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14.2 Numerical Simulations: Solutions

This Section details the solutions of the simulation exercises proposed in Sec. 14.1.

Understanding these simulations requires having the code manual at hand, ready

to consult, Zgoubi Users’ Guide [1] in the present case, or whatever other code the

reader my be willing to use otherwise.

In order to reproduce these numerical simulations, the code executable is required.

Zgoubi package can be downloaded from its repository in sourceforge:

https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/

A README file therein explains how the source code compiles to generate the

executable, zgoubi. Running an optical sequence (say, Booster_Twiss.dat) is then

just a matter of executing such command as

[pathTo]/zgoubi -in Booster_Twiss.dat

and results are listed, a minima, in zgoubi.res file, by default.

All necessary optical sequences for the simulation exercises have been provided

as part of the assignments in Sec. 14.1, however most of the simulation material fur-

ther discussed and used here (input data files, gnuplot scripts, etc.) is also available

in the sourceforge repository, at

https://sourceforge.net/p/zgoubi/code/HEAD/tree/trunk/exemples/uspasSpinClass_2021/

Brief additional introductory guidance to using the code can be found in the Ap-

pendix, page 372.

14.2.1 Polarized Helion in AGS Booster

14.2.1.1 AGS Booster Parameters

Tab. 14.2 has been completed, yielding Tab. 14.37. Some derivations are detailed

hereafter.

With M = 2808.39 MeV, |G | = 4.18415, and dE/dN = qV̂ sin(φs) =

0.4 MeV/turn (q=2, V̂ = 0.4 MV, φs = 30 deg), the crossing speed comes out to

be
dGγ

dθ
=

1

2π

G

M

dE

dN
= −9.4848 × 10−5.

The following excerpt from the ’print’ file generated by a MAD8 computation

of the Booster optical functions is aimed at allowing a comparison with Zgoubi
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Table 14.37 AGS Booster parameters, table completed

Injection β 0.0655

Injection energy, kin. MeV/u 2.0146

Injection Gγ -4.19316

Injection Bρ T m 0.30745

Extraction energy, kin. GeV/u 1.413059

Extraction Gγ -10.5

Extraction Bρ T m 10.780516

Lattice

Length m 201.78

Tunes, νx , νy 4.73, 4.82

Chromaticities, ξx , ξy -4.8, -5.2

Momentum compaction α 0.043998

Transition γ 4.7674

RF system

revolution frequency, frev MHz 0.09738 to 1.36362

RF harmonic 4

RF frequency MHz 0.38953 to 5.45449

Peak voltage kV 400

Synchronous phase deg 30

Spin

crossing speed dGγ/dθ −9.4848 × 10−5

Table 14.38 Beam parameters, a copy of Tab. 14.3, for a reference

normalized emittances, εx , εy (πµm) 2.5

longitudinal emittance eV s 0.50

momentum spread ±3 10−4

outcomes in the next question:
----------------------------------------------------------------------------------------------------------------------------------

Linear lattice functions. TWISS line: ASUPL6 range: #S/#E

Delta(p)/p: 0.000000 symm: F super: 1 page 20

----------------------------------------------------------------------------------------------------------------------------------

ELEMENT SEQUENCE I H O R I Z O N T A L I V E R T I C A L

pos. element occ. dist I betax alfax mux x(co) px(co) Dx Dpx I betay alfay muy y(co) py(co) Dy Dpy

no. name no. [m] I [m] [1] [2pi] [mm] [.001] [m] [1] I [m] [1] [2pi] [mm] [.001] [m] [1]

----------------------------------------------------------------------------------------------------------------------------------

end LA8 6 201.780 5.485 0.982 4.730 0.0000 0.000 0.739-0.104 9.704 -1.546 4.820 0.0000 0.000 0.000 0.000

end ASUPL 6 201.780 5.485 0.982 4.730 0.0000 0.000 0.739-0.104 9.704 -1.546 4.820 0.0000 0.000 0.000 0.000

end ASUPL6 1 201.780 5.485 0.982 4.730 0.0000 0.000 0.739-0.104 9.704 -1.546 4.820 0.0000 0.000 0.000 0.000

----------------------------------------------------------------------------------------------------------------------------------

total length = 201.780000 Qx = 4.730145 Qy = 4.820140

delta(s) = 0.000000 mm Qx’ = -7.313316 Qy’ = -2.883899

alfa = 0.439414E-01 betax(max) = 13.545393 betay(max) = 13.149980

gamma(tr) = 4.770492 Dx(max) = 2.909356 Dy(max) = 0.000000

Dx(r.m.s.) = 1.757448 Dy(r.m.s.) = 0.000000

xco(max) = 0.000000 yco(max) = 0.000000

xco(r.m.s.) = 0.000000 yco(r.m.s.) = 0.000000

----------------------------------------------------------------------------------------------------------------------------------

14.2.1.2 Cell and Lattice Optics

Questions 14.1.1.2.1-14.1.1.2.3 - Running superA.inc, due to the MATRIX com-

mand at the downstream end of the optical sequence, produces the first order trans-
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port matrix of the super cell, say Tcell, and the corresponding beam matrix, i.e. the

periodic optical functions at cell ends (using the relation Tcell = I cos µ + J sin µ).

These two matrices are found at the bottom of the computation listing, zgoubi.res.

Checking against the data in MAD8 ’print’ output file (Sec. 14.2.1.1) shows a

very good agreement.

Question 14.1.1.2.4 - Running superA.inc with a TWISS command instead, pro-
duces, on the one hand, the following lattice parameter computation outcomes (sim-
ilar to MATRIX outcomes), found down zgoubi.res listing (an excerpt):

******************************************************************************************************************************

112 Keyword, label(s) : TWISS IPASS= 4

*********************************************************

************** End of TWISS procedure **************

There has been 4 pass through the optical structure

Reference, before change of frame (particle # 1 - D-1,Y,T,Z,s,time) :

0.00000000E+00 -7.65859598E-13 2.62290190E-12 0.00000000E+00 0.00000000E+00 3.36300081E+03 3.68572492E-01

Frame for MATRIX calculation moved by :

XC = 0.000 cm , YC = -0.000 cm , A = 0.00000 deg ( = 0.000000 rad )

Reference, after change of frame (particle # 1 - D-1,Y,T,Z,s,time) :

0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 3.36300081E+03 3.68572492E-01

Reference particle (# 1), path length : 3363.0008 cm relative momentum : 1.00000

TRANSFER MATRIX ORDRE 1 (MKSA units)

-0.716001 -5.32491 0.00000 0.00000 0.00000 0.716859

0.348220 1.19307 0.00000 0.00000 0.00000 -0.238490

0.00000 0.00000 1.78816 -9.15235 0.00000 0.00000

0.00000 0.00000 0.330121 -1.13043 0.00000 0.00000

-7.886126E-02 0.414707 0.00000 0.00000 1.00000 1.58173

0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

DetY-1 = -0.0000004260, DetZ-1 = -0.0000004317

R12=0 at 4.463 m, R34=0 at -8.096 m

First order symplectic conditions (expected values = 0) :

-4.2604E-07 -4.3171E-07 0.000 0.000 0.000 0.000

TWISS parameters, periodicity of 1 is assumed

- COUPLED -

Beam matrix (beta/-alpha/-alpha/gamma) and periodic dispersion (MKSA units)

5.483186 -0.982907 0.000000 0.000000 0.000000 0.742996

-0.982907 0.358570 0.000000 0.000000 0.000000 -0.104814

0.000000 0.000000 9.691428 1.545246 0.000000 -0.000000

0.000000 0.000000 1.545246 0.349565 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Betatron tunes (Q1 Q2 modes)

NU_Y = 0.78833338 NU_Z = 0.80333330

Momentum compaction :

dL/L / dp/p = 4.39982231E-02

Transition gamma = 4.76740921E+00

Chromaticities :

dNu_y / dp/p = -0.80312438 dNu_z / dp/p = -0.86404335

*******************************************************************************************************************************

The TWISS command causes in addition the transport of the periodic optical func-

tions throughout the sequence, logged in zgoubi.TWISS.out. These optical functions

are displayed in Fig. 14.5.

Note: to produce this set of outputs, the TWISS command performs 4 consecutive

passes through the optical sequence, see Users’ Guide for details.

14.2.1.3 Spin Optics

The rigidity specified in the provided input data files and used in the previous question

(superA.inc, etc.) is 1 T m. However, proper spin motion requires proper Gγ value!

Thus, the rigidity in this exercise has to be changed to the injection value, namely

(Tab 14.37),
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Fig. 14.5 Left: Booster super cell optical functions, from a TWISS computation. Right: it is not a

bad idea to check what the horizontal and vertical orbits are, zero as expected in the present case

Bρ = 0.30745 T m

Question 14.1.1.3.1 - The spin motion of a helion is tracked along Booster for the case

of an ideal ring (six superA cells, planar, no defects) using the input data file given

in Tab. 14.7. One particle is taken on-momentum, the other two at δp/p = ±10−4

and launched on their respective chromatic closed orbits, given the dispersion and

its derivative (Sec. 14.2.1.2)

ηx = 0.743 m, η′x = −0.1048 rad

Tracking shows that the spin precession direction is vertical around the ring, for

both on- and off-momentum particles (Fig. 14.6). This is what’s expected as the

Fig. 14.6 Spins of 3 ions,

respectively on- and ±10−4

off-momentum, along their re-

spective closed orbits around

Booster. The vertical compo-

nent SZ is constant all along,

thus the precession direction

is vertical. SX and SY are

circling around the Z axis, in

the bend plane
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chromatic closed orbits also lie in the median plane: the field is everywhere vertical

along a chromatic closed orbit as well, particles do not experience any horizontal

field component, no field may kick spins away from vertical.
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Questions 14.1.1.3.2, 14.1.1.3.3 - Tracking the spin closed orbit over a turn for

particles at dp/p = 0 and dp/p = ±10−4 off-momentum, yields spin motions

displayed in Fig. 14.6.
Adding SPNPRT[MATRIX] allows for producing the spin matrices, however that

also requires changing OBJET and SPNTRK data in Tab. 14.7, so to create 3 groups
(as many as there are different momenta) of 3 particles each, as follows:

’OBJET’

0.3074552E3 ! Reference rigidity/kG.cm, for 3He++, at injection beta value 0.0655.

2 ! An option to define initial particle coordinates, one by one; here, 3 different

9 3 ! momenta, 9 particles; this is ordered to allow spin matrix computation by SPNPRT.

7.43281000E-03 -1.04862116E-02 0. 0. 0. 1.0001 ’p’ ! Group 1. Orbit coordinates for a

7.43281000E-03 -1.04862116E-02 0. 0. 0. 1.0001 ’p’ ! momentum offset of D=+1e-4.

7.43281000E-03 -1.04862116E-02 0. 0. 0. 1.0001 ’p’

0. .0 0. 0. 0. 1. ’o’ ! Group 2. On-momentum 3-particle set.

0. .0 0. 0. 0. 1. ’o’

0. .0 0. 0. 0. 1. ’o’

-7.42569731E-03 1.04862063E-02 0. 0. 0. .9999 ’m’ ! Group 3.

-7.42569731E-03 1.04862063E-02 0. 0. 0. .9999 ’m’ ! Momentum offset of D=-1e-4.

-7.42569731E-03 1.04862063E-02 0. 0. 0. .9999 ’m’

1 1 1 1 1 1 1 1 1

’PARTICUL’ ! Defining the particle species is necessary, in order for the program to solve

HELION ! the T-BMT equation.

’SPNTRK’ ! The 9 initial spins are organized so to allow spin matrix

4 ! computation by SPNPRT, for each of the 3 different momenta concerned.

1. 0. 0. ! S_X, particle 1,

0. 1. 0. ! S_Y, particle 1,

0. 0. 1. ! S_Z, particle 1,

1. 0. 0. ! S_X/ particle 2,

0. 1. 0. ! etc.

0. 0. 1.

1. 0. 0.

0. 1. 0.

0. 0. 1.

This yields the following, including the spin transport matrix, fractional spin tune
and precession axis, for each of the 3 momenta (an excerpt):

***********************************************************************************************************************************

641 Keyword, label(s) : SPNPRT MATRIX IPASS= 1

-- 3 GROUPS OF MOMENTA FOLLOW --

--------------------------------------------------------------

Momentum group #1 ; average over 3 particles at this pass :

INITIAL FINAL

<SX> <SY> <SZ> <|S|> <SX> <SY> <SZ> <|S|> <G.gma> <(SI,SF)> sigma_(SI,SF)

(deg) (deg)

0.333333 0.333333 0.333333 0.577350 -0.195770 0.428831 0.333333 0.577350 -4.193160 46.358429 32.780359

Spin components of each of the 3 particles, and rotation angle :

INITIAL FINAL

SX SY SZ |S| SX SY SZ |S| GAMMA |Si,Sf| (Z,Sf_yz) (Z,Sf)

(deg.) (deg.) (deg.)

(Sf_yz : projection of Sf on YZ plane)

p 1 1.000000 0.000000 0.000000 1.000000 0.349592 0.936902 0.000000 1.000000 1.0022 69.538 90.000 90.000 1

p 1 0.000000 1.000000 0.000000 1.000000 -0.936902 0.349592 0.000000 1.000000 1.0022 69.538 90.000 90.000 2

p 1 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000 1.000000 1.000000 1.0022 0.000 45.000 0.000 3

Min/Max components of each of the 3 particles :

SX_mi SX_ma SY_mi SY_ma SZ_mi SZ_ma |S|_mi |S|_ma p/p_0 GAMMA I IEX

3.4959E-01 3.4959E-01 9.3690E-01 9.3690E-01 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.00010E+00 1.00215E+00 1 1

-9.3690E-01 -9.3690E-01 3.4959E-01 3.4959E-01 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.00010E+00 1.00215E+00 2 1

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.00010E+00 1.00215E+00 3 1

Spin transfer matrix, momentum group # 1 :

0.349592 -0.936902 0.00000

0.936902 0.349592 0.00000

0.00000 0.00000 1.00000

Trace = 1.6991838357, ; spin precession acos((trace-1)/2) = 69.5376429739 deg

Precession axis : ( 0.0000, 0.0000, 1.0000) -> angle to (X,Y) plane, angle to X axis : 90.0000, 90.0000 degree

Spin tune Qs (fractional) : 1.9316E-01

--------------------------------------------------------------

Momentum group #2 ; average over 3 particles at this pass :

INITIAL FINAL

<SX> <SY> <SZ> <|S|> <SX> <SY> <SZ> <|S|> <G.gma> <(SI,SF)> sigma_(SI,SF)

(deg) (deg)

0.333333 0.333333 0.333333 0.577350 -0.195765 0.428834 0.333333 0.577350 -4.193158 46.357996 32.780053

Spin components of each of the 3 particles, and rotation angle :



14.2 Numerical Simulations: Solutions 329

INITIAL FINAL

SX SY SZ |S| SX SY SZ |S| GAMMA |Si,Sf| (Z,Sf_yz) (Z,Sf)

(deg.) (deg.) (deg.)

(Sf_yz : projection of Sf on YZ plane)

o 1 1.000000 0.000000 0.000000 1.000000 0.349603 0.936898 0.000000 1.000000 1.0022 69.537 90.000 90.000 4

o 1 0.000000 1.000000 0.000000 1.000000 -0.936898 0.349603 0.000000 1.000000 1.0022 69.537 90.000 90.000 5

o 1 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000 1.000000 1.000000 1.0022 0.000 45.000 0.000 6

Min/Max components of each of the 3 particles :

SX_mi SX_ma SY_mi SY_ma SZ_mi SZ_ma |S|_mi |S|_ma p/p_0 GAMMA I IEX

3.4960E-01 3.4960E-01 9.3690E-01 9.3690E-01 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.00000E+00 1.00215E+00 4 1

-9.3690E-01 -9.3690E-01 3.4960E-01 3.4960E-01 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.00000E+00 1.00215E+00 5 1

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.00000E+00 1.00215E+00 6 1

Spin transfer matrix, momentum group # 2 :

0.349603 -0.936898 0.00000

0.936898 0.349603 0.00000

0.00000 0.00000 1.00000

Trace = 1.6992050586, ; spin precession acos((trace-1)/2) = 69.5369940370 deg

Precession axis : ( 0.0000, 0.0000, 1.0000) -> angle to (X,Y) plane, angle to X axis : 90.0000, 90.0000 degree

Spin tune Qs (fractional) : 1.9316E-01

--------------------------------------------------------------

Momentum group #3 ; average over 3 particles at this pass :

INITIAL FINAL

<SX> <SY> <SZ> <|S|> <SX> <SY> <SZ> <|S|> <G.gma> <(SI,SF)> sigma_(SI,SF)

(deg) (deg)

0.333333 0.333333 0.333333 0.577350 -0.195760 0.428836 0.333333 0.577350 -4.193157 46.357564 32.779748

Spin components of each of the 3 particles, and rotation angle :

INITIAL FINAL

SX SY SZ |S| SX SY SZ |S| GAMMA |Si,Sf| (Z,Sf_yz) (Z,Sf)

(deg.) (deg.) (deg.)

(Sf_yz : projection of Sf on YZ plane)

m 1 1.000000 0.000000 0.000000 1.000000 0.349613 0.936894 0.000000 1.000000 1.0022 69.536 90.000 90.000 7

m 1 0.000000 1.000000 0.000000 1.000000 -0.936894 0.349613 0.000000 1.000000 1.0022 69.536 90.000 90.000 8

m 1 0.000000 0.000000 1.000000 1.000000 0.000000 0.000000 1.000000 1.000000 1.0022 0.000 45.000 0.000 9

Min/Max components of each of the 3 particles :

SX_mi SX_ma SY_mi SY_ma SZ_mi SZ_ma |S|_mi |S|_ma p/p_0 GAMMA I IEX

3.4961E-01 3.4961E-01 9.3689E-01 9.3689E-01 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 9.99900E-01 1.00215E+00 7 1

-9.3689E-01 -9.3689E-01 3.4961E-01 3.4961E-01 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 9.99900E-01 1.00215E+00 8 1

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 9.99900E-01 1.00215E+00 9 1

Spin transfer matrix, momentum group # 3 :

0.349613 -0.936894 0.00000

0.936894 0.349613 0.00000

0.00000 0.00000 1.00000

Trace = 1.6992262279, ; spin precession acos((trace-1)/2) = 69.5363467325 deg

Precession axis : ( 0.0000, 0.0000, 1.0000) -> angle to (X,Y) plane, angle to X axis : 90.0000, 90.0000 degree

Spin tune Qs (fractional) : 1.9316E-01

************************************************************************************************************************************

This simulation confirms the answer to Question 14.1.1.3.1.

The value of the spin precession angle is θsp = Gγα modulo 360 degrees. The
on-momentum value of Gγα can be found under PARTICUL in zgoubi.res (an
excerpt):

******************************************************************************************************************************

2 Keyword, label(s) : PARTICUL IPASS= 1

Particle properties :

HELION

Mass = 2808.39 MeV/c2

Charge = 3.204353E-19 C

G factor = -4.18415

COM life-time = 1.000000E+99 s

Reference data :

mag. rigidity (kG.cm) : 307.45520 =p/q, such that dev.=B*L/rigidity

mass (MeV/c2) : 2808.3916

momentum (MeV/c) : 184.34550

energy, total (MeV) : 2814.4354

energy, kinetic (MeV) : 6.0438039

beta = v/c : 6.5499993689E-02

gamma : 1.002152052

beta*gamma : 6.5640953062E-02

G*gamma : -4.193158315

electric rigidity (MeV) : 24.14925821 =T[eV]*(gamma+1)/gamma, such that dev.=E*L/rigidity

******************************************************************************************************************************

which yields a theoretical spin rotation of

|Gγ | × 360◦ = 4.193158315 × 360◦ = 69.5369934 [360◦]
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(the on-momentum “group 2” above indicates 69.5369940370 deg) or equivalently

a fractional spin tune value of

νsp = 4.193158315/360 = 0.193158315

also in accord with the on-momentum “group 2” above which indicates 1.9316E-01.

From theory (after Eq. 3.11, transposed to 3D space)

frac(νsp) =
1

2π
acos

Trace(spin matrix) − 1

2

whereas the spin matrix from tracking says (momentum “group 2” above)

Trace [spin matrix] = 1.6992050586

in accord with the previous spin tune value νsp = 0.193158.

Off-momentum (groups 1 and 3):

γ needs to be corrected for the dp/p = ±10−4 particles. The corresponding

numerical results can be found under “group 1” and “group 3” above, respectively,

and can be checked to agree with the theory.

14.2.1.4 Depolarizing Resonances

Question 14.1.1.4.1 - Locations (Gγ values) of the depolarizing resonances in the

range

−10.5 ≤ Gγ ≤ −4.19316

have been added to Tab. 14.8, yielding Tab. 14.39 (integer/imperfection resonances

of the form Gγ = integer), and to Tab. 14.9, yielding Tab. 14.40 (systematic intrinsic

resonances of the form Gγ = 6 × integer ± Qy).

Question 14.1.1.4.2 - Figure 14.7 illustrates intrinsic resonance crossings with two

graphs of Sy(Gγ), as follows:

- a few particles are taken evenly distributed on the same vertical invariant εy; εx
value does not matter, it is taken null here, as horizontal motion results in this perfect

ring in only vertical perturbing field components - in quadrupoles - and these do not

depolarize;

- they are tracked from injection Gγ = −4.19316 (Tab. 14.37) to Gγ = −16, so

crossing in particular the four strong resonances Gγ ± νy = 6n, |n| = 0 − 3. Two

different cases of the vertical invariant values are tracked: εy = 2.5 πµm and 10

times less.
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Table 14.39 Imperfection resonances, location and strengths. Strengths are normalized to the rms

closed orbit value, yco, rms (the closed orbit is shown in Fig. 14.10). The “theory” column is filled-out

using the thin lens model series

Gγ |ǫn |/yco, rms

(Q. 14.1.1.4)

theory tracking

(Q. 14.1.1.5) station. crossing

-5 14.8696 13.8520 13.5490

-6 1.1779 1.0839 1.1917

-7 12.5802 11.5867 11.6697

-8 3.0465 2.9006 2.8585

-9 0.2637 0.2196 0.2373

-10 2.5296 2.7105 2.6408

Table 14.40 Systematic intrinsic resonances (M=6 super-periods, νy = 4.82), location and

strengths. The latter are normalized to
√
εy/π, with εy/π being the particle invariant value.

The “theory” column is filled-out using the thin lens model series. The “station.” (stationary) col-

umn is filled-out using |ǫn | ≡ ω(δn = 0), Question 14.1.1.6. Fill-out of the “crossing” column is

addressed in Question 14.1.1.8 and Tab. 14.44

kM ± νy Gγ |ǫn |/
√
εy/π

(Q. 14.1.1.4)

theory tracking

(Q. 14.1.1.6) station. crossing

0 − νy -4.82 3.3989 3.63 5.2

−12 + νy -7.18 3.1523 3.18 4.0

−6 − νy -10.82 7.9235 8.52 9.13

−18 + νy -13.18 11.072 11.8 12.5
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Fig. 14.7 Evolution of the vertical spin component of a few particles launched on the same

invariant, with different initial betatron phases. The dark red curve is the average over 23 particles.

Left: εy = 2.5 πµm; right: εy = 0.25 πµm.

Figure 14.7 is obtained with the following combined awk (left hand side) [11] and

gnuplot (right) scripts:

! Average over particles of SZ values read in zgoubi.fai

function analyze(x, data){

n = 0;mean = 0; val_min = 0;val_max = 0;

NBturns = 20000;

Gg1 =4.193158; Gg2 =16; dGg = (Gg2-Gg1)/(NBturns-1);

for(val in data){

n += 1;

delta = val - mean;

mean += delta/n;

val_min = (n == 1)?val:((val < val_min)?val:val_min);

val_max = (n == 1)?val:((val > val_max)?val:val_max);

}

if(n > 0){

print x, mean, val_min, val_max;

}

}

{

curr = $38*dGg + Gg1; yval = $(col_num);

if(NR==1 || prev != curr){

analyze(prev, data);

delete data;

prev = curr;

}

data[yval] = 1;

}

END{

analyze(curr, data);

}

set title "SZ(turn) and <SZ(turn)>_particles"

nbtrj=100; evryNtrj = 5; evryNpass=9

NBturns = 20000

Gg1 =4.193158 ; Gg2 =16 ; dGg = (Gg2-Gg1)/(NBturns-1)

set xlab "turns"; set ylab "Average S_y over particles"

unset colorbox

fName = ’zgoubi.fai’

plotCmd(col_num)=sprintf(’< gawk -f analyze.awk -v col_num=%d %s’, col_num, fName)

set format y ’%0.2f’

set xr [:20e3]; set xr [Gg1:Gg2]; set yr [-1.01:1.01]

plot for [it=1:nbtrj:evryNtrj] "zgoubi.fai" \

u ($26==it && evryNpass*int($38/evryNpass)==$38? $38*dGg + Gg1 :1/0):($22):($26) \

w p pt 7 ps .1 lc palette notit ,\

plotCmd(22) u 1:2 w p pt 5 ps .4 lc rgb ’dark-red’ t ’<S_y>’
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Fig. 14.8 A sensible question

at this point is whether these

results converge. The present

figure is obtained using 200

particles. Comparison with

the 23 trajectory case of

Fig. 14.7 does not show

much difference. The final

polarizations is very similar,

the problem converges
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• gnuplot script to obtain Fig. 14.9 from
zgoubi.plt output file data:

set title "Plotted from file zgoubi.plt"

set key maxrow 1; set key b l

set xtics; set ytics

set xlabel ’s [m]’; set ylabel ’B_Y [T]’

cm2m = 0.01 ; kG2T= 0.1

set xrange []

nbtrj = 5

plot for [i=1:nbtrj:2] \

’zgoubi.plt’ u ($19== i ? $14 *cm2m : 1/0): \

($24 *kG2T):($19) w p pt i+4 ps .9 lc i tit ’prtcl ’.i
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Plotted from file zgoubi.plt

prtcl 1 prtcl 3 prtcl 5

Fig. 14.9 Fields experienced in vertical

quadrupoles during vertical betatron motion: 3

different particles are displayed here, over 3 turns

around the ring. They are taken on the same in-

variant but with different initial betatron phases

When comparing these two graphs, essentially two things are observed: the spin

kick across a resonance and the spin kick spread are smaller, when the invariant is

smaller:

(i) a smaller invariant means smaller values of the perturbing Bx = Gy radial

field components in quadrupoles, hence smaller spin kicks;

(ii) spreading of betatron motion around the ring results from the spreading of the

initial betatron phase of the particles for a given invariant. Smaller invariant value

results in a smaller span of the field values experienced by the different particles in

the vertical quadrupoles.

For the record: the resonance strength is ∝
√
εy/π (Eq. 2.35).

Question 14.1.1.4.3 - A graph showing the span in magnetic field strengths experi-

enced in the vertical quadrupoles by the 3 orbiting particles with the same invariant

value, as an effect of their different initial betatron phases, is given in Fig. 14.9.

The three vastly different torque series experienced by these particles’ spins result

in largely different spin states upon crossing the resonances (Fig. 14.7).

14.2.1.5 Imperfection Resonance Strengths
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An excerpt of the input data file used is given in Tab. 14.41. It shows in particular

- sample vertical quadrupole misalignments accounted for by means of KPOS=5,

which stick to Tab. 14.10 random vertical offset data;

- the use of FIT, preceding TWISS, which allows accounting for the non-zero

vertical closed orbit excited by the quadrupole misalignments given in Tab. 14.10.

The vertical closed orbit so obtained in shown in Fig. 14.10.

The resonance strengths to be computed here, as a function of energy, all assume

that very closed orbit (and obviously, the same optical functions).

Table 14.41 Head, intermediate quadrupoles, and tail of the Booster sequence, including vertical

quadrupole misalignments, as well as a FIT-TWISS sequence which computes vertical orbit and op-

tical functions (logged in zgoubi.TWISS.out), accounting for non-zero closed orbit (FIT first finds

the orbit, prior to passing on to TWISS). The reference rigidity for this zgoubi.TWISS.out compu-

tation is arbitrary as the vertical orbit (and optical functions obviously) are maintained unchanged

regardless of Gγ in these exercises (the fields are ramped to follow the value of the reference

rigidity OBJET[BORO]). The final SYSTEM command causes execution of an external file, which

plots the closed orbits and optical functions, reading the latter data from zgoubi.TWISS.out

Booster ring, complete, with vertical orbit.

’OBJET’

3.0428810404e+03

5

.001 .01 .001 .01 .001 .0001

0. 0. 0.84273180 1.5602297 0. 1. ’ ’

’PARTICUL’

HELION

’SCALING’

1 3

BEND

-1

3.04288104

1

MULTIPOL QH* ! QH family is set for Qx=4.73 & Qy=4.82 tunes.

-1

3.30602909

1

MULTIPOL QV* ! QV family is set for Qx=4.73 & Qy=4.82 tunes.

-1

3.24298881

1

’MARKER’ LA1S

’DRIFT’ DRIF L057

57.0400

................................................

’MULTIPOL’ QVA1 QUAD

0 .Quad

0.493916E+02 10.0000 0. -0.5472896982 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2. ! cm MultQVA1

5 0.0 0.0 0.67238500 0 0 0

................................................

’MULTIPOL’ QHA2 QUAD

0 .Quad

0.485016E+02 10.0000 0. 0.5256342158 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2. ! cm MultQHA2

5 0.0 0.0 0.73457500 0 0 0

................................................

’MULTIPOL’ QHF8 QUAD

0 .Quad

0.485016E+02 10. 0. 0.5256342158 0. 0. 0. 0. 0. 0. 0. 0.

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 6.00 3.00 1.00 0.00 0.00 0.00 0.00 0. 0. 0. 0.

6 .1122 6.2671 -1.4982 3.5882 -2.1209 1.723

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

2. ! cm MultQHF8

5 0.0 0.0 0.38532700 0 0 0

’DRIFT’ DRIF L031

29.9367

’BEND’ DHF8T SBEN

0 .Bend

1.2096161E+02 0. 7.2121043E-01

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

1.0000E+00 cm Bend

3 0. 0. 0.

’BEND’ DHF8Z SBEN

0 .Bend

1.2096161E+02 0. 7.2121043E-01

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

1.0000E+00 cm Bend

3 0. 0. 0.

’MARKER’ LA2E

’FIT’

2 ! 2 variables, as follows.

1 32 0 [-1.,1.] ! Allow +/-1cm variation of Z_0.

1 33 0 [-10.,10.] ! Allow +/-10mrad variation of P_0.

2 1e-10 ! 2 constraints; requested penalty is 1e-10.

3.1 1 4 #End 0. 1. 0 ! Request final posit. Z=initial Z_0.

3.1 1 5 #End 0. 1. 0 ! Request final angle P=initial P_0.

’TWISS’

2 1. 1.

’FAISCEAU’ ! Allows quick check of initial=final Z, P.

’SYSTEM’ ! Plot closed orbits and optical functions.

1

gnuplot < ./gnuplot_TWISS.gnu

’END’

Resonance strength calculation uses (Eq. 2.29)



334 14 Spin Dynamics Tutorial: Numerical Simulations K. Hock, F. Méot, V. Morozov

Fig. 14.10 Vertical closed

orbit excited by the quadrupole

misalignments of Tab. 14.10
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x y

{
Re(ǫ

imp
n )

Im(ǫ
imp
n )

}
=

1 + Gγ

2π

∑
Qpoles

{
cos Gγαi
sin Gγαi

}
(KL)i yco(θi)

which can be evaluated numerically. In this formula, the following data are read from

zgoubi.TWISS.out at the locations of the quadrupoles (i index):

- θi: orbital angle, from the origin of the sequence,

- αi: cumulative orbit deviation, from the origin of the sequence,

- (KL)i: integrated quadrupole strength,

- yco, i: orbit excursion.

These quantities do not depend on Gγ (magnet fields are ramped to follow the value

of the reference rigidity OBJET[BORO]).

Table 14.8 has been updated with the imperfection resonance strengths obtained

this way yielding the “theory” column of Tab. 14.39.

14.2.1.6 Intrinsic Resonance Strengths

The optical functions and periodic vertical orbit are needed here, which means use

of the output file zgoubi.TWISS.out. This file is produced using the input data file

of the complete ring, equipped with a TWISS command, as in Sec. 14.2.1.2.

Resonance strength is obtained by summing the series (Eq. 2.35)

{
Re(ǫ intr

n
±
)

Im(ǫ intr
n

±
)

}
=

1 + Gγ

4π

∑
Qpoles

{
cos(Gγαi ± ϕi)

sin(Gγαi ± ϕi)

}
(KL)i

√
βy,i
εy

π

which can be calculated numerically. In this formula, the following data are read

from zgoubi.TWISS.out at the locations of the quadrupoles (i index):

- θi: orbital angle, from the origin of the sequence,

- αi: cumulative orbit deviation, from the origin of the sequence,

- (KL)i: integrated quadrupole strength,

- ϕi: betatron phase advance,
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- βi: betatron function,

- εy/π: invariant value.

These quantities do not depend on Gγ (magnet fields are ramped to follow the value

of the reference rigidity OBJET[BORO]).
For a reference, the upper and lower parts of zgoubi.TWISS.out data file (as

produced by the TWISS command), showing the optical function values along the
sequence needed to compute the series above are as follows (excerpts):

@ LENGTH %le 33.63000810

@ ALFA %le 0.5271462897E-01

@ ORBIT5 %le -0

@ GAMMATR %le 4.355463945

@ Q1 %le 0.7299999804 [fractional]

@ Q2 %le 0.8199999584 [fractional]

@ DQ1 %le -0.7429052400

@ DQ2 %le -0.8355856969

@ DXMAX %le 3.01663095E+00 @ DXMIN %le 9.49130311E-01

@ DYMAX %le 0.00000000E+00 @ DYMIN %le 0.00000000E+00

@ XCOMAX %le 0.00000000E+00 @ XCOMIN %le -5.12842866E-14

@ YCOMAX %le 0.00000000E+00 @ YCOMIN %le 0.00000000E+00

@ BETXMAX %le 1.41491375E+01 @ BETXMIN %le 4.22123922E+00

@ BETYMAX %le 1.27947203E+01 @ BETYMIN %le 3.81920290E+00

@ XCORMS %le 1.50372304E-14

@ YCORMS %le 0. not computed

@ DXRMS %le 5.94727589E-01

@ DYRMS %le 0.00000000E+00

@ DELTAP %le 0.00000000E+00

@ |C| %le 0.000000000

@ Q1* %le 0.000000000

@ Q2* %le 0.000000000

@ TITLE %12s "Zgoubi model"

@ ORIGIN %12s "twiss.f"

@ DATE %08s " "

@ TIME %08s " "

# From TWISS keyword

# alfx btx alfy bty alfl btl Dx etc.

# 1 2 3 4 5 6 7

1.0086402E+000 5.8955920E+000 -1.5005233E+000 9.4500882E+000 0.0000000E+000 0.0000000E+000 1.1034842E+000 etc.

1.0086402E+000 5.8955920E+000 -1.5005233E+000 9.4500882E+000 0.0000000E+000 0.0000000E+000 1.1034842E+000

1.0086402E+000 5.8955920E+000 -1.5005233E+000 9.4500882E+000 0.0000000E+000 0.0000000E+000 1.1034842E+000

8.1346059E-001 4.8562657E+000 -1.6967856E+000 1.1273833E+001 0.0000000E+000 0.0000000E+000 1.0186499E+000

8.1346025E-001 4.8562641E+000 -1.6967859E+000 1.1273837E+001 0.0000000E+000 0.0000000E+000 1.0186498E+000

7.8964451E-001 4.7446880E+000 -1.7207337E+000 1.1511696E+001 0.0000000E+000 0.0000000E+000 1.0082983E+000

.............................................

1.6898235E+000 1.2487484E+001 -6.6866811E-001 4.1920085E+000 0.0000000E+000 0.0000000E+000 1.6554672E+000 etc.

1.3706530E+000 8.7748783E+000 -1.0863704E+000 6.3156052E+000 0.0000000E+000 0.0000000E+000 1.3317807E+000

1.0098358E+000 5.8871527E+000 -1.5040727E+000 9.4500414E+000 0.0000000E+000 0.0000000E+000 1.1034842E+000

1.0098358E+000 5.8871527E+000 -1.5040727E+000 9.4500414E+000 0.0000000E+000 0.0000000E+000 1.1034842E+000

1.0098358E+000 5.8871527E+000 -1.5040727E+000 9.4500414E+000 0.0000000E+000 0.0000000E+000 1.1034842E+000

1.0098358E+000 5.8871527E+000 -1.5040727E+000 9.4500414E+000 0.0000000E+000 0.0000000E+000 1.1034842E+000

A detailed description of zgoubi.TWISS.out data column format can be found in

the Users’ Guide, Section 8.4.

Table 14.9 has been updated with the intrinsic resonance strengths obtained here,

yielding the “theory” column of Tab. 14.40.

14.2.1.7 Spin Motion Through Imperfection Resonances

Input data files similar to those in the answer to Question 14.1.1.5 (Sec. 14.2.1.5 and

Tab. 14.41) are used here. They only differ by

- the reference rigidity (OBJET[BORO]) and, accordingly, field coefficients under

SCALING so to maintain unchanged orbit and optics,

- use of CAVITE for acceleration through the resonance, in the second question.
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An interface has been developed in python (an evolution, by the present co-

authors, of pyZgoubi [4]), which takes care of repeating the tracking at various

distances ∆Gγ = Gγ−Gγn from the resonance, in Question 14.1.1.8.1, or at various

resonant frequencies Gγn in Question 14.1.1.8.2 thus automating the procedure.

Question 14.1.1.8.1 - The following shows the head and tail of the tracking input
data file, in the stationary case, on the resonance Gγn = −6. Note the INCLUDE of
the SCALING segment [SCALING_S:SCALING_E] as defined in Tab. 14.7, with
the field coefficient updated to present BORO/1000 value, namely, 4.8139470584

Booster

’OBJET’

4.8139470584e+03 ! Rigidity at G.gamma=-6.

2

1 1

0. 0. 0.84273180 1.5602297 0. 1. ’ ’ ! Track a single 3He, launched on closed orbit.

1

’PARTICUL’

HELION

’SPNTRK’ ! Start with spin vertical.

3

’FAISTORE’

zgoubi.fai

1

! Scaling coefficients in scaling_Gg6.inc are updated to present BORO/1000 value.

’INCLUDE’

1

scaling_Gg6.inc[SCALING_S,*:SCALING_E,*]

’DRIFT’ DRIF L057

57.0400

...............

’BEND’ DHF8Z SBEN

0 .Bend

1.2096161E+02 0.0000000E+00 7.2121043E-01

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

1.0000E+00 cm Bend

3 0. 0. 0.

’MARKER’ LA2E ! Booster lattice ends here.

’REBELOTE’ ! 2000 turns are sufficient to see a complete S_y oscillaiton when on resonance,

1999 0.1 99 ! from what <S_y> is deduced - greater distance to resonance

! results in greater frequency.

’END’

Sample tracking results for Sy(θ) oscillation at various distances to the resonance,

are given in Fig. 14.11. The average value
〈
Sy

〉
is computed from these tracking

data.

The exercise is repeated for the different −10 ≤ Gγn ≤ −10 values, resulting

in Fig. 14.12 which shows
〈
Sy

〉
dependence on the distance to the resonance so

obtained, and fit to Eq. 2.49 〈
Sy

〉
=

δn√
ǫ2n + δ

2
n

(14.5)

The “stationary” column of Table 14.8 has been completed accordingly (Tab. 14.39).

Question 14.1.1.8.2 - A 400 keV/turn acceleration rate is taken for the crossing

(V̂ = 400 kV, synchronous phase 30 deg). The following shows the head and tail of
the tracking input data file in the case of Gγn = −6 crossing:

Booster

’OBJET’

3.77645661e+03 ! Initial rigidity is taken at Ggamma=-5.374744660,

2 ! upstream enough not to feel the resonance at G.gamma=-6.

1 1

0. 0. 0.84273180 1.5602297 0. 1. ’ ’ ! Track a single 3He, launched on closed orbit.

1

’PARTICUL’

HELION

’SPNTRK’ ! Start with spin vertical.
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Fig. 14.11 Spin oscilla-

tion Sy (turn) for different

distances to the resonance

Gγn = −6. A greater

distance δn results in a

higher oscillation frequency

ω =
√
|ǫn |2 + δ2

n (Sec. 3.5).

On the resonance, the preces-

sion axis lies in the median

plane, Sy oscillation covers

[−1, 1] and
〈
Sy

〉
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Fig. 14.12 Average value of the vertical spin component Sy , depending on the distance to the

resonance for the cases of three different resonances Gγn = −6, −8 and −10. The symbols are

from tracking, the solid curves are from the theory (Eq. 2.49).
〈
Sy

〉
= 0 corresponds to Sy

oscillating over [−1, 1], thus the precession axis lies in the median plane, Gγ is on resonance

3

’FAISTORE’

zgoubi.fai

1

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.

’INCLUDE’

1

scaling_Gg5.374.inc[SCALING_S,*:SCALING_E,*]

’MARKER’ LA1S ! Booster lattice starts here.

’DRIFT’ DRIF L057

57.0400

...............

’BEND’ DHF8Z SBEN

0 .Bend

1.2096161E+02 0.0000000E+00 7.2121043E-01

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

0.00 0.00 0.00000000

4 .2401 1.8639 -.5572 .3904 0. 0. 0.

1.0000E+00 cm Bend

3 0. 0. 0.

’MARKER’ LA2E ! Booster lattice ends here.

’CAVITE’

2

201.78 1.

4.e+05 0.5235987756 ! 400 kV acceleration peak voltage.

’REBELOTE’ ! 2000 turns are sufficient to cross the resonance, leaving from away enough

1999 0.1 99 ! ending on the asymtotic region.

’END’

The initial Gγ is taken at -5.374744660, upstream enough not to feel the resonance

at Gγn = −6.

Sample results for Sy(θ) during resonance crossing are given in Fig. 14.13, for

various Gγn = n values. The resonance strength are deduced from the respective

values of Pf /Pi , using (after Eq. 2.44)
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|ǫn | =

(
2α

π
ln

2

1 + Pf /Pi

)1/2

(14.6)

with α =
dGγ

dθ
= 9.484 × 10−5 being the resonance crossing speed.

This exercise is repeated for the different systematic resonances in −10 ≤ Gγn ≤

−10, resulting in Fig. 14.12, which shows several cases of
〈
Sy

〉
dependence on the

distances to the resonance so obtained, and fit to Eq. 2.49

〈
Sy

〉
=

δn√
ǫ2n + δ

2
n

(14.7)

Fig. 14.13 Evolution of the vertical spin component Sy during integer resonance crossing, for the

cases of Gγ = −6, −8 and −10

The “crossing” column of Tab. 14.8 has been completed accordingly (Tab. 14.39).
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14.2.1.8 Spin Motion Through Intrinsic Resonances

Questions 14.1.1.8.1, 2 - The systematic resonance at Gγn = 0 − νy = −4.82 is first

considered, Bρ = 2.67875735816 T m.

In the stationary case, the spin precession data are obtained by tracking a single

particle with a particular vertical invariant value (use OBJET[KOBJ=8]) for many

turns (use REBELOTE[NPASS=2000]) at a fixed energy.

The input data file is given in Tab. 14.42. It is similar to the input data file of

Tab. 14.7, apart from the few necessary changes: modification the setup under OBJET

(KOBJ=8 for a single particle with a certain invariant, on-momentum), SPNTRK, and

addition of REBELOTE for multi-turn tracking. Note that the SCALING command

and its data list, a segment defined in and included as a part of the input data

file in Tab. 14.7, have been saved in the scaling_GgXXX.inc file, which is subject

to an INCLUDE here. This is for the mere purpose of shortness. The values of

the scaling coefficients in scaling_GgXXX.inc have to be updated to the present

BORO value, for instance, in this case, from BORO/1000=0.3074552 (Tab. 14.7) to

BORO/1000=2.678757358169758 (Tab. 14.42).

Table 14.42 Input data file for a 2000-turn tracking of spin motion, at fixed energy in the vicinity

of the intrinsic resonance Gγn = 0 − νy = −4.82. Note that the SCALING command of Tab. 14.7

and its data list are subject to an INCLUDE (the scaling_GgXXX.inc file) for shortness

’OBJET’

2.6787573581697584e3

8

1 1 1

0. 0. 0. 0. 0. 1.

0.982907 5.483186 0.

-1.54525 9.69143 1.3196407949223E-07

0. 1. 0.

’PARTICUL’

HELION

’SPNTRK’

4.1

0. 0. 1.

’FAISCEAU’

’PICKUPS’

1

#Start

’FAISTORE’

zgoubi.fai

1

’MARKER’ #Start

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.

’INCLUDE’

1

scaling_Gg4.82.inc[SCALING_S,*:SCALING_E,*]

’INCLUDE’

1

6* superA.inc[superA_S,*:superA_E,*]

’REBELOTE’

2000 0.2 99

’END’

The turn-by-turn spin motion obtained this way is displayed in Fig. 14.14. The

slow oscillation in that graph is that of the vertical component Sy (SZ in Zgoubi
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Fig. 14.14 Turn-by-turn motion of the three

components of a spin, initially vertical. On-

resonance here, Gγ = Gγn = −νy , distance

to the resonance δn = 0. The slow oscillation

(the solid curve with a 754 turn period) is that

of the vertical component. The high frequency

horizontal components (the high frequency dots,

featuring theω = |ǫn | modulation) both average

to zero, since sπ precesses about n, which itself

precesses about the vertical axis

 10

 100

 1000

 10000

 100000

 1x10
6

 0.815  0.816  0.817  0.818  0.819  0.82  0.821  0.822  0.823  0.824  0.825

A
m

p
lit

u
d

e

Frac. Qs

Spin tune spectrum

Fig. 14.15 Fourier spectrum of the spin mo-

tion (horizontal components). The two peaks at

0.82 ± 0.00135 are the result of combining the

Gγn = 4.82 frequency of n precession about

the vertical axis and the
√
|ǫn |2 + δ2

n = |ǫn | =

0.00135 frequency of the spin precession about

n

notation). The oscillation frequency is ω =
√
|ǫn |2 + δ

2
n = |ǫn |. The amplitude

averages to zero (
〈
Sy

〉
= 0) in this case of being on resonance, since n is in the

horizontal plane, namely (Eq. 2.48)

δn = 0 thus |sπ |
2
=

1

1 +

(
δn

|ǫn |

)2
= 1 ⇒

〈
Sy

〉
=

√
1 − |sπ |2 = 0

The horizontal components Sx and Ss (SY and SX in Zgoubi notations) are also

displayed (fast oscillatory motion appearing as scattered dots). They oscillate at a

much greater frequency Gγn ≫ ω. They average to zero, since the eigenvector n

precesses about the vertical axis with a constant projected ny component independent

of the turn number. Figure 14.15 shows the Fourier spectrum of the motion. On-

resonance (δn = 0), the oscillation frequency (in units of revolution frequency) is

(see Sec. 3.5)

ω ≡

√
|ǫn |2 + δ

2
n

δn=0
= |ǫn | = 1/754 = 0.00133

Given that the period of the slow motion in Fig. 14.15 is about 754 turns, the

value of 0.00133 is in a good accord with the distance of the peaks in Fig. 14.15

to frac(Gγn) = 0.82. Two additional distances to the resonance, δn = |ǫn | and

δn = 2|ǫn |, are displayed in Fig. 14.16.

Stationary tracking can be repeated for the other three systematic intrinsic res-

onances. The “stationary” column of Table 14.9 has been completed accordingly

(Tab. 14.40).
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Fig. 14.16 Helion spin precession at Gγ = −νy
in the AGS Booster. Sy oscillates slowly (the

solid sine waves), frequency ω ≪ 1. Three dif-

ferent distances to the resonance are plotted:

δn = 0 (the slow wave with a ±1 amplitude),

δn = |ǫn | and δn = 2 |ǫn | (the fast wave with the

smallest amplitude). Sx and Ss exhibit fast oscil-

lations (dots) at a frequency Gγn = 4.82 ≫ ω

modulated by the frequency ω

Questions 14.1.1.8.3, 4 - A 100 keV/turn acceleration rate is taken for crossing

(V̂ = 100 kV, synchronous phase 30 deg). However, this is an arbitrary choice. The

resonance strength does not depend on the crossing speed, so V̂ is a free parameter.
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Fig. 14.17 Particle motion in the vertical phase

space over the 2000-turn acceleration range

(dots) in the case of |Gγn | = νy . The particle

invariant is damped, from an initial εy, i/π to a

final εy, f /π value. The solid ellipse is the rms

ellipse matched to the 2000-turn damped motion

0 500 1000 1500 2000 2500 3000 3500 4000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.
Zgoubi|Zpop                                                                     
21-05-2021                                                                            SZ   vs.  Pass#                                                                       

Resonance crossing at                  
   red:  0+Qy                                                                 
 green: 12-Qy                                                                 
  blue:  6+Qy                                                                 
 black: 18-Qy                                                                 

Fig. 14.18 Crossing of each of the four system-

atic resonances is displayed here. In each case,

three particles are tracked. They are launched

with 2π/3 (normalized) betatron phase spacing.

These three different curves essentially superim-

pose (they cannot be distinguished on this graph),

i.e., Pf is independent of the initialφy . The start-

ing Gγ value is 100× |ǫn | upstream of the reso-

nance. The particle invariant is chosen to ensure

Pf /Pi ≈ 0.5.

The four systematic resonance cases, namely, Gγn = integer × M ± νy (M=6

cells), are tracked to fill out Tab. 14.40. The resonance strengths are deduced from

the respective values of Pf /Pi , using (after Eq. 2.44)

|ǫn | =

(
2α

π
ln

2

1 + Pf /Pi

)1/2

(14.8)
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Table 14.43 Input data file for a 4504-turn helion ion acceleration across Gγn = 0 − νy = −4.82

at a rate of 100 keV/turn. Note that the value of the scaling coefficient in scaling_GgXXX.inc has

to be updated to the present value of BORO/1000=2.12998742

4504-turn helion ion acceleration

’OBJET’ 1

2.12998742d3

8

1 3 1

0. 0. 0. 0. 0. 1.

0.982907 5.483186 0.

-1.54525 9.69143 1.864270E-07

0. 1. 0.

’PARTICUL’

2.808391586E+03 3.204352974E-19 4.184153800E+00 0. 0.

’SPNTRK’

3

’FAISCEAU’

’PICKUPS’

1

#Start

’FAISTORE’

b_zgoubi.fai #End

1

’MARKER’ #Start

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.

’INCLUDE’

1

scaling_Gg4.596.inc[SCALING_S,*:SCALING_E,*]

’INCLUDE’

1

6* superA.inc[superA_S,*:superA_E,*]

’CAVITE’

3

201.78004860000 1.00

1.00000000E+05 5.235987755983E-01

’MARKER’ #End

’REBELOTE’

4503 0.2 99

’END’

Table 14.44 Asymptotic final polarization Pf , starting from Pi = 1. The particle invariant is

damped over the 2000-turn acceleration range, from εy, i/π to εy, f /π.
〈
εy/π

〉
is twice the final

rms εy/π value (i.e., the area enclosed by the rms ellipse matched to the damped motion in the

phase space)

|Gγn | Pf εy, i εy, f
|ǫn |√〈
εy/π

〉
[µm] [µm]

0 + νy 0.584 0.162 0.099 5.2

12 − νy 0.565 0.25 0.218 4.1

6 + νy 0.554 0.0476 0.0442 9.13

18 − νy 0.545 0.0261 0.0246 12.5

with the resonance crossing speed of α =
dGγ

dθ
= 2.371 × 10−5.

The particle invariant is chosen to ensure Pf /Pi ≈ 0.5, for convenience. For each

Gγn value, three particles are tracked. They are launched with 2π/3 (normalized)

betatron phase spacing. It can be observed, however, (Fig. 14.18) that these four

different spin motions Sy(turn) essentially superimpose (this would not be the case

above a sufficiently large εy value causing substantially different betatron excursions
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along the ring), which implies, in particular, that the asymptotic Pf is independent

of the initial φy for a given invariant εy .

Particle motion in the vertical phase space is displayed in Fig. 14.17. The motion

is damped due to acceleration. The spin motion is displayed in Fig. 14.18. The

starting Gγ value is taken 100 × |ǫn | upstream of the resonance, so that the n vector

is essentially vertical (for a reference: 7 × |ǫn | corresponds to cos φ =
〈
Sy

〉
= 0.99).

The input data file for the case Gγn = 0 + νy is given in Tab. 14.43. The

same file is used for the other three resonances. The only changes are the updated

values of BORO under OBJET and of the scaling coefficients in the INCLUDEd file

scaling_GgXXX.inc (namely, the latter are updated to BORO/1000).

Table 14.44 summarizes the asymptotic Pf values obtained this way for the four

systematic intrinsic resonances, and the resulting resonance strengths |ǫn | obtained

using Eq. 14.6 with Pi = 1. The “crossing” column of Tab. 14.9 has been completed

accordingly (Tab. 14.40).

14.2.1.9 Spin Motion Through a Weak Resonance

The systematic intrinsic resonance

Gγn = −νy = −4.8201

is considered, under fast crossing,

V̂ = 400 kV

The tune value νy = −4.8201 above results from the lattice settings (Sec. 14.2.1.2).

Fourier analysis of the multiturn phase space motion displayed in Fig. 14.17 confirms

that value.

Compared to the previous simulations, the four times greater acceleration rate

here weakens the depolarizing effect. the resonance is made weaker in addition by

using a smaller invariant, namely

εy/π ≈ 1.03 × 10−8

at the resonance (the invariant damps during acceleration, the starting value is

εy/π ≈ 1.3 × 10−8 m, Tab. 14.45). The input data file for this tracking is given in

Tab. 14.45, a copy of Tab. 14.43, mutatis mutandis, namely: with the initial invariant

changed to εy/π ≈ 1.3×10−8 under OBJET, the peak voltage changed to V̂ = 400 kV

under CAVITE, and NPASS=2000 under REBELOTE. This results in

Pf ≈ 0.9906 Pi

as can been seen from Fig. 14.19 showing a graph of the turn-by-turn Sy(turn)motion

across the resonance.

Fitting that spin motion Sy(turn) to the Fresnel integral model (Eq. 2.47)
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Table 14.45 Input data file for 2001-turn helion ion acceleration across Gγn = −νy = −4.82 at a

rate of 400 keV/turn. Note that the value of the scaling coefficient in scaling_GgXXX.inc has been

updated to the present value of BORO/1000=2.12998742

Crossing a weak resonance

’OBJET’

2.12998742d3

8

1 3 1

0. 0. 0. 0. 0. 1.

0.982907 5.483186 0.

-1.54525 9.69143 1.31964E-08

0. 1. 0.

’PARTICUL’

2.808391586E+03 3.204352974E-19 4.184153800E+00 0. 0.

’SPNTRK’

3

’FAISCEAU’

’PICKUPS’

1

#Start

’FAISTORE’

zgoubi.fai #End

1

’MARKER’ #Start

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.

’INCLUDE’

1

scaling_Gg4.596.inc[SCALING_S,*:SCALING_E,*]

’INCLUDE’

1

6* superA.inc[superA_S:superA_E]

’CAVITE’

3

201.78004860000 4.00

4.00000000E+05 5.235987755983E-01

’MARKER’ #End

’REBELOTE’

2000 0.2 99

’END’

Fig. 14.19 A graph of

Sy (turn = θ/2π). The sym-

bols show the tracking results.

The solid curve represents the

Fresnel integral model.
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14.2 Numerical Simulations: Solutions 345

yields the respective resonant Gγ and normalized resonance strength values (with

εy/π = 1.03 × 10−8 m) of

|Gγn | = 4.8202, |ǫn |/

√
εy/π = 5.3

The former quantity in a good agreement with νy = 4.8201 from the Fourier analysis

of the phase space motion. The latter is in a good accord with the result obtained from

the strong resonance simulation crossing, namely (Tab. 14.40, rightmost column),

|ǫn |/
√
εy/π = 5.2. The Fresnel integral model and the tracking results in the region

of the resonance are superimposed in Fig. 14.19.

14.2.1.10 Beam Depolarization Using a Solenoid

A perfect Booster lattice is considered here. The integer resonance Gγ = −6 is used

to move initially vertical spins into the horizontal plane. Spin rotation is performed

using either

- SOLENOID, in which case the magnetic field has to be provided; in addition,

the solenoid is ramped from the initial to final energy in order to maintain a constant

strength, which also means a constant spin tilt angle;

- SPINR, in which case the spin tilt angle, constant over the acceleration range,

has to be specified; one advantage if SPINR is that it is a pure spin rotation, avoiding

any possible orbit or betatron motion side effects.

Question 14.1.1.10-1 - The input data file for this simulation is given in Tab. 14.46.

Note that the location of the rotator does not make a difference as the modulus

of the depolarizing strength, |ǫn |, comes in the the Froissart-Stora formula. So,

for simplicity, the rotator is placed at the beginning of the optical sequence. The

solenoidal field, spin tilt angle and energy range have been determined as follows.

Fig. 14.20 A graph of the

dependence of the final polar-

ization on BsL =
∫
Bs (s) ds

field integral (Eq. 14.9), upon

crossing of the integer reso-

nance Bρn = −6
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Full depolarization after crossing Gγ = −6 requires a resonance strength (Eq. 14.6

with Pf = 0) of
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Table 14.46 Input data file for beam depolarization through Gγ = −6 using a longitudinal-

axis spin rotation (SOLENOID or SPINR). Note that the value of the SCALING coefficients is

updated to the present initial BORO/1000=3.7764566118. SCALING ensures that power supply

ramping follows the rigidity boost by CAVITE. The latter accelerates from Bρ = 3.7764566118 T m

(Gγ = −5.374744555), up to Bρ = 5.92283102938 T m (Gγ = −6.7454301) in the asymptotic

spin rotation region. The INCLUDE file here, scaling_SOLENOIDadded_Gg5.374.inc is a copy of

scaling_Gg5.374.inc used in earlier exercises, with SOLENOID added

Depolarization by G.gamma=-6, using a longitudinal-axis rotation.

’OBJET’

3.7764566118E3 ! reference rigidity (kG.cm) at start of acceleration (G.gamma=-5.374744555).

2 ! Option for initial coordinates introduced individually.

1 1 ! Track a single particle.

0.01 0. 0. 0.01 0. 1. ’o’ ! Small motion to check tunes (closed orbit is nul here).

1

’PARTICUL’

HELION

’SPNTRK’

3 ! Any particle is attributed vertical initial spin vector.

’FAISTORE’

zgoubi.fai ! Log particle data in zgoubi.fai,

1 ! at every pass.

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value,

’INCLUDE’ ! SOLENOID has to be added to the list if used.

1

scaling_SOLENOIDadded_Gg5.374.inc[SCALING_S,*:SCALING_E,*]

! Two possibilities to simulate spin rotation (uncomment/comment one or the other:

! SOLENOID (give field value) or SPINR (give rotation angle).

! ’DRIFT’ ! Compensation for added length.

! -100.

! ’SOLENOID’

! 0

! 100. 1. 0.129 ! This field yields Bs=0.0621T at G.gamma=-6, vs. theoretical 0.0615 T

! 10. 10. ! for beam depolarization.

! 1.

! 1 0. 0. 0.

’SPINR’

1

0 2.36 ! Theoretical angle for depolarization is 2.3290 deg.

’INCLUDE’

1

6* superA.inc[superA_S:superA_E]

’CAVITE’ accelerating cavity

2

201.780048 4.00 circumf., H

400e3 0.523598775598 ! Aceleration rate is 400kV*Q*sin(30deg), Q=2.

’REBELOTE’ ! ~19800 passes from beta=0.0655 (Ek=6.043805MeV) to

2300 0.3 99 ! Ggamma=-16 (Ek=7.93076082GeV).

’END’

|ǫn | =

(
2α

π
ln 2

)1/2

= 0.0064694573

with the crossing speed α = 9.484842 × 10−5 (V̂ = 400 kV, Tab. 14.46).

The theoretical solenoid field integral needed to achieve that is obtained from

Eq. 2.38 with |ǫn | = 0.0064694573 and Bρ = Bρn = 4.8139470584 T m (Gγ = −6),

namely

BsL =
2π Bρn |ǫn |

1 + G
= 0.061454684 T m

The dependence of the final polarization on the field integral BsL can be expressed

as (the Froissart-Stora formula)



14.2 Numerical Simulations: Solutions 347

Fig. 14.21 A graph of the

SOLENOID longitudinal field

Bs (s) (BX (X) in Zgoubi

notations) as experienced

by particles in the Gγ ≈

Gγn = −6 energy region of

the acceleration ramp. The

plotted data are read from

zgoubi.plt. The plateau is at
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Fig. 14.22 A graph of

Sy (Gγ) (SZ (Gγ) in Zgoubi

notations) through the integer

resonance Gγn = −6 excited

using a 2.36 deg longitudinal-

axis spin rotation. The plotted

data are read from zgoubi.fai.

The Outcomes of both the

SOLENOID and SPINR

simulation cases are super-

imposed here, showing a

marginal difference
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Pf = 2 exp

(
−
π

2

| 1+G
2πBρn

BsL |2

α

)
− 1 (14.9)

This dependence is plotted in Fig. 14.20.

The spin rotation angle is maintained constant over the acceleration range, by

ramping the SOLENOID field using SCALING (Tab. 14.46). Its value is

φsp(1 + G)
BsL

Bρn
= −0.040648 rad = 2.239 deg

The starting Gγ = −5.374744555 is at a distance of about 100 × |ǫn | from the

resonance, which is well away so ensuring absence of depolarizing effects. The spins

stay vertical as particles circle around the ring. The final Gγ = −6.74543 is about

100 × |ǫn | downstream of the resonance, in the asymptotic region.

In order for the spins to end up precessing about nearly longitudinal axes with the

turn-average
〈
Sy

〉
turn

≈ 0, the respective practical SOLENOID and SPINR settings

have to be (these are the settings in the input data file given in Tab. 14.46),

BsL = 0.0621 T m, at Gγ = Gγn, φsp = 2.36 deg
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which is reasonably close to the theoretical expectations. The longitudinal field

experienced by the particles across the solenoid, when they reached the resonant

energy region, is shown in Fig. 14.21.
At this point it is a good idea to ensure that coupling introduced by the solenoid is

only a marginal optical perturbation (otherwise, it would have to be compensated).
This can be checked with a MATRIX computation, based on the input data file
of Tab. 14.46 (uncomment DRIFT and SOLENOID, comment SPINR, remove or
comment CAVITE and REBELOTE, instead add MATRIX[IORD=1,IFOC=11], use
OBJET[KOBJ=5], make sure SOLENOID is added to the SCALING list), yielding
the following 1-turn 6 × 6 matrix:

-1.09944 -5.44039 -6.570868E-03 -3.815489E-02 0.00000 0.985749

0.355748 0.850847 2.126139E-03 6.053993E-03 0.00000 -0.271888

-1.090396E-02 5.977518E-02 1.82449 -8.76526 0.00000 0.00000

-1.889785E-03 6.568228E-03 0.316205 -0.971045 0.00000 0.00000

-4.427688E-02 0.680976 -2.645957E-04 4.689973E-03 1.00000 8.97276

0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

It can be seen that coupling is weak. No compensation is needed in the current

simulations.

The spin tracking results for the cases of both SOLENOID and SPINR are

displayed in Fig. 14.22. Note that if a more accurate BsL value giving precisely〈
Sy

〉
turn
= 0 is desired, as indicated in Fig. 14.20, this can be readily achieved by a

linear interpolation between a couple of tracking points near Bρ ≈ 0.61 ∼ 0.62.

Question 14.1.1.10-2 - The data file for this simulation is the same as for the previous
question (Tab. 14.46) with one change: MCOBJET is used to create a 1000-particle
bunch. This requires substitution of OBJET and its data list by the following:

’MCOBJET’

3.7764566118E3 reference rigidity (kG.cm).

3 ! Option to create a 6D bunch with random coordinates.

1000 ! A 1000-particle bunch.

2 2 2 2 2 2

0.0 0. 0. 0.0 0. 1. ! Mean values of the densities.

0.982907 5.483186 1e-6 2 ! Horizontal density parameters.

-1.545246 9.691428 1e-6 2 ! Vertical density parameters.

0. 1. 1.e-6 2 ! Longitudinal density parameters.

123456 234567 345678

SPINR is used to be closer to the theoretical assumptions addressed in the previous

question (by avoiding possible orbital effects associated with SOLENOID). Two

different 1000-particle sets have been tracked for comparison, one with δp/p = 0

which ends up with the expected
〈
Sy

〉
≈ 0, and one with a rms Gaussian momentum

spread of σδp/p = 10−3 which ends up with
〈
Sy

〉
being slightly negative. The results

are presented in Fig. 14.23.

14.2.1.11 Introduce a Partial Snake

Question 14.1.1.11-1 - The input data file to simulate the Booster lattice including

vertical misalignment of the lattice quadrupoles (using ERRORS) and a longitudinal

axis snake is given in Tab. 14.47. The snake simulation uses SPINR (a pure spin

precession, no orbital effect) with the spin axis set to longitudinal and the spin

precession angle φsnake to be determined - see next question.
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Fig. 14.23 Graphs of
〈
Sy (turn)

〉
, an average over a 1000-particle set (dark curve), together with a

few individual Sy (turn) taken from that random set with various εx, εy values, for the two cases

(as indicated on the respective graph) of δp/p = 0 (no momentum spread) and non-zero random

δp/p. Spread of the final spin vectors together with a negative offset of
〈
Sy

〉
is apparent in the

latter case

Fig. 14.24 Vertical closed

orbit along Booster, with

the ERRORS setting as per

Tab. 14.47
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orbit distortion displayed in

Fig. 14.24
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Integer resonances are excited by a non-zero vertical orbit. Their strengths are

displayed in Fig. 14.25 over −12 ≤ Gγ ≤ −7, as obtained using the thin lens model

series (Eq. 2.29). Strong resonances are at Gγn = pM ±[νy] = 6+5 = 1, 2×6±5 =

7, 17, etc. (with [νy] = 5 being the nearest integer to the actual νy = 4.82). Thus,
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Table 14.47 Input data file for a simulation of an acceleration cycle in Booster in the presence

of a partial snake. The latter uses SPINR. An orbit distortion is created using ERRORS, which

causes a random vertical displacement of quadrupoles with an rms value of 0.25 mm and a 3-

σ cut-off. Note that the values of the SCALING coefficients are updated to the present initial

BORO/1000=5.56832079 (Gγ = −6.5). SCALING ensures that power supply ramps follow the

rigidity boost by CAVITE. The latter accelerates from Gγ = −6.5 to Gγ = −10.5 in 6500 turns

Partial snake to preserve polarization thru integer resonances.

’OBJET’

5.5683207908096621E3 Reference rigidity (kG.cm) (G.gamma=-6.5, here).

2 ! Launch a single

1 1 ! particle, on

0. 0. 2.81903105E-01 4.05298102E-01 0.00 1. ’o’ ! closed orbit.

1

’PARTICUL’

HELION

’ERRORS’

1 1 123456 PRINT ! sig_ZS/cm ! PRINT logs error inofs to zgoubi.ERRORS.out.

MULTIPOL{Q*,QUAD} 1 ZS A U 0. .025 3 ! LensFamiliy{LABEL1, LABEL2}.

’SPNTRK’

4.1 ! Particle spin is along stable spin axis, which is,

0. 0. 1. ! vertical as starting G.gamma=-6.5, away from resonance.

’FAISTORE’

zgoubi.fai ! Log particle data in zgoubi.fai,

1 ! at every pass.

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.

’INCLUDE’

1

scaling_Gg6.5.inc[SCALING_S:SCALING_E] ! SCALING keyword, set for G.gamma=-6.5.

’SPINR’ ! Snake, pur spin precession, no orbital effect.

1

0. 1.224 ! Snake axis longitudinal. Change, here, snake angle to 0, 1.224, 2.45 or 12.24.

’INCLUDE’

1

6* superA.inc[superA_S:superA_E]

’CAVITE’ accelerating cavity

2

201.780048 4.00 circumf., H

400e3 0.523598775598 ! Aceleration rate is 400kV*Q*sin(30deg), Q=2.

’REBELOTE’ ! ~19800 passes from beta=0.0655 (Ek=6.043805MeV) to

6500 0.3 99 ! Ggamma=-16 (Ek=7.93076082GeV).

’END’

Gγn = 7 is the strongest in the acceleration interval of Gγ : −6.5 → −10.5

considered in this exercise. Its theoretical strength (using Eq. 2.29) is |ǫ
imp
n | = 0.0034.

Acceleration through Gγ : −6.5 → −10.5 produces Sy(turn) displayed in

Fig. 14.29 (the case of φsnake = 0). The resonances are located at integer Gγ values

separated by distant G∆γ = 1. Thus, in units of energy (using the particle data from

Tab. 14.1),

∆E =
M

|G |
G∆γ =

M

|G |
=

2808.3916

4.18415
= 671.2MeV

Question 14.1.1.11-2 - The snake angle is set (under SPINR) to φsnake = 2π |ǫ
imp
n | =

2π × 0.0034 rad = 1.224◦, ERRORS is inhibited, the particle data are logged in

zgoubi.fai at each optical element along the ring, the reference rigidity is set for

Gγ = 7 under OBJET and SCALING. The initial spin coordinates are set (to

arbitrary values) under SPNTRK, and FIT is used to change them so to reach

Sx,s,y(s = 0) = Sx,s,y(s = send). This yields the input data file of Tab. 14.48.
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Table 14.48 Input data file to find the spin closed orbit at the Gγn = 7 resonance (using

FIT). It is similar to that of Tab. 14.47, with the following changes: the reference rigidity is

BORO=6.2821070918945 (Gγ = 7); ERRORS[ONF=0] inhibits the error generator; ALL is added

under FAISTORE, this logs the particle data at the exits of all optical elements along the sequence

in zgoubi.fai for further plotting of SX,Y,Z (s); scaling_Gg7.inc is INCLUDEd with its scaling

coefficients set for |Gγ | = 7; FIT finds the periodic orbit (expected null) and the periodic spin

orbit, expected to lie in the median plane due to the snake

Partial snake to preserve polarization thru integer resonances.

’OBJET’

6.2821070918945E3 reference rigidity (kG.cm).

2 ! Option for initial coordinates introduced individually.

1 1 ! Track a single particle.

0.0 0. 0. 0.0 0. 1. ’o’ ! Small motion to check tunes (closed orbit is nul here).

1

’PARTICUL’

HELION

’SPNTRK’

4.1 ! Particle spin is along stable spin axis, which is,

0. 1. 0. ! arbitrarily, along the Y axis, here - FIT will move it to // X-axis.

’ERRORS’ ! Inhibited, due to ONF=0.

0 1 123456 PRINT ! sig_ZS/cm ! PRINT logs error inofs to zgoubi.ERRORS.out.

MULTIPOL{Q*,QUAD} 1 ZS A U 0. .025 3 ! LensFamiliy{LABEL1, LABEL2}.

’FAISTORE’

zgoubi.fai ALL ! Log particle data in zgoubi.fai,

1 ! at every pass.

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.

’INCLUDE’

1

scaling_Gg7.inc[SCALING_S:SCALING_E] ! SCALING keyword, set for G.gamma=-7.

’SPINR’ ! Snake, pur spin precession, no orbital effect.

1

0. 1.224 ! Snake axis longitudinal. Change, here, snake angle to 0, 1.224, 2.45 or 12.24.

’INCLUDE’

1

6* superA.inc[superA_S:superA_E]

’FIT2’

7

1 30 0 [-5,5] ! First 4 lines: vary initial particle coordinates, Y, T, Z, P, iOBJET.

1 31 0 [-5,5]

1 32 0 [-5,5]

1 33 0 [-5,5]

3 10 0 [-1.01,1.01] ! These 3 lines: vary initial spin coordinates, SX, SY, SZ.

3 11 0 [-1.01,1.01]

3 12 0 [-1.01,1.01]

8 1e-10

3.1 1 2 #End 0. 1. 0 ! First 4 lines: request equal particle coordinates at sart and end.

3.1 1 3 #End 0. 1. 0

3.1 1 4 #End 0. 1. 0

3.1 1 5 #End 0. 1. 0

10.1 1 1 #End 0. 1. 0 ! These 3 lines: request equal spin coordinates at sart and end.

10.1 1 2 #End 0. 1. 0

10.1 1 3 #End 0. 1. 0

10 1 4 #End 1. .0001 0 ! Request spin vector modulus =1, with a great weight (0.0001).

’END’

The presence of the snake produces the spin closed orbit displayed in Fig. 14.26.

Plotted data are read from zgoubi.fai, generated using FAISTORE[LABEL=ALL],

which logs the particle data at the exits of ALL optical elements around the ring

(FAISTORE[LABEL=DRIF] would probably be sufficient). The spinor methods

(Chap. 3) allow for deriving the eigenvectors
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n =
©«

nx

ns
ny

ª®¬
=

(±)

sin πνsp

©«

− sin(Gγ(π − θ)) sin
φsnake

2

cos(Gγ(π − θ)) sin
φsnake

2

sin(Gγπ) cos
φsnake

2

ª®®®®®¬
(14.10)

and the spin tune

cos πνsp = cos(πGγ) cos(πǫn) = cos(πGγ) cos
φsnake

2
(14.11)

On the Gγ = 7 resonance, ny = 0, the spin closed orbit lies in the median plane.

Figure 14.26 shows its theoretical ns(θ) and nx(θ) components (Eq. 14.10) superim-

posed on the numerical tracking results (this graph uses the gnuplot script given in

Tab. 14.49). The oscillation frequency (Eq. 14.11 with φsnake = 1.224◦) is

frac(νsp) =
φsnake

2
= 0.0034

Table 14.49 A gnuplot script to produce the graph of the numerical and theoretical spin closed

orbit vectors around the ring in Fig. 14.26. This script specifies the positions (the column numbers)

of the data read from zgoubi.plt

set xlabel "{/Symbol q} [rad]" ; set ylabel "n_X, n_Y, n_Z"

set key t r maxrow 5 width -3

pi = 4.*atan(1.) ; deg = 180./pi ; cm = 1e2 ; am = 2808.391585; G = 4.1841538; q = 2.

R = 201.78/ (2.*pi) *cm ; qsi= 1.224/deg ; Gg = 7.

# n_0 components, theory:

SY(x) = -1./sin(acos(cos(pi*Gg)*cos(qsi/2.))) * sin( Gg* (pi -x)) * sin(qsi/2.) # x/e1

SX(x) = 1./sin(acos(cos(pi*Gg)*cos(qsi/2.))) * cos( Gg* (pi -x)) * sin(qsi/2.) # s/e2

SZ(x) = 1./sin(acos(cos(pi*Gg)*cos(qsi/2.))) * sin( Gg* pi) * cos(qsi/2.) # z/e3

set sample 1000

print " Qs = ",acos(cos(pi*Gg)*cos(qsi/2.))/pi,"; 1-Qs = ",1-acos(cos(pi*Gg)*cos(qsi/2.))/pi

plot [] [-1:1] \

"zgoubi.plt" u ($14/R):($33) w p pt 4 ps .4 lc rgb "red" tit "S_X" , SX(x) lw 2. dt 2 lc rgb "red" notit ,\

"zgoubi.plt" u ($14/R):($34) w p pt 4 ps .2 lc rgb "blue" tit "S_Y" , SY(x) lw 2. dt 3 lc rgb "blue" notit ,\

"zgoubi.plt" u ($14/R):($35) w p pt 4 ps .1 lc rgb "black" tit "S_Z" , SZ(x) lw 2. dt 4 lc rgb "black" notit

Question 14.1.1.11-3 - An input data file to compute the spin closed orbit for Gγ = 7,

using FIT, is given in Tab. 14.50. A script (as in Tab. 14.51) changes the reference

rigidity (OBJET[BORO]) and the corresponding SCALING factors in the ancillary

file scaling.inc, and the repeats the computation for the sampled −Gγ values over

[−6.5,−7.5].

Question 14.1.1.11-4 - Quadrupole misalignments are enabled (ERRORS[ONF=1]),

the snake angle is set to φsnake = 1.224◦.

Acceleration through Gγ : −6.5 → −10.5 produces Sy(turn) displayed in

Fig. 14.29 (the case of φsnake = 1.224◦). The spin appears to be tilted after crossing

the integer resonances. However, the snake rotation is too weak to overcome the

effect of the vertical orbit distortion.
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Fig. 14.26 Spin closed orbit

along Booster in terms of

its azimuthal angle at the

Gγ = 7 integer resonance.

The snake is located at θ = 0.

The n0 vector lies in the

median plane, and undergoes

rotation about the Z-axis at a

frequency of νsp = Gγ: SX

(the thick red curve) and SY

(blue) oscillate while SZ=0.

The theoretical n0 vector

components (Eq. 14.10) are

superimposed (the dashed

curves). At the azimuthal

angle of θ = π rad, which

is the location opposite to

the snake, the stable spin

direction vector is parallel to

the longitudinal axis (ns ≡

SX = 1 and nx ≡ SY = 0)
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Fig. 14.27 Gγ dependence of the spin closed orbit, over 6.5 < |Gγ | < 7.5 (left), and a zoomed-in

view of the central region (right). The symbols are from spin tracking, the solid lines are from the

theory (Eq. 14.10 wherein ns,x,y corresponds to the present Zgoubi notation nX,Y,Z ). Note the

value of the nY component at half-integer Gγ of nx ≡ nY = 0.01068 enhanced by a factor 10 for

accuracy (with the theoretical nx given by Eq. 14.10)

Question 14.1.1.11-5 - In order to determine the minimum angle of the snake spin

rotation, it is necessary to know the strengths of the resonances to be crossed.

A partial snake generates a spin resonance strength

|ǫ snake | =
φsnake

2π

Upon crossing of the resonance, the ratio of the final and initial polarizations satisfies

(the Froissart and Stora formula, Eq. 2.44)
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Table 14.50 Input data file to find the spin closed orbit at a Gγn resonance (Gγn = 7, here)

using FIT. FIT finds the spin closed orbit for particle 4, which is Gγ dependent (Eq. 14.10). A

trick is used here: the first three particles are left out of the fit, they are used to compute the spin

matrix (SPNPRT[MATRIX], logged in zgoubi.SPNPRT.Out by SPNPRT[PRINT]) for comparison

with the spin closed orbit of particle 4 found by FIT. Additional particles 5 and 6 are dummies

and unused. They are only needed for proper operation of SPNPRT[MATRIX], which requires

3-particle subsets

spinN0_FIT_template.dat tmeplate input data file

’OBJET’

6.2821070918945E3 ! Reference rigidity (kG.cm) - G.gamma=7, here.

2 ! Option for initial coordinates introduced individually.

6 2 ! Spin MATRIX computation requires 3 times the same particle, with spin SX, SY or SZ.

0. 0. 0. 0. 0. 1. ’o’ ! First 3 particles used to compute spin matrix.

0. 0. 0. 0. 0. 1. ’o’

0. 0. 0. 0. 0. 1. ’o’

0. 0. 0. 0. 0. 1. ’o’ ! 4th particle used to get spin closed orbit, using FIT.

0. 0. 0. 0. 0. 1. ’o’ ! 2 additional particles unused, only needed for proper operation of

0. 0. 0. 0. 0. 1. ’o’ ! SPNPRT[MATRIX] as it requires 3-particle subsets.

1 1 1 1 1 1 1

’PARTICUL’

HELION

’FAISCEAU’

’SPNTRK’

4

1. 0. 0. ! Initial spins of first 3 particles are left untouched, used to

0. 1. 0. ! compute spin matrix.

0. 0. 1.

1. 0. 0. ! Spin of prtcl 4 varied by FIT, to find spin orbit.

1. 0. 0. ! unused.

1. 0. 0. ! unused.

’INCLUDE’

1 ! scaling.inc is a cpy of scaling_Gg7.inc, scaling factors therein suited to present

scaling.inc[SCALING_S:SCALING_E] ! OBJET[BORO] (they are changed by the repeat scrit).

’SPINR’ ! Snake, pur spin precession, no orbital effect.

1

0. 1.224 ! Snake axis longitudinal. Change, here, snake angle to 0, 1.224, 2.45 or 12.24.

’INCLUDE’

1

6* superA.inc[superA_S:superA_E]

’FIT2’

3

4 40 0 [-2.0,2.0] ! These 3 lines: vary initial spin coordinates SX, SY, SZ of prtcl 4.

4 41 0 [-2.0,2.0]

4 42 0 [-2.0,2.0]

4 1e-20

10.1 4 1 #End 0. 1. 0 ! These 3 lines: request equal spin coordinates at sart and end.

10.1 4 2 #End 0. 1. 0

10.1 4 3 #End 0. 1. 0

10 4 4 #End 1. .0001 0 ! Request spin vector modulus =1, with a great weight (0.0001).

’FAISCEAU’ ! Allows to check final particle coordinates (perfect ring: should all be zero).

! In the following: spin closed orbit from spin MATRIX (computed using particles 1-3) is

! stored in zgoubi.SPNPRT.Out. It is expected to confirm spin closed orbit for particle 4,

! computed using FIT.

’SPNPRT’ MATRIX PRINT

’END’

Pf

Pi

= 2e
−
π

2α
|ǫ snake

+ ǫ
imp
n |2

− 1

Note: the overall strength ǫ snake
+ ǫ

imp
n results from a combination of the longi-

tudinal and radial perturbative terms λs
Bs

By0

and λx
Bx

By0

in Eq. 2.26, with the Bs

contribution coming from the snake and Bx arising from the vertical orbit in the

quadrupoles.

Thus, for the snake to dominate the spin resonance dynamics, one needs
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Table 14.51 A Fortran script to repeat the orbit finding of Tab. 14.50, for sampled values Gγ :

−6.5 → −7.5. When the scan is completed, gnuplot_SPNPRT_N0-Qs-fromFIT.gnu (Tab. 14.52)

is executed

character(300) cmnd; character(12) txt12

parameter (c = 2.99792458e8)

G = 4.1841538; am = 2808.391585; q = 2.

Gg0=6.5; N = 60

dGg = 1./float(N-1); Gg0=Gg0 -dGg

do i = 1, N

Gg = Gg0 + dGg*float(i); gma = Gg/G

p = sqrt((gma*am)**2 - am**2); brho = p/c/q *1e6

cmnd=’cp -f spinN0_FIT_template.dat spinN0_FIT.dat’

call system(cmnd)

cmnd=’cp -f spinN0_FIT_template.dat spinN0_FIT.dat’//

> " ; sed -i ’s@6.2821070918945@"//txt12//"@g’ spinN0_FIT.dat"

call system(cmnd)

cmnd=’cp -f scaling_Gg7.inc scaling.inc’//

> "; sed -i ’s@6.2821070918945@"//txt12//"@g’ scaling.inc"

call system(cmnd)

cmnd = ’/home/meot/zgoubi/SVN/current/zgoubi/zgoubi’

> //’ -in spinN0_FIT.dat ; ’

> //’/home/meot/zgoubi/current/toolbox/rzgRevision ; ’

> //’cat zgoubi.SPNPRT.Out >> zgoubi.SPNPRT.Out_cat’

call system(cmnd)

enddo

call system(’gnuplot <./gnuplot_SPNPRT_N0-Qs-fromFIT.gnu’)

stop

end

Table 14.52 Typical gnuplot commands to obtain graphs of spin tune and spin closed orbit com-

ponents from particle 4 data logged in zgoubi.SPNPRT.Out during tracking

# Spin tune vs. G.gamma:

am = 938.27203; G = 1.79284735

plot "zgoubi.SPNPRT.Out_cat" u ($21==1 ? abs($18)/G*am/1e3 : 1/0):($51) axes x2y1 w lp ps 0.6 lw 0.

pause 3

# Spin closed orbit components vs. G.gamma:

Nprtcl = 4

plot \

"zgoubi.SPNPRT.Out_cat" every 1 u ($21==Nprtcl? abs($18): 1/0):( $13) w p pt 4 ps .6 lc rgb "red" tit "n_Y" ,\

"zgoubi.SPNPRT.Out_cat" every 1 u ($21==Nprtcl? abs($18): 1/0):(-10*$14) w p pt 5 ps .6 lc rgb "blue" tit "10 n_Y" ,\

"zgoubi.SPNPRT.Out_cat" every 1 u ($21==Nprtcl? abs($18): 1/0):( $15) w p pt 6 ps .6 lc rgb "black" tit "n_Z"

pause 3

|ǫ snake | ≫ |ǫ
imp
n |

This is qualitatively verified in Fig. 14.29, which displays motion of the spin of a

particle traveling along the vertical closed orbit, while it is accelerated over Gγ :

−6.5 → −10.5: a snake precession of 10 × 2π |ǫ
imp
n | = 12.2◦ allows overcoming

the resonances by causing a full flip at each integer Gγ value. The lower values of

φsnake = 2π |ǫ
imp
n | = 1.22o and φsnake = 2 × 2π |ǫ

imp
n | = 2.45o are too weak for spin

flipping.

14.2.1.12 Introduce Full Snakes
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Fig. 14.28 Gγ dependence of the spin tune, over 6.5 < |Gγ | < 7.5, and a zoom of the central

region. The symbols are from spin tracking, the solid lines are from the theory (Eq. 14.11). The

width of the forbidden spin tune region, or “spin tune gap”, is the resonance strength, or resonance

width, ǫn = φsnake/2 = 0.0034

Fig. 14.29 Spin motion over

Gγ : −6.5 → −10.5, for

the cases of 4 different

snake precession angles: null,

φsnake = 2π |ǫ
imp
n | = 1.22◦,

2 × 2π |ǫ
imp
n | = 2.45◦, and

10 × 2π |ǫ
imp
n | = 12.2◦, with

|ǫ
imp
n | = 0.0034 being the

strength of the imperfection

resonance excited by vertical

quadrupole misalignments.

The initial spin is along the
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direction at Gγ = −6.5 -10. -9. -8. -7.
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               φ         = 0                                                                                  snake                                                                     

    SZ  vs. G.gamma                                                                    

          1.224 deg                                                                     

          2.45 deg                                                                     

          12.2 deg                                                                     

A non-zero vertical invariant is accounted for. It causes betatron motion through the

lattice fields exciting systematic intrinsic spin resonances, which, given νy = 4.82,

are located at Gγ = −12 + νy = −7.18, −6 − νy = −10.82, −18 + νy = −13.18.

The same vertical closed orbit distortion as in exercise 14.2.1.11 is introduced,

using ERRORS with the same data.

Question 14.1.1.12-1 - The methods here are very similar to what is done in 14.2.1.11.

The spin closed orbit is found using the same input data file (Tab. 14.48). The FIT

procedure in that file simultaneously finds the particle closed obit (x0, x
′
0
, y0, y

′
0
)

((Y0,T0, Z0, p0) in Zgoubi notation), and the spin closed orbit (which by definition is

that of the particle on closed orbit). Thus, that FIT procedure holds for chromatic

closed orbits. All that needs be changed is the particle D value (relative momentum)

under OBJET. The closed orbits of interest here are detailed below.

The one-turn spin matrix, and thus the spin tune, the local spin precession axis

at the start of the sequence, etc., can be computed using SPNPRT[MATRIX]. Com-

putation of the spin matrix at different momenta requires defining groups of mo-

menta, using OBJET[KOBJ=2,IDMAX=3]. The input data file used is given in
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Table 14.53 Input data file to compute the one-turn spin matrices for 3 different momenta,

D = p/p0 = 1, 1.0001, 1.001. In order to produce the respective matrices, SPNPRT[MATRIX]

requires defining 3 groups of momenta in the proper order. This can be achieved using OB-

JET[KOBJ=2,IDMAX=3]. The same particle coordinates are repeated three times in each group.

Then SPNTRK sets the three initial spin vectors to (1,0,0), (0,1,0), and (0,0,1), respectively

Full snake to preserve polarization thru integer resonances.

’OBJET’

5.5683207908096621E3 Reference rigidity (kG.cm) (G.gamma=-6.5, here).

2

9 3 ! 9 particles, 3 different momenta.

0. 0. 2.81903105E-01 4.05298102E-01 0. 1. ’o’ ! On-momentum closed orbit, dp/p=0.

0. 0. 2.81903105E-01 4.05298102E-01 0. 1. ’o’

0. 0. 2.81903105E-01 4.05298102E-01 0. 1. ’o’

7.4360716E-03 -1.0564233E-02 0.2809611 0.4040692 0. 1.0001 ’d’ ! closed orbit, dp/p=1e4.

7.4360716E-03 -1.0564233E-02 0.2809611 0.4040692 0. 1.0001 ’d’

7.4360716E-03 -1.0564233E-02 0.2809611 0.4040692 0. 1.0001 ’d’

7.4744578E-02 -0.1053352 0.2727098 0.3932872 0. 1.001 ’d’ ! closed orbit, dp/p=1e3.

7.4744578E-02 -0.1053352 0.2727098 0.3932872 0. 1.001 ’d’

7.4744578E-02 -0.1053352 0.2727098 0.3932872 0. 1.001 ’d’

1 1 1 1 1 1 1 1 1

’PARTICUL’

HELION

’ERRORS’

1 1 123456 PRINT ! sig_ZS/cm ! Vertical alignment random error, uniform.

MULTIPOL{Q*,QUAD} 1 ZS A U 0. .025 3 ! LensFamiliy{LABEL1, LABEL2}.

’SPNTRK’

4 ! SX, SY, SZ spin values of the 3*3 particles.

1. 0. 0.

0. 1. 0.

0. 0. 1.

1. 0. 0.

0. 1. 0.

0. 0. 1.

1. 0. 0.

0. 1. 0.

0. 0. 1.

’FAISTORE’

zgoubi.fai ! Log particle data in zgoubi.fai,

1 ! at every pass.

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.

’INCLUDE’

1

scaling_Gg6.5.inc[SCALING_S:SCALING_E] ! SCALING keyword, set for G.gamma=-6.5.

’SPINR’

1

0. 180. ! Snake axis longitudinal. Full snake.

’INCLUDE’ ! Include Booster ring.

1

6* superA.inc[superA_S:superA_E]

’FAISCEAU’

’SPNPRT’ MATRIX

’END’

Tab. 14.53. It defines 3 respective groups of D − 1 = dp/p0 = 0, 10−4, 10−3, 10−2.

SPNPRT[MATRIX] manages that information and produces the corresponding 3

one-turn spin matrices. Excerpts from zgoubi.res given in Tab. 14.54 detail the mo-

mentum dependence of the numerical parameter values. At Gγ = −6.5, the spin

closed orbit at the snake is along the transverse horizontal axis, and is longitudinal

at the azimuthal angle opposite to the snake, as seen in the following excerpts from

zgoubi.res:

- at the snake (s=0.57 m, the end of the first drift, element number 12 in the optical
sequence):

12 Keyword, label(s) : DRIFT DRIF L057
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Table 14.54 SPNPRT[MATRIX] listing in zgoubi.res (excerpts): one-turn spin matrices and other

information, at relative momenta D − 1 = dp/p0 = 0, 10−4, 10−3, 10−2

----------------------------------------------------------------------------------

Momentum group #1 (D= 1.000000E+00) ; average over 3 particles at this pass :

Spin transfer matrix, momentum group # 1 :

-0.999945 8.562650E-06 -1.050193E-02

6.942346E-05 0.999983 -5.794851E-03

1.050171E-02 -5.795260E-03 -0.999928

Trace = -0.9998897078, ; spin precession acos((trace-1)/2) = 179.3982765528 deg

Precession axis : (-0.0000, -1.0000, 0.0029) -> angle to (X,Y) plane, angle to X axis : 0.1660, 90.3855 degree

Spin tune Qs (fractional) : 0.49833

----------------------------------------------------------------------------------

Momentum group #2 (D= 1.000100E+00) ; average over 3 particles at this pass :

Spin transfer matrix, momentum group # 2 :

-0.999943 -2.383130E-03 -1.045329E-02

-2.322598E-03 0.999980 -5.799063E-03

1.046690E-02 -5.774451E-03 -0.999929

Trace = -0.9998905823, ; spin precession acos((trace-1)/2) = 179.4006668061 deg

Precession axis : ( 0.0012, -1.0000, 0.0029) -> angle to (X,Y) plane, angle to X axis : 0.1658, 67.8736 degree

Spin tune Qs (fractional) : 0.49834

----------------------------------------------------------------------------------

Momentum group #3 (D= 1.001000E+00) ; average over 3 particles at this pass :

Spin transfer matrix, momentum group # 3 :

-0.999664 -2.391167E-02 -1.002755E-02

-2.385398E-02 0.999698 -5.834018E-03

1.016403E-02 -5.592859E-03 -0.999933

Trace = -0.9998980571, ; spin precession acos((trace-1)/2) = 179.4215005685 deg

Precession axis : ( 0.0119, -0.9999, 0.0029) -> angle to (X,Y) plane, angle to X axis : 0.1637, 13.4539 degree

Spin tune Qs (fractional) : 0.49839

----------------------------------------------------------------------------------

Momentum group #4 (D= 1.010000E+00) ; average over 3 particles at this pass :

Spin transfer matrix, momentum group # 4 :

-0.971396 -0.237373 -6.677918E-03

-0.237335 0.971409 -5.970173E-03

7.904151E-03 -4.214493E-03 -0.999960

Trace = -0.9999460691, ; spin precession acos((trace-1)/2) = 179.5792323606 deg

Precession axis : ( 0.1195, -0.9928, 0.0026) -> angle to (X,Y) plane, angle to X axis : 0.1469, 1.2291 degree

Spin tune Qs (fractional) : 0.49883

Drift, length = 57.04000 cm

TRAJ #1 IEX,D,Y,T,Z,P,S,time : 1 0. 0. 0. 3.050213E-01 4.052981E-01 5.7040005E+01 2.48626E-03

TRAJ #1 SX, SY, SZ, |S| : 1 1.962212E-05 -9.999958E-01 2.897616E-03 1.000000E+00

Cumulative length of optical axis = 0.5704 m ; Time (for reference rigidity & particle) = 2.486264E-09 s

- at the azimuthal location opposite to the snake (s=100.9 m away, element number
330 in the optical sequence):

330 Keyword, label(s) : DRIFT DRIF L057

Drift, length = 57.04000 cm

TRAJ #1 IEX,D,Y,T,Z,P,S,time : 1 0. 2.708E-05 -5.847E-05 -3.839713E-01 -3.940313E-01 1.0146044E+04 4.42247E-01

TRAJ #1 SX, SY, SZ, |S| : 1 9.999388E-01 -1.416886E-05 1.106666E-02 1.000000E+00

Cumulative length of optical axis = 101.460424 m ; Time (for reference rigidity & particle) = 4.422465E-07 s

Question 14.1.1.12-2 - Acceleration over Gγ : −6.5 → −13.5 uses the input data

file given in Tab. 14.55. It is similar to that of Tab. 14.47 but with OBJET[KOBJ=8]

to generate a few particles on a matched ellipse with a given invariant (to study the

dependence of the spin motion on the betatron motion), and with the number of turns

increased to 11750 under REBELOTE so to reach Gγ = −13.5.
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Table 14.55 Input data file for a simulation of an acceleration cycle in Booster in the presence

of a single full snake. The latter implemented using SPINR. An orbit distortion is created using

ERRORS, which causes random vertical displacements of the quadrupoles with an rms value

0.25 mm and a 3-σ cut-off. Note that the values of the SCALING coefficients are updated to the

present initial BORO/1000=5.56832079 (Gγ = −6.5). SCALING ensures that power supply ramps

follow the rigidity boost by CAVITE. The latter accelerates from Gγ = −6.5 to Gγ = −13.5 in

11700 turns. The initial coordinates are taken on a matched ellipse with a normalized εy = 2.5 πµm

Full snake to preserve polarization thru integer resonances.

’OBJET’

5.5683207908096621E3 Reference rigidity (kG.cm) (G.gamma=-6.5, here).

8

1 3 1

0. 0. 2.81903105E-03 4.05298102E-04 0.00 1. ’o’ ! closed orbit.

0.982907 5.483186 0.

-1.545246 9.691428 3.e-6 ! Vertical invariant value is 2.5 pi.mu_m, normalized.

0. 1. 0.

’PARTICUL’

HELION

’ERRORS’

1 1 123456 PRINT ! sig_ZS/cm ! Vertical alignment random error, uniform.

MULTIPOL{Q*,QUAD} 1 ZS A U 0. .025 3 ! LensFamiliy{LABEL1, LABEL2}.

’SPNTRK’

4.1

0. 1. 0. ! Initial particle spins.

’FAISTORE’

zgoubi.fai ! Log particle data in zgoubi.fai,

1 ! at every pass.

! Scaling coefficients in scaling_GgXXX.inc are updated to present BORO/1000 value.

’INCLUDE’

1

scaling_Gg6.5.inc[SCALING_S:SCALING_E] ! SCALING keyword, set for G.gamma=-6.5.

’SPINR’

1

0. 180. ! Snake axis longitudinal. Full snake.

’INCLUDE’ ! Booster lattice.

1

6* superA.inc[superA_S:superA_E]

’CAVITE’ accelerating cavity

2

201.780048 4.00 circumf., H

400e3 0.523598775598 ! Aceleration rate is 400kV*Q*sin(30deg), Q=2.

’REBELOTE’ ! ~19800 passes from beta=0.0655 (Ek=6.043805MeV) to

11750 0.3 99 ! Ggamma=-16 (Ek=7.93076082GeV).

’FAISCEAU’ ! Log local particle data to zgoubi.res.

’SPNPRT’ ! Log local spin data to zgoubi.res.

’END’

The results are displayed in Fig. 14.30. The initial spins are along the transverse

horizontal axis (Y, in Zgoubi notation), which is the orientation of the local spin

closed orbit. No polarization loss is observed: the spins exhibit stable precession

about the vertical axis (Z), turn after turn.

Question 14.1.1.12-3 - Horizontal motion is added: 9 particles are launched with
normalized εx = εy = 2.5 πµm and 9 combinations of the initial betatron phases,
by ad hoc modification of OBJET[KOBJ=8]:

’OBJET’

5.5683207908096621E3 Reference rigidity (kG.cm) (G.gamma=-6.5, here).

8

3 3 1

0. 0. 2.81903105E-03 4.05298102E-04 0.00 1. ’o’ ! closed orbit.

0.982907 5.483186 3.e-6

-1.545246 9.691428 3.e-6 ! Vertical invariant value is 2.5 pi.mu_m, normalized.

0. 1. 0.
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Fig. 14.30 Rotational spin motion as observed at the snake (the mid-plane components SX and

SY versus Gγ) (left), and the (marginal) vertical component (SZ versus Gγ) (right), during

acceleration over Gγ : −6.5 → −13.5, in the presence of a single full snake. Three particles are

tracked, with different initial betatron phase advances on the same matched phase-space ellipse

with a normalized invariant εY = 2.5 πµm. Their spin trajectories overlap. The initial spins are

along the Y axis corresponding to the local spin closed orbit at Gγ = −6.5

The results are essentially unchanged. Motion of the spins is similar to that in

Fig. 14.30 found earlier.
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14.2.1.13 Preserve Polarization Using Tune Jump

Question 14.1.1.15-1 - For a 100 kV RF voltage the crossing speed is

dGγ

dθ
= 2.37121051717 × 10−5

Given the tune νZ = 0.82, the acceleration rate and the energy at the start of the

tracking, the resonance |Gγ | = 0 + νZ occurs at a turn number

N0+νy ≈ 1530

The resonance strength ǫn is in question. It can be determined from the particle

invariant using Tab. 14.40. Given ǫn and the crossing speed α =
dGγ

dθ
, the Froissart-

Stora formula (Eq. 2.44) yields the expected asymptotic polarization after crossing

of

Pf ≈ 0.53

A numerical simulation of this resonance crossing yields the result displayed in

Fig. 14.31 and confirms the expected Pf ≈ 0.53.

Fig. 14.31 Evolution of

the polarization component

Sy (Gγ) of helions when

crossing the |Gγ | = 0 + νZ
resonance, with and with-

out use of the tune jump

quadrupoles. The plotted turn-

by-turn data are read from

zgoubi.fai
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Question 14.1.1.15-2 - The new crossing speed, including the effect of the tune jump,

is (Eq. 14.2)

α = 2.60504500631 × 10−4

With this increased crossing speed, the Froissart-Stora formula yields an expected

final polarization of

Pf = 0.9234742

This theoretical value agrees with the value obtained from a crossing simulation

within 0.03%. The result of the latter is displayed in Fig. 14.31.
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14.2.1.14 Preserve Polarization Using an AC Dipole

With the scale_factor set to 0.0, tracking a 32 particle set yields an average Pf =

41.5%, compared to the expectation of Pf = 40.0%.

With the scale factor set to 5 G, tracking the 32 particle set yields Pf = −50%.

An AC dipole field of Bm = 12.2 G allows a full spin-flip.

The tracking results are displayed in Fig. 14.32.

Fig. 14.32 Helions crossing

the |Gγ | = 0 + νZ resonance,

with an AC dipole operating at

Bm = 5 and 12.2 G. Crossing

without the AC dipole (the

Bm = 0 case) is shown for

comparison. The plotted turn-

by-turn data are read from

zgoubi.fai
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Question 14.1.2.1-2 - The SRPRNT keyword at the end of the code in Tab. 14.16
activates printout of the SR loss statistics in zgoubi.res output file. An excerpt of
zgoubi.res file showing the SR information is:

* Monte Carlo S.R. statistics, from beginning of structure,

10000 particles, a total of 87840762 integration steps :

Average energy loss per particle per pass : 63968.01 keV. Relative to initial energy : 6.3968014E-03

Critical energy of photons (average) : 158.9614 keV

Average energy of radiated photon : 49.30345 keV

rms energy of radiated photons : 92.27650 keV

Smallest, BIGEST photon : 0.0000E+00 9.9915E+03 keV

Number of photons radiated - Total : 1.2974348E+07

- per particle per pass : 1297.435

- per particle, per step : 0.1477030

As one can see, the average particle energy loss per turn obtained in the Monte-

Carlo simulation is in a good agreement with the theoretical prediction in Tab. 14.56.

One must restore this energy loss at a synchronous phase necessary for longitudinal

stability. Therefore, the cavity voltage amplitude is |V̂ | = ∆E/q/sin φs = 127.6 MV.

This number is consistent with the rf cavity setting under CAVITE in Tab. 14.17,

namely V̂ = 122.345 MV. The cavity setting is slightly lower than the theoretical

prediction because it accounts for the change in the particle energy as it moves around

the ring.

Question 14.1.2.1-3 - The initial beam distribution in Tab. 14.17 is generated on a

matched vertical phase-space ellipse, using OBJET[KOBJ=8]. The ellipse parame-

ters are specified by the appropriate option of the OBJET element using the Twiss

functions at the start point and the beam emittances. The matched Twiss function

values were taken from the Twiss table that was generated as a result of Ques-

tion 14.1.2.1-1. For simplicity, the horizontal and vertical emittances (noting that

εx,y = σ
2
x,y/βx,y , as usual in electron machines) were set to zero while the vertical

emittance was set to a relatively large value of 10 µrad for synchrotron damping

demonstration. After running the simulation and analyzing, plotting and fitting the

resulting data as described by the question’s statement in Sec. 14.1.2.1, we obtain

evolution of the vertical beam emittance as a function of the turn number shown

in Fig. 14.34. The vertical emittance εy is obtained from the rms beam size σy as

εy = σ
2
y/βy .

An exponential fit to the simulation data in Fig. 14.34 gives a vertical emittance

damping time of 155.3 turns. Note that the equations of Chap. 6 and the values listed

in Tab. 14.56 are for the amplitude damping times rather than the emittance ones.

Since the emittance is proportional to the second power of the betatron amplitude, the

vertical betatron amplitude damping time is a factor of two longer than the vertical

emittance one and equals 310.6 turns. Given the electron circulation frequency in

the AGS Booster listed in Tab. 14.56, this number corresponds to 0.209 ms, which

is in a good agreement with the theoretical prediction of 0.211 ms in Tab. 14.56.
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Fig. 14.34 Damping of the

vertical emittance of a 10 GeV

electron beam in the AGS

Booster lattice. Note a good

agreement of the exponential

fit with the Monte-Carlo data

for only 100 electrons
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that is preserved and thus the higher the spin diffusion rate. Greater misalignments

lead to greater closed orbit distortion and subsequently greater deviation of n0 from

the vertical, greater n(δ) spread and finally greater spin diffusion rate as demonstrated

in Question 14.1.2.2-4.

14.2.2.4 Suppression of Spin Diffusion

Question 14.1.2.2-5 - Both lattices considered in this exercise consist of a solenoid

followed by two dipoles and then another solenoid. Both schemes are simplified

versions of an electron spin rotator, a device rotating the electron polarization from

vertical to longitudinal and then back. Such an insertion is needed to provide longi-

tudinal polarization in the experimental section without causing fast spin diffusion in

the arcs. The first solenoid rotates the polarization about the longitudinal axis from

positive vertical to positive radial. The subsequent dipole rotates the polarization

about the vertical axis from positive radial to positive longitudinal. The difference

between the two schemes is in how the polarization is returned back to positive ver-

tical. In the first scenario, the second dipole bends the beam in the same direction as

the first one and continues polarization rotation in the same direction from positive

longitudinal to negative radial. The second solenoid has the same field polarity as

the first one. It rotates the polarization from negative radial to positive vertical. This

dynamics can be graphically summarized as

↑ Solenoid ⊙ Dipole → Dipole ⊗ Solenoid ↑ . (14.12)

In the second scenario, the polarities of the second dipole and solenoid are

reversed resulting in the following rotation sequence

↑ Solenoid ⊙ Dipole → Anti − Dipole ⊙ Anti − Solenoid ↑ . (14.13)

In both cases, the polarization is positive vertical at the entrance and exit. From

geometrical point of view, the first arrangement causes 138.4 mrad net orbital bend

while the second configuration has zero net bend.

Question 14.1.2.2-6 - The field and spin components along the reference trajectories

of the two spin rotator configurations are shown in Figs. 14.37 and 14.38, respectively.

These graphs demonstrate implementation of the design philosophy described in the

solution to Question 14.1.2.2-5.

Question 14.1.2.2-7 - Figure 14.39 shows the electron vertical spin component at the

end of the spin rotator as a function of the particle’s relative momentum offset. The

momentum dependencies are compared for the two spin rotator configurations. In

this study, different-momentum electrons with initially vertical spins were launched

on the design orbit at the beginning of the spin rotator and tracked to its end. As

we can see, the spin effects of the two rotator designs are equivalent for the on-

momentum particles resulting in a perfect restoration of the vertical spin at the
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Appendix

A run of Zgoubi code, in addition to zgoubi.res execution listing, and depending on

user’s requests, may produce various output files. An instance is zgoubi.plt which

stores particle coordinates, spin coordinates, electric and magnetic field vectors, etc.,

step-by-step across optical elements. Another instance is zgoubi.fai which can be

used for turn-by-turn particle data storage during multiturn tracking in a circular

accelerator. In the present problems, data treatment and graphs can be obtained by

reading these files, using gnuplot for instance, or Zgoubi graphic/data treatment

interface program Zpop [3]. A brief introduction to these aspects of code and output

data handling is given below, and all details can be found in Zgoubi Users’ Guide

regarding the many storage files at disposal; besides, guidance is provided in due

place in the problem assignments (Sec. 14.1) and their solutions (Sec. 14.2).

O

Y

X

m

Cartesian Frame R
M

X

Y

AT

m

O

Cylindrical Frame
              

Fig. 14.42 Cartesian and cylindrical reference frames in optical elements. Let a particle location

M(X,Y,Z) project to m(X,Y) (the dashed curve shows the projected trajectory). In the case of an

optical element defined in Cartesian coordinates (shown here as a rectangular box; for instance,

the cases of BEND, MULTIPOL), X and Y in zgoubi.plt denote the coordinates taken along the

reference frame axes. In the case of an optical element (depicted here as an angular sector AT with

some reference radius RM) (for instance, the case of DIPOLE[S]), X is the polar angle, counted

positive clockwise, Y is the radius

• Data analysis and plotting:

- in the matter of graphics it is foreseeable to achieve about any type of graphic,

from Zgoubi output files, using gnuplot; if data analysis and other averaging are

needed it can be managed via gnuplot scripts (using for instance awk commands,

external programs, etc.);
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- an additional possibility is to use Zpop, which is part of Zgoubi package. Zpop

provides most of the data treatment and graphics means needed to analyze and

display the contents of Zgoubi output files.

Besides the run listing zgoubi.res, the main two Zgoubi output files, generally

used for data analysis or graphics, are zgoubi.fai (created when introducing the

keyword FAISTORE (or FAISCNL, similar), it stores local particle data next to

an optical element), and zgoubi.plt (filled up if the flag IL=2 is present in optical

elements: it logs step-by-step particle and field data, during numerical integration

through the element).

Many additional files can be produced (usually by means of a PRINT argu-

ment in a keyword, see the Users Guide), for instance to log data produced by

various optical elements and commands, during ray-tracing, in view of data treat-

ment, plotting, debugging, etc. Instances are SPNPRT[PRINT] (spin data logged

in zgoubi.SPNPRT.Out), SRLOSS[PRINT] (synchrotron radiation Monte Carlo

data logged in zgoubi.SRLOSS.Out).

• Keywords in Zgoubi: by “keyword” it is meant, the name of the optical elements

(such as BEND, MULTIPOL, WIENFILT), or input/output procedures (such as

FAISCEAU, FAISTORE, SPNPRT, SRPRNT), or commands (such as REBE-

LOTE, TWISS, FIT, GOTO, SYSTEM), as they appear in a simulation input data

file. Keywords are most of the time referred to without any additional explanation

in the exercises: details and explanations regarding the use and functioning of

keywords are to be found in the Users’ Guide [1].

• It is recommended, when setting up the input data files to work out the simulations,

to have Zgoubi Users’ Guide at hand. PART B of the guide in particular, details

the formatting of the input data which follow most keywords, and their units (a

few keywords only, for instance FAISCEAU, MARKER, do not require additional

data). PART A is the “physics content” and details what keywords are doing and

how. The Users’ Guide INDEX is a convenient tool to navigate keywords. A

complete list may also be found in the “Glossary of Keywords” Sections, at the

beginning of both PART A and PART B, and an overview of what they can be

used at is given in “Optical elements versus keywords” Sections.

– A concise notation KEYWORDS[ARGUMENT1, ARGUMENT2, ...] may

be used in the assignments: it follows the nomenclature of the Users’ Guide,

Part B. A couple of examples:

· OBJET[KOBJ=1] stands for keyword OBJET, and the value of KOBJ=1

retained here;

· OPTIONS[CONSTY=ON] stands for keyword OPTIONS, and the option

retained here, CONSTY, switched ON.

– The keyword INCLUDE is used at times. The goal is mostly to modularize input

data sequences, with usually the benefit of reduced file lengths and improved

clarity. In a very similar way to the Latex or Fortran “include” command, a

segment of an optical sequence subject to an INCLUDE by a parent input data

file, may always be replaced by that very sequence segment, in the parent file.
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• (O;X,Y,Z) coordinates in an optical element: this is the coordinate system in which

the field E(X,Y, Z) and/or B(X,Y, Z) is defined (the origin for X depends on the

optical element). Depending on the optical element concerned, this (O;X,Y,Z)

reference frame may be

– either Cartesian, in which case X, Y, and Z denote the particle position in that

frame, T and P the horizontal and vertical trajectory angles (Figs. 1, 2 in the

Users Guide, and Fig. 14.42 here),

– or cylindrical, in which case, given m the projection of particle position M

in the Z=0 plane (Fig. 14.42), Y denotes the radial coordinate: Y = |Om|,

whereas X denotes the polar angle OX-Om (as a matter of fact, the nature of

the variables named X and Y in the source code does change, and in zgoubi.plt

as well) T is the horizontal trajectory angle with respect to the normal to Om,

P is the vertical trajectory angle.
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