1]
set xyplane 0; set view equal xyz; set view 49, 339; unset colorbox set urange [-pi/2:pi/2]; set vrange [0:2*pi]; set parametric; R = 1. # radius of sphere nbtrj=3 # number of trajectories tracked do for [it=1:nbtrj] { unset label; set label sprintf(" particle %i",it) at -1, .9, 1. splot R*cos(u)*cos(v),R*cos(u)*sin(v),R*sin(u) w l lw .2 lc rgb "cyan" notit ,\ 'zgoubi.plt' u (\$19==it? \$33 :1/0):(\$34):(\$35) w lp lw .2 ns .4 lc nalette pause .5 set terminal postscript eps blacktext color enh set output sprintf('gnuplot_Zplt_S3D_trj%i.eps',it) replot; set terminal X11; unset output

Top row: spin coordinates versus turn; middle row: projection in the median plane (the segment between two consecutive circles materializes the location of the X-kick by SPINR); bottom row: projection on a sphere. $G\gamma = 1.793229$: far from an integer, \vec{S} remains within a reduced top angle cone. $G\gamma = 2$: the spin vector oscillates between up and down orientations, by 20 deg steps; it takes 180/20=9 orbits for the X-precession at SPINR to flip the spin; $G\gamma = 2.5$: the spin vector finds itself back in the (X,Z) at the location of SPINR, after one orbit and a half-integer number of precessions; it alternates between vertical and 20 deg from vertical, after each orbit around the cyclotron

• Spin tunes

Spin tunes are computed using "SPNPRT' MATRIX ". Tune is deduced from spin matrix trace, computation of the spin matrix requires the tracking of 3 rays with initial coordinates on the spin closed orbit and spins respectivele parallel to X, Y, Z axis.

OBJET[KOBJ=2] is used to create blocks of 3 rays with each block a different momentum. Spin matrix computation by "'SPNPRT' MATRIX " will take this into account and compute as many spin matrices.

The input data file is given below:

Cyclotron,	classical.	Synchronized	spin kick in a un	form field	
64.62444403	3717985		! Reference B	cho ("BORO" in the	users' quide) -> 200keV proton.
2					, ,
93					
12.924889	0. 0. 0. 0	. 1.	' o '		! Ggamma=1.793229 -> 0.200MeV;

12.924889 0. 0. 0. 0. ! Ggamma=1.793229 -> 0.200MeV; 1.
 12.92409
 0.
 0.
 1.
 o'

 12.92489
 0.
 0.
 0.
 1.
 o'

 309.47295
 0.
 0.
 0.
 23.943951797
 'i'

 309.47295
 0.
 0.
 0.
 23.943951797
 'i'
 ! Ggamma=1.793229 -> 0.200MeV; ! Ggamma=2 -> 108.411628MeV; ! Ggamma=2 -> 108.411628MeV; ! Ggamma=2 -> 108.411628MeV; ! Ggamma=2.5 -> 370.082556MeV. 309.47295 0.0.0.0.23.943951797 i' 608.30878 0.0.0.0.47.064911290 'h' 608.30878 0.0.0.0.47.064911290 'h' Ggamma=2.5 -> 370.082556MeV. 608.30878 0. 0. 0. 0. 47.064911290 'h' 1 1 1 1 1 1 1 1 1 1 1 ! For any ! Ggamma=2.5 -> 370.082556MeV. ! For any particle: set to 1 to enable ray-tracing, or to -9 to ignore. 'i' ! Ggamma=2 -> 108.411628MeV; ! 309.47295 0. 0. 0. 0. *** ! 608.30878 0. 0. 0. 0. *** ′h′ ! Ggamma=2.5 -> 370.082556MeV. 'PARTICUL' ! This is required for spin motion to be computed PROTON 'SPNTRK' ! All initial spins taken parallel to Z axis. 4 1. 0. 0. 1. 0. 0. 0.1.0. 0. 0. 1. 1. 0. 0. 0. 1. 0. 0. 0. 1. 'SPNPRT' PRINT ! Log spin coordinates in zgoubi.res; PRINT adds log in zgoubi.SPNPRT.Out. 'INCLUDE' ! Grabs lines form a file, here, the ! sequence of lines comprised between $\#S_60degSectorUnifB$ and $\#E_60degSectorUnifB$ MARKERS: 6* 60degSector.inc[#S_60degSectorUnifB:#E_60degSectorUnifB] ! a 60 degree sector, INCLUDEd 6 times. 'FAISCEAU' 'SPINR' ! Spin rotation, 0. 30. 1 about the X-axis, by 10 degree here. ! 'FIT' ! To be uncommented for use. 3 ! 3 variables. ! 1 30 0 .4 1 40 0 .4 ! 1 50 0 .4 ! 6 1e-15 ! 3.1 1 2 #End 0. 1. 0 ! 3.1 1 3 #End 0. 1. 0 ! 6 constraints; penalty, all apply at end of sequence, which is here. ! 3.1 2 2 #End 0. 1. 0 ! 3.1 2 3 #End 0. 1. 0 ! 3.1 3 2 #End 0. 1. 0 3.1 3 3 #End 0. 1. 0 'END' 'FAISCEAU' ! Log current coordinates in zgoubi.res execution listing. 'SPNPRT' MATRIX 'END'

Resulting spin matrices and tunes:

This data are extracted from zgoubi.res

	2	6 Keyword	l, label(s)	: SPNPRT	MATRI	Х						1	PASS= 1	
				3 GROU	PS OF MOM	ENTA FOLLO	v							
			Moment	um group	#1 (D= 1	.00000E+00)	; average	e over 3 p	particles at	t this pass	:			
			Spin comp	ponents of	each of	the 3	particles	, and ro	otation and	gle :				
			INITIAI					FINAL						
		SX	SY	SZ	S	SX	SY	SZ	S	GAMMA	Si,Sf (deg.)	(Z,Sf_yz)	(Z,Sf)	
										(Sf vz · r	rojection	of Sf on	YZ plane)	
0	1	1.000000	0.000000	0.000000	1.000000	0.268269	0.834281	0.481672	1.000000	1.0002	74.439	63.435	61.205	1
0	1	0.000000	1.000000	0.000000	1.000000	-0.963344	0.232327	0.134134	1.000000	1.0002	76.566	63.435	82.291	2
0	1	0.000000	0.000000	1.000000	1.000000	0.000000	-0.500000	0.866025	1.000000	1.0002	30.000	49.107	30.000	3
			Spin tra	ansfer matr	ix, momentu	m group # 1	:							
		0.2682	- 69	-0.963344	0.00	000								
		0.8342	81	0.232327	-0.500	000								
		0.4816	572	0.134134	0.866	025								
	D	eterminant	= 1		0									
	T	race =	1.36662	212399; s	pin precess	ion acos((t)	race-1)/2)	= 79.	4373462271	dea				
	Ρ	recession	axis : (0.3225, -0	.2450, 0.9	143) -> ar	ngle to (X,	Y) plane,	to X axis	: 66.1073	3, -37.2	194 deg		
	S	pin preces	sion/2pi	(or Qs, fra	ctional) :	2.2066E-0	01							
			Momont		#2 (D= 2	20420501011								
			Moment	.um group	#2 (D= 2		, average	over 3 p	Jarcicles at	c chiis pass	•			
			Spin comp	onents of	each of	the 3	particles	, and ro	tation and	gle :				
			-											

		SX	SY	SZ	S	SX	SY	SZ	S	GAMMA	Si,Sf (deg.)	(Z,Sf_yz) (deg.)	(Z,Sf) (deg.)	
i i	1 1 1	1.000000 0.000000 0.000000	0.000000 1.000000 0.000000	0.000000 0.000000 1.000000	1.000000 1.000000 1.000000	1.000000 -0.000000 0.000000	0.000000 0.866025 -0.500000	0.000000 0.500000 0.866025	1.000000 1.000000 1.000000	(Sf_yz : 1.1155 1.1155 1.1155 1.1155	projection 0.000 30.000 30.000	of Sf on 63.435 63.435 49.107	YZ plane) 90.000 60.000 30.000	4 5 6
			Spin tra	insfer matr	ix, momentu	m group # 2	:							
		1.000 2.8059 1.6199	00 - 02E-07 88E-07	-3.239976E- 0.866025 0.500000	07 0.00 -0.500 0.866	000 000 025								
	De Ti Pi Sp	eterminant race = recession pin preces	= 1 2.73205 axis : (sion/2pi (000000000 08076; s 1.0000, -0 or Qs, fra	0 pin precess .0000, 0.0 ctional) :	ion acos((t) 000) -> ar 8.3333E-0	race-1)/2) ngle to (X,)2	= 30. (Y) plane,	00000000000000000000000000000000000000	deg : 0.000	0, -0.0	000 deg		
			 Moment	aroup	#3 (D= 4	.706491E+01)	: average	e over 3 r	articles at	this pass				
			Spin comp	oponts of	orch of	tho 3	, and a	r	tation and	F				
			Spin comp	Jonenius of	each or	che 5	parcicles	s, and re	ocacion ang	jie :				
		SX	INITIAL SY	SZ	S	SX	SY	FINAL SZ	S	GAMMA	Si,Sf (deg.)	(Z,Sf_yz) (deg.)	(Z,Sf) (deg.)	
h h	1 1 1	1.000000 0.000000 0.000000	0.000000 1.000000 0.000000	0.000000 0.000000 1.000000	1.000000 1.000000 1.000000	-1.000000 0.000000 0.000000	-0.000000 -0.866025 -0.500000	-0.000000 -0.500000 0.866025	1.000000 1.000000 1.000000	(Sf_yz : 1.3944 1.3944 1.3944	projection -180.000 -150.000 30.000	of Sf on 116.565 116.565 49.107	YZ plane) 90.000 120.000 30.000	7 8 9
			Spin tra	insfer matr	ix, momentu	m group # 3	:							
		-1.000 -3.4318 -1.9813	00 65E-07 - 88E-07 -	3.962777E- 0.866025 0.500000	07 0.00 -0.500 0.866	000 000 025								
	De Ti Pi Sp	eterminant race = recession pin preces	= 1 -1.00000 axis : (sion/2pi (000000000 000000; s 0.0000, 0 or Qs, fra	0 pin precess .2588, -0.9 ctional) :	ion acos((t) 659) -> ar 5.0000E-(race-1)/2) ngle to (X,)1	= 179. Y) plane,	.9999780994 to X axis :	deg : -75.000	0, 90.0	000 deg		

5/ Spinor representation.

5.a/ The spin rotator causes a s-rotation of angle ϕ_s , it is thus represented by the matrix (with \vec{n}_s a unit vector along the s-axis)

$$T_{\rm spinR} = e^{\frac{i}{2}} \left(\vec{n}_s \cdot \vec{\sigma} \right) \phi_s = e^{\frac{i}{2}} \sigma_s \phi_s = I \cos \frac{\phi_s}{2} + i \sigma_s \sin \frac{\phi_s}{2} = \begin{pmatrix} \cos \frac{\phi_s}{2} & \sin \frac{\phi_s}{2} \\ -\sin \frac{\phi_s}{2} & \cos \frac{\phi_s}{2} \end{pmatrix}$$

which expectedly coincides with the s-axis spinor rotation matrix ("Spinor Methods" lecture, slide 10).

5.b/ The ring with ϕ_s torque is represented by the spinor matrix

$$T_{\rm ring} = e^{\frac{i}{2}} \left(\vec{n}_y \cdot \vec{\sigma} \right) G \gamma \, 2\pi \, e^{\frac{i}{2}} \left(\vec{n}_s \cdot \vec{\sigma} \right) \phi_s = \left(I \cos G \gamma \pi + i \sigma_y \sin G \gamma \pi \right) \left(I \cos \frac{\phi_s}{2} + i \sigma_s \sin \frac{\phi_s}{2} \right)$$

so, with (slide 5) $-\sigma_y \sigma_s = i \sigma_x$

$$T_{\rm ring} = I\cos G\gamma\pi \ \cos\frac{\phi_s}{2} + i\sigma_x\sin G\gamma\pi \ \sin\frac{\phi_s}{2} + i\sigma_s\sin\frac{\phi_s}{2} \ \cos G\gamma\pi + i\sigma_y \ \sin G\gamma\pi \ \cos\frac{\phi_s}{2}$$

Under explicit 2×2 matrix form: this is also simply the product of y-axis and s-axis spinor rotations, matrices in slide 10, so

$$T_{\rm ring} = \begin{pmatrix} e^{iG\gamma\pi} & 0\\ 0 & e^{-iG\gamma\pi} \end{pmatrix} \begin{pmatrix} \cos\frac{\phi_s}{2} & \sin\frac{\phi_s}{2}\\ -\sin\frac{\phi_s}{2} & \cos\frac{\phi_s}{2} \end{pmatrix}$$
$$T_{\rm ring} = \begin{pmatrix} e^{iG\gamma\pi}\cos\frac{\phi_s}{2} & e^{iG\gamma\pi}\sin\frac{\phi_s}{2}\\ -e^{-iG\gamma\pi}\sin\frac{\phi_s}{2} & e^{-iG\gamma\pi}\cos\frac{\phi_s}{2} \end{pmatrix}$$

The spin tune satisfies: $\cos \pi \nu_{sp} = \frac{1}{2} \text{Tr}(T_{ring}) = \cos G \gamma \pi \cos \frac{\phi_s}{2}$, so

$$\operatorname{frac}(\nu_{\rm sp}) = \pm \frac{1}{\pi} \operatorname{acos}\left(\cos G\gamma\pi \ \cos \frac{\phi_s}{2}\right)$$

Numerically:

case E=200 keV,
$$G\gamma = 1.793229$$
, $\phi_s = \frac{\pi}{6} \Rightarrow \operatorname{frac}(\nu_{sp}) = 0.220656294278834$
case E=370.0825 MeV, $G\gamma = 2$, $\phi_s = \frac{\pi}{6} \Rightarrow \operatorname{frac}(\nu_{sp}) = 0.08333$
case E=370.0825 MeV, $G\gamma = 2.5$, $\phi_s = \frac{\pi}{6} \Rightarrow \operatorname{frac}(\nu_{sp}) = 0.5$

all three examples in accord with tracking results, namely:

CASE G.gamma=1.793229:

Spin	transfer matrix,	momentum group	o # 1 :		
	0.268269	-0.963344	0.00000		
	0.834281	0.232327	-0.500000		
	0.481672	0.134134	0.866025		
_					

Trace = 1.3666212399, ; spin precession acos((trace-1)/2) = 79.4373462271 deg
Precession axis : (0.3225, -0.2450, 0.9143) -> angle to (X,Y) plane, angle to X axis : 66.1073, 70.5691 degree
>>>> Spin tune Qs (fractional) : 2.2066E-01
----CASE G.gamma=2
Spin transfer matrix, momentum group # 2 :

 1.00000
 -3.239976E-07
 0.00000

 2.805902E-07
 0.866025
 -0.500000

 1.619988E-07
 0.500000
 0.866025

Trace = 2.7320508076, ; spin precession acos((trace-1)/2) = 30.000000000 deg Precession axis : (1.0000, -0.0000, 0.0000) -> angle to (X,Y) plane, angle to X axis : 0.0000, 0.0000 degree\

>>>> Spin tune Qs (fractional) : 8.3333E-02

CASE G.gamma=2.5:

The periodic spin vector can be obtained by taking the t_i components from the form (slide 7) $T_{\text{ring}} = t_0 I + i\sigma_x t_x + i\sigma_y t_y + i\sigma_z t_z$, namely (slide 15)

$$\vec{n}_{\pm} = \begin{pmatrix} \pm \frac{t_{x,1-\text{turn}}}{\sqrt{1-t_{0,1-\text{turn}}^2}} \\ \pm \frac{t_{y,1-\text{turn}}}{\sqrt{1-t_{0,1-\text{turn}}^2}} \\ \pm \frac{t_{z,1-\text{turn}}}{\sqrt{1-t_{0,1-\text{turn}}^2}} \end{pmatrix}$$

Thus $T_{\rm ring}$ as obtained above yields

$$t_0 = \cos G\gamma\pi \ \cos \frac{\phi_s}{2} \quad \rightarrow \quad \sqrt{1 - t_{0,1-\text{turn}}^2} = \sin \pi\nu_{sp}$$

and

$$t_x = \sin G\gamma\pi \ \sin \frac{\phi_s}{2}, \ t_y = \sin \frac{\phi_s}{2} \ \cos G\gamma\pi, \ t_z = \sin G\gamma\pi \ \cos \frac{\phi_s}{2}$$

so that

$$\vec{n}_{\pm} = \pm \left(\begin{array}{c} \sin G\gamma\pi \ \sin \frac{\phi_s}{2} / \sin \pi\nu_{\rm sp} \\ \cos G\gamma\pi \ \sin \frac{\phi_s}{2} / \sin \pi\nu_{\rm sp} \\ \sin G\gamma\pi \ \cos \frac{\phi_s}{2} / \sin \pi\nu_{\rm sp} \end{array} \right).$$

Numerically (*** problem with sign of n_y , to be checked),

case E=200 keV, ,
$$\vec{n}_{\pm} = \pm \begin{pmatrix} 0.3225386 \\ -0.2449867 \\ -0.91430318 \end{pmatrix}$$

case E=108.4116 MeV, , $\vec{n}_{\pm} = \pm \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$
case E=370.0825 MeV, , $\vec{n}_{\pm} = \pm \begin{pmatrix} 0 \\ 0.258819 \\ 0.96592 \end{pmatrix}$

in accord with tracking results, see above (*** problem with sign of n_y , to be checked).