

U.S. Particle Accelerator School July 15 – July 19, 2024

VUV and X-ray Free-Electron Lasers

FEL Simulations with Genesis 1.3

Dinh Nguyen,¹ Christopher Mayes,¹ Nicole Neveu², Colwyn Gulliford³ ¹ xLight Inc.

² SLAC National Accelerator Laboratory

³ Xelera

Introduction to FEL Simulations

FEL Amplification in a Long Undulator

LET = Lethargy

FEL power grows very slowly as the three "modes" interfere with one another.

EXP = Exponential growth

The radiation power grows exponentially with z. On the semi-log plot of power vs z, the power growth curve is linear. This region is also known as the linear growth regime.

NL = Nonlinear regime

FEL power reaches a maximum as electrons are trapped and bunched inside the bucket

SAT = Saturation

FEL power saturates and oscillates as a function of z as particles rotate inside the bucket.

Dimensionless FEL ρ Parameter

The dimensionless FEL ρ parameter governs both the FEL gain and output power. There are a number of ways to write the expressions for ρ . Below is the correct expression.

$$\rho = \frac{1}{\gamma_r} \left(\frac{JJ K \lambda_u}{8\pi\sigma} \right)^{\frac{2}{3}} \left(\frac{I_p}{I_A} \right)^{\frac{1}{3}}$$

- where γ_r resonant electron beam energy
 - JJ difference in Bessel functions (see next slide)
 - K undulator parameter
 - λ_u undulator period
 - σ rms electron beam radius
 - I_p peak electron beam current
 - \hat{I}_{A} Alfvén current

$$I_A = 4\pi\varepsilon_o \frac{m_e c^3}{e}$$

 $I_A = 17 \ kA$

Bessel JJ Factor Explained

The figure-8 motion of the electrons in a planar undulator modulates the electrons' longitudinal velocity and reduces the electron-radiation wave interaction. The reduction is expressed in terms of the difference between the J_0 and J_1 Bessel functions of an argument ξ that depends on K. This reduction affects planar, but not helical, undulators.

For a planar undulator, JJ decreases to ~0.7 at very large K.

The textbook defines the modified undulator parameter, \widehat{K} a product of K and the difference in Bessel functions. \widehat{K} is to be used in calculations that involve the interaction strength. For wavelength calculations, one should use K.

 $\widehat{K} = K \cdot JJ$

JJ is unity for helical undulators (no correction).

1D Gain Length in Exponential Regime

FEL power stays relatively constant in the lethargy regime and then grows exponentially with *z* in the exponential regime with a characteristic "power gain length," the length over which FEL power grows by one e-folding.

$$P(z) = \frac{P_0}{9} e^{\frac{z}{L_G}}$$

1D power gain length

FEL power saturates in about 20 power gain lengths.

FEL Variables

 ψ_n : Phase of the $n^{ ext{th}}$ electron with respect to the FEL resonant radiation wave

 η_n : Energy detuning of the $n^{ ext{th}}$ electron from the FEL resonant dimensionless energy

$$\eta_n = \frac{\gamma_n - \gamma_r}{\gamma_r}$$

 γ_r : Resonant dimensionless energy $\gamma_r = \sqrt{\frac{k_r}{2k_u} \left[1 + \frac{K^2}{2}\right]}$ $k_r = \frac{2\pi}{\lambda_r}$

 \widehat{K} : Undulator parameter corrected for the difference in Bessel functions

Coupled FEL Equations

Evolution of the n^{th} electron phase

$$\frac{d\psi_n}{dz} = 2k_u\eta_n$$

Radiation field amplitude grows with the first harmonic current density

Evolution of the n^{th} electron energy deviation

$$\frac{d\eta_n}{dz} = -\frac{e}{m_0 c^2 \gamma_R} \operatorname{Re} \left\{ \begin{bmatrix} \widehat{K} \widetilde{E}_x \\ 2\gamma_R \end{bmatrix} - \widetilde{E}_z \end{bmatrix} \exp(i\psi_n) \right\}$$
Radiation-electron interaction

Electron-electron interaction (space charge) –

First harmonic current density

$$\tilde{j}_1 = j_0 \frac{2\pi}{N} \sum_{n=1}^N \exp(-i\psi_n)$$

Space charge effects are negligible for FELs operating in the Compton regime (e.g., X-ray FELs). Space charge cannot be ignored for FELs operating in the Raman regime (e.g., THz FELs).

Introducing normalized variables

Normalized undulator coordinate

 $\tau = 2k_u\rho z$

Normalized radiation field amplitude

 $A = \frac{E}{E_s}$ Saturation electric field $E_s = \frac{Z_o \rho P_b}{\pi \sigma_r^2}$

Normalized energy deviation from resonance

$$\bar{\eta}_n = \frac{\eta_n}{\rho}$$

Saturated normalized SASE power at zero initial energy detuning

1D FEL Equations

Normalized radiation field amplitude grows with electron microbunching

Electron microbunching grows with the normalized electron energy modulation

Energy modulation grows with radiation field amplitude correlated with electron phase

1D FEL Equations in Python

$$\frac{dA}{d\tau} = \frac{1}{N_e} \sum_{n=1}^{N_e} e^{-i\theta_n}$$

$$\frac{d\theta_n}{d\tau} = \eta_n$$

$$\frac{d\eta_n}{d\tau} = -2 \, Re \big[A(\tau) e^{i\theta_n} \big]$$

Initial Conditions

- SASE FEL A(0) = 0
- Seeded FEL $A(0) = A_0$

 $|b(0)|^2 \neq 0$

Bunched Beam FEL

Planar Undulator Magnetic Field

Planar undulator magnetic field that satisfies Maxwell's equation

 $\boldsymbol{B} = B_0 \,\hat{\boldsymbol{y}} \sin k_u z \cosh k_u y$ $+ B_0 \,\hat{\boldsymbol{z}} \cos k_u z \sinh k_u y$

Lorentz force equation

 $\gamma m_e \frac{dv_x}{dt} = -ev_z B_0 \sin(k_u z) \cosh k_u y$

 $\gamma m_e \frac{dv_y}{dt} = -ev_x B_0 \cos(k_u z) \sinh k_u y$

Small $(k_u y)$ approximation

$$\cosh k_u y \cong 1 + \frac{(k_u y)^2}{2}$$

 $\sinh k_u y \cong k_u y$

Planar Undulator Natural Focusing

Equations of motion

 $x^{\prime\prime} + k_{\nu}^2 x = 0$

In homework problem 2.1, you'll be asked to derive these equations of motion

$$y'' + \left(k_u^2 \frac{K^2}{\gamma^2} \cos^2 k_u z\right) y = 0$$

Averaging over one undulator period yields the following equation

$$y'' + \left(k_u^2 \frac{K^2}{2\gamma^2}\right)y = 0$$
 $y'' + k_y^2 y = 0$

The beam experiences natural focusing in y with focusing function

$$k_{y} = \frac{k_{u}K}{\sqrt{2}\gamma}$$

The natural focusing is considered weak focusing.

Strong Focusing in a FODO

QF focusing quad (in x) Drift

$$\begin{bmatrix} x \\ x' \end{bmatrix}_{z \to z+l} = \begin{bmatrix} \cos \sqrt{kl} & \frac{\sin \sqrt{kl}}{\sqrt{k}} \\ -\sqrt{k} \sin \sqrt{kl} & \cos \sqrt{kl} \end{bmatrix} \begin{bmatrix} x \\ x' \end{bmatrix}_{z} \begin{bmatrix} x \\ x' \end{bmatrix}_{z \to z+\frac{L_{c}}{2}} = \begin{bmatrix} 1 & \frac{L_{c}}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ x' \end{bmatrix}_{z}$$

QF thin lens approximation

Light

SLAC

Quad focusing strength

$$k[m^{-2}] = 0.299 \frac{G_Q\left[\frac{T}{m}\right]}{E[GeV]}$$

Quad focal length

$$f = \sqrt{kl}$$

QD thin lens approximation

$$\begin{bmatrix} x \\ x' \end{bmatrix}_{z \to z+l} = \begin{bmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{bmatrix} \begin{bmatrix} x \\ x' \end{bmatrix}_{z}$$

Thin Lens Model of a FODO

Half a QF

 $\begin{bmatrix} x \\ x' \end{bmatrix}_{z \to z+l} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ \frac{1}{f} & 1 \end{bmatrix} \begin{bmatrix} x \\ x' \end{bmatrix}_{z}$

Half a QF

Light

SLAC

Drift

Drift

Beam Envelope in a FODO

Genesis 1.3 Simulation Code

Genesis 1.3 version 4

- We will focus on Genesis v4, written in C, for doing both time-independent and time-dependent FEL simulations.
- Genesis uses undulator averaged approximation and thus expresses all the distances in the units of undulator period XLAMD
- Electromagnetic fields are expressed on the Cartesian grid
- Electrons are represented by an equal number of macroparticles arranged in slices, one resonant wavelength XLAMDS long
- Slices are ≥ one wavelength apart
- Genesis v4 can be found at https://github.com/svenreiche/Genesis-1.3-Version4.

LUME-Genesis

- LUME-Genesis is the Python interface to setup, run and analyze Genesis v4 simulations
- LUME-Genesis allows Genesis v4 to be run from a Jupyter Lab notebook
- Genesis v4 can also be run from a Linux command line
- Examples of Genesis4 JL notebooks:
 - intro-1-Quickstart.ipynb # Load an existing input file and run Genesis4
 - MingXie.ipynb
 # Analytic model of a high-gain FEL via Ming Xie parametrization

Input Files

- rootname=Example1
- lattice=Example1.lat
- beamline=FEL
- lambda0=1e-10
- gamma0=11357.82
- delz=0.045000
- shotnoise=0
- nbins = 8
- &end
- &lattice
- zmatch=9.5
- &end

- &field
- power=5e3
- dgrid=2.00e-04
- ngrid=255
- waist_size=30e-6
- &end
- &beam
- current=3000
- delgam=1.00
- ex=4.00e-07
- ey=4.00e-07
- &end

Light

SLAC

XELERA

Lattice Files

- D1: DRIFT = { | = 0.44};
- D2: DRIFT = { | = 0.24};
- QF: QUADRUPOLE = { | = 0.080000, k1= 2.000000 };
- QD: QUADRUPOLE = { I = 0.080000, k1= -2.000000 };
- UND: UNDULATOR = { lambdau=0.015000, nwig=266, aw=0.84853, helical= True};
- FODO: LINE={UND, D1, QF, D2, UND, D1, QD, D2};
- FEL: LINE={6*FODO};

Planar Undulators

 $a_w = 0.660\lambda_u B_0$

Helical Undulators

 $a_w = 0.9338 \lambda_u B_0$

Quadrupole Strength

$$k_1\left(\frac{1}{m^2}\right) = \frac{0.29979}{E_b(GeV)}G\left(\frac{T}{m}\right)$$

Input Electron Beam Files

• &beam

- @beamgamma (from beam_gamma.h5)
- @beamcurrent (from beam_current.h5)
- &importbeam xxx.Beam
- &importdistribution xxx.distribution.h5

Output Files

- Output files (xxx.out.h5)
- Output field files (xxx.fld.h5)

&write field = end &end

• Output beam files (xxx.par.h5)

&write beam = end

&end

Time-Dependent FEL Simulations

Illustration of TD Genesis Simulation

Simulation Time Window

- **s0** (*double*, 0): Starting point of the time-window in meters.
- slen (*double*, θ): Length of the time window in meters. Note that for parallel jobs this might be adjusted towards larger values.
- sample (*int*, 1)): Sample rate in units of the reference wavelength from the setup namelist, so that the number of slices is given by SLEN / LAMBDAO/SAMPLE after SLEN has been adjusted to fit the cluster size.
- time (*bool, true*): Flag to indicate time-dependent run. Note that time-dependent simulations are enabled already by using this namelist. This flag has the functionality to differentiate between time-dependent run and scans, which disable the slippage in the tracking. To restrict the simulation to steady-state the time namelist has to be omitted from the input deck.

Profiles

$profile_gauss$

- label (string, < empty >): Name of the profile, which is used to refer to it in later calls of namelists
- c0 (double, 0): Maximum function value of the Gaussian distribution
- s0 (double, 0): Center point of the Gaussian distribution
- sig (double, 0): Standard deviation of the Gaussian distribution

profile_step

- label (string, < empty >): Name of the profile, which is used to refer to it in later calls of namelists
- c0 (double, 0): Constant term
- s_start (double, 0): Starting point of the step function
- s_end (double, 0): Ending point of the step function

FEL Simulation Examples

- LEUTL Visible SASE FEL
- SPARC Visible SASE FEL
- FERMI HGHG FEL
- LCLS First-Lasing X-ray FEL

LEUTL Visible SASE FEL

Beam & FEL Parameters	Symbol	Value
Beam kinetic energy	E_b	217 MeV
Dimensionless energy	γ_0	426
Peak current	Ip	150 A
Relative energy spread (rms)	$rac{\Delta\gamma}{\gamma_0}$	0.1%
Normalized x emittance	ε_{nx}	9 mm-mrad
Normalized y emittance	ε_{ny}	9 mm-mrad
FEL wavelength	λ	521 nm
FEL dimensionless gain	ρ	0.0017
1D gain length	L_{G}	0.9 m
Saturation length	L_s	36 m

Undulator Parameters	Symbol	Value
Undulator period	λ_u	0.033 m
Dimensionless parameter	K	
Undulator length	L_u	
Twiss beta function	β_T	
FODO period	λ_{FODO}	

SPARC Visible SASE FEL

Beam & FEL Parameters	Symbol	Value
Beam kinetic energy	E _b	152 MeV
Dimensionless energy	γ_0	298
Peak current	I_p	53 A
Relative energy spread (rms)	$rac{\Delta\gamma}{\gamma_0}$	0.09%
Normalized x emittance	ε_{nx}	2.5 mm-mrad
Normalized y emittance	ε_{ny}	2.9 mm-mrad
FEL wavelength	λ	491.5 nm
FEL dimensionless gain	ρ	0.0021
1D gain length	L_{G}	0.62 m
Saturation length	L_s	20 m

Undulator Parameters	Symbol	Value
Undulator period	λ_u	0.028 m
Dimensionless parameter	K	
Undulator length	L_u	
Twiss beta function	β_T	
FODO period	λ_{FODO}	

FERMI VUV HGHG FEL

Beam & FEL Parameters	Symbol	Value
Beam kinetic energy	E _b	1,500 MeV
Dimensionless energy	γ_0	
Peak current	Ip	
Relative energy spread (rms)	$rac{\Delta \gamma}{\gamma_0}$	
Normalized x emittance	ε_{nx}	
Normalized y emittance	ε_{ny}	
FEL wavelength	λ	260 nm
FEL dimensionless gain	ρ	
1D gain length	L_{G}	
Saturation length	L _s	

Undulator Parameters	Symbol	Value
Undulator period	λ_u	
Dimensionless parameter	K	
Undulator length	L_u	
Twiss beta function	β_T	
FODO period	λ_{FODO}	

LCLS First Lasing SASE FEL

Beam & FEL Parameters	Symbol	Value
Beam kinetic energy	E_b	13,640 MeV
Dimensionless energy	γ_0	26,694
Peak current	Ip	3,000 A
Relative energy spread (rms)	$rac{\Delta\gamma}{\gamma_0}$	0.0001
Normalized x emittance	ε_{nx}	0.4 mm-mrad
Normalized y emittance	ε_{ny}	0.4 mm-mrad
FEL wavelength	λ	0.15 nm
FEL dimensionless gain	ρ	0.0009
1D gain length	L_{G}	1.6 m
Saturation length	L _s	40 m

