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Monday Schedule K
XELERA
e Introduction to FEL, undulator radiation 09:00 - 10:00
Break 10:00 — 10:10
 Electron motions in an undulator 10:10 - 11:10
Break 11:10-11:20
* FEL coherent emission process 11:20 — 12:00
Lunch Break 12:00 — 13:30
* Introduction to simulation laboratory 13:30 — 15:15
Break 15:15 - 15:30
 LUME-Genesis & Jupyter Lab notebooks 15:30 - 17:30



Introduction to FEL and Undulator Radiation
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Electromagnetic Radiation in Free Space =~ X
EM radiation as waves EM radiation as particles
— i(kz-wt+1) 1239.84 eV
E(z,t) = Epe Photon energy hv = -
Speed of light Alnm]
Wavenumber Angular frequency w
k = 21 w = 2TV E=7
y) Planck constant

c = 2.99792458 - 10% m/s
h =4.1357 -107 % eV-s

A-hv=hc=1.23984 -10 %eV-m
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Accelerated Charged Particle Radiation P S
XELERA
Radiation from circular motions Wavelength

\ 1 um 100 nm _10nm 1nm o.? nr{n=1A

Bremsstrahlung & o iy Cquaﬂ
W UVE& Extreme ll.lltmviolet i Hard X-rays

e % I
Tev 0ev 100 eV TkeV 10 kev

Photon energy

Bend magnet radiation —

—— Mechanisms of radiation in Synchrotron Light Sources

_/

) /\ /\ /\/9 m======) Mechanism of radiation in Free-Electron Lasers

a=v,
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FEL Wavelength for a Planar Undulator xﬁﬁ
Undulator period
FEL resonant wavelength ‘ Undulator periods are in the
range from 1 to 10 cm
A M 1+ K
2y % 2
Undulator parameter
Lorentz relativistic factor
(Dimensionless beam energy) K = 0.9337 B(')?\“y_,
— Etotai Beam energy is selected depending on
mecz the desired FEL output wavelength.
A Ey B, in tesla Ay incm
THz sub-mm <10 MeV
IR lm <50 MeV
VUV 10 nm ~1 GeV
Soft X-rays 1nm 1-5 GeV

Hard X-rays 0.1nm  >5GeV ©
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Planar Undulators Produce Plane Polarized Light ﬁ
iy Magnified image of EM waves
Sl eld=ld e ldo|d | @ oo Magnetic field

Electrons experience the v, X B, restoringforce that
opposes the transverse motion in the x direction as

k—v_} . . . . .
ey they propagate along the z direction. This microscopic
oscillatory motion generates electromagnetic waves
On-axis magneticfield in the y directionvaries with electric fields also polarized in the x direction.
sinusoidally with z with period of A, Note the EM waves slip ahead of the electrons one

_ - wavelength every undulator period.
B = Bysin(k,z)y

Undulator wavenumber ku = 7\,_
u
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Helical Undulators Produce Circularly Polarized Lig¥d

XELERA

In a helical undulator, the undulator magnetic
field varies sinusoidally with z and points in both
x and y directions in a helical fashion.

B = By(cos(k,z) X + sin(k,z) y)

Snapshots of the helical undulator
magnetic field vector and radiation
electric field vector at different
locations in one undulator period.
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Electron Beam Kinematics K
XELERA
Dimensionless beam energy Ratio of electron velocity to the speed of light
Etotal Ig — Z
- 2
mec ¢
Erorqr = Ex + mecz Relationship between y and 3
| y = 1 1
S Rest mass energy — P2 = [1=-==
Kinetic energy 0.511 MoV 1-p p N ]/2

Approximate y for GeV electrons
Approximate /S for relativistic electrons

Eiotar = Ex = Ep

1
Br1-7s

y ~ 1957 E, [GeV] 22
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Transverse Velocity & Definition of K X
On-axis undulator magnetic field Undulator dimensionless parameter
B = Bysin(kyz) y . eB, _ ey, Bo
Transverse acceleration kymec  2mmec
dv
ym, d_tx = —ev,Bysin(kyz) K = 0.9337 Ay [cm]By|T]
dvx dvx eB . K is a measure of how much the
vzdt = dz = Vme Sln( uZ) electron beam is deflected from the

propagation axis as it crosses the axis

Integrate with respect to z

eB, cK

= - k
U — cos(k,z) ‘ Uy ” cos(k,z)

K
Bx = " cos(kyz)

10
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Average Velocities in a Planar Undulator XX
KZ
B2 = 7cosz(kuz) )
e 7 K

(ﬁ,%) _ 2_22 [/\/\/\ Omax y
*Au """"""" > e- trajectory

i + Bz = B
B N

(B7) = B? — (B2) bz

KZ
(Bz) = B* — ﬁ Approximate 3, for relativistic electrons in an undulator
K2 ~ 1 — L K_z)
(B.) ~ - (Bz) = 1 2y2(1+ >

11
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Lorentz Transformation X
Consider an electron movingin the +z direction inside an Laboratory frame
undulator magnetic field with period A,, ) Ay \
B

In the frame moving with the electrons, the “beam frame,”

the undulatoris an EM wave movingin the -z direction A

. . s / u
with periods shortened by y Ay = F

AI
B “ > Beam frame
4
%
LI}

12
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Relativistic Doppler Shift X

In the beam frame, the electron oscillates up and down and emits radiation with wavelength
equal to the Lorentz contracted undulator period.

Transforming to the lab frame, the radiation wavelength get Doppler shifted to shorter wavelength.

A 1—3_]1—32 J1-B 1 MM

M1+ T JA+p)?2 A+ (A+B)y T2y T 22

Wavelength is shortened by a product of
Lorentz Contraction & Doppler Shift

A K*?
1 1 1 kz_u(“__)

— X =

,y* zy* 2)/*2 2y2

13
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Inverse Compton Scattering P4

XELERA

In Inverse Compton Scattering, a laser beam is directed toward the electron beam traveling in
opposite directions. The scattered radiation of interest travels in the electron beam’s direction.

[

C
o—> «)})}))))) (((((({(p «})})))))) (((((({(p «)})}))))» (((((({{{'

In the electron rest frame, the laser wavelength gets Doppler shifted to a shorter wavelength.

21 = A
@.... 2y
In the lab frame, the scattered wavelength gets Doppler shifted one more time.

— A

A=
v, 2)/

14
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Undulator Radiation Wavelength X

Consider an observer
looking at the electron at
angle 8 w.r.t. the z axis.

. -
U, \\_/ In the time At the electron
travels one period, 4,
Ay, Aycosf+ A

Average velocity along z 5 -
VA

_ 1 K* A, Aycosf
V,=c|\l=—5s=|1+— — — =1

2y 2 Vz ¢ Fundamental undulator wavelength
Small-angle approximation Ay K? 2

A= L=o—— 0%
A, 92 22\ T2 7Y
A= K2 _Au 1-— 7

(1-2(1+7))

15
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Electrons radiate when they are accelerated XX

XELERA

Electron trajectory W

o
i

time

In the electron rest frame, their
motions are non-relativistic. We
can calculate the total power

radiated by an oscillating dipole.

Larmor formula

electric field

ye e*[., (v X V)?

P = — |V
6me, 3 c?

Electrons emit the highest radiation power where they experience the greatest acceleration.

16



Storage Ring (Circular Accelerator)

to many experimental user stations

, /" /ﬁ Each storage ring can provide X-rays
\ '

Experimental user stations

‘ Booster ring \

Electrons are produced in the

linac, injected and accelerated
in the booster ring and stored
in the main storage ring.

BENDING
MAGNET

Electrons going around bending

magnets emit broadband synchrotron
radiation from IR to X-rays. rocusii®
MAGNETS
A wiggler can be treated as a series of bending

magnets. Wiggler radiation has higher flux and at STORAGE RING

higher energy than bending magnet radiation.

UNDULATOR

Electrons traversing an undulator
emit X-rays at discrete energies.

17
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Synchrotron Radiation (SR) .. 4
XELERA
Bending magnet Opening Spectral z
angle property =
Broadband _4
Broadband z
— L
a 1 Sharp lines £
\9 = o =
\ N]/ 2 g
£ 18

ho



Synchrotron Radiation Pattern o

Bend magnets Insertion Devices

Lorentz-Transformation Beam frame

R

Beam frame Lab frame

19
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Figure 8 Motion o

In the beam frame, the undulator is a traveling EM wave with the Lorentz contracted period Ay
The electron oscillates at a wavelength equal to the contracted undulator period, A" = A,

® !/
1
1

A

In the beam frame, the electron oscillates transversely (along the x’
axis) and also longitudinally (along the z' axis) at twice the
frequency of the transverse oscillations. The amplitude of this
figure-8 motion depends on the undulator K parameter.

The figure-8 dithering motion gives rise to undulator radiation at
the harmonics of the fundamental frequency.

20
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Undulator Radiation Harmonics .. 4

XELERA

Radiation beam _
Harmonics wavelength

Ay K? B
Am—m2y2(1+7+y 6

transverse profile

Harmonics number

m=1

Flux through Finite Aperture
6e+15

N
(¢
+
-
(&)}

m=3

ol

Flux (ph/s/.1%bw)

2e+15

m=5

0 JLl A T “ T A T J T /\ I‘A I/\ 4lj\ J} /\I
6 8 10 12 14 16 18 20
Photon Energy [keV]
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Undulator Radiation Spectral Property P4
XELERA
I Peak « N2 .
L Aw _
—_ oc —_ >
S .
A single electron traversing an undulator with N, : :
periods will produce a constant amplitude train I \
of electromagnetic waves with N, wavelengths. ) A 2
The Fourier Transform of a constant amplitude 42U sin (ﬂNu (w_c;))>
wave train with N, wavelengths is a sinc? function x NZE£ 7
with a spectral FWHM of approximately 1/N, dQldw TNy, (w_a))
0

The number of photons within the coherent angular
and spectral bandwidths is proportional to the number K \?2
of electrons and the fine-structure constant,a« = 1/137 Nconerent = MaNp (1 n KZ)
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Definition of Radiation Brilliance X

The brilliance (brightness) of synchrotron radiation is defined as

Spectral Flux
A A,

Brilliance =

By convention, spectral flux is defined as number of photons per second per 0.1% relative bandwidth.

A
For a diffraction limited radiation beam, the phase space area in x (and y) is given by 4, ,, = 5

The brilliance of a diffraction limited beam (FEL and DLSR) of radiation is defined as

Spectral Flux
12

Brilliance = 4

# photons
s mm?mrad? 0.1% BW

Brilliance is in the unit of

Photon Energy (eV)
23
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SR and DLSR Brilliance XXELERA
ELETTRA - 2 GeV Storage Ring ESRF - 6 GeV Storage Ring
Wavelength(nm)
201000 100 10 1 0.1 20
il i —— ESRF 2018 ' !
R ot N
3 =400 mA /U4'6 E N.g ESRF-EBS mini 3
g ; . ~ ".-\-__.\
NE 107 F /UL25 10" E 51 o \
g - 3 10 [~ pes
s 7 L\
:f=§ Bending Magnet —c\g - i ‘\
10" = 1019 B \ :
s i 10" | |
- b 1I‘;-)hoton Energy (e:/c)) l keV 1 O keV l 00 keV

Photon Energy



Wave Equation and Coherence

25
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Electric Field of a Gaussian Wave-Packef>

Complex electric (t—tg)>
field of a Gaussian _ i(kz—wt+ T g2
wave-packet E(Z; t) = j?oe ( l/‘))e t + C.C.
Amplitud Phase
Gaussian envelope rms temporal width
Wavenumber Angular frequency
21
Radiation intensity k=~ Y= %
[ =—|E(z D
= Z,
27 Normalized
Fast carrier waves at w intensity envelope
1
[h =—|E L —— | HHH” ”””' ””(”H”HW e
0 =57 1Eol il 1

Gaussian envelope

t Impedance of free space = 1201 Q
26
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Fourier Transform a Gaussian Pulse X

Consider only the time-dependent part of a
Gaussian wave-packet. Its Fourier
Transform is a Gaussian spectrum centered
at + w,

tZ

E(t) — Eoe _iwrte _20'3

20,

—’ —

Time domain

2
E _ T
E(w) = \/To_n j e—i(a)—wr)te 20? dt

_ (w_wr)2
0 T2
E(w) =— 20
(@) 20, € ©
Minimum time-
bandwidth product
1E(w)]? (rms widths)
20,
|

w,

Frequency domain
27
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Radiation Pulse & Time-Bandwidth Product >&

XELERA

Full-width-at-half-maximum (FWHM) in Linear frequency
time Ot and linear frequency domain v = w
* Time-bandwidth product for a Gaussian pulse 2m
4In2 |E()|?
ov - ot = — OOt = 0.44 ot = 2V 2In2 oy
e Multiply both sides by the Planck’s constant in eV-s
h=4136 -1071° eV-s
Gw
hév -6t =1.82el - fs oV = 2V2In2 —

2T

Energy (eV) — time FWHM product IE)|?

S -0t =1.82eV - fs

FWHM




Wave Equation & Helmholtz Equation X
* Wave equation | 02
(V — §ﬁ>u(r, t) =
* Solution to the wave equation u(r,t) = Re{\p(r) e—iw’”t}
Time-independent Time-dependent
wave amplitude oscillatory term

* Helmholtz equation for the time-independent wave amplitude

(V2 + k2) w(r) = 0

y(r) = A(r) etk

29
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Paraxial Approximation o
Baraxial wave equation for a wave 5 0
propagating in the z direction V4 —2ik— | A(x,y,z) =0
V..d dine d aZ Gaussian beam transverse amplitude
t r etr_mtlej,gani\,/erse Spreading due (beam propagating in the z direction)
o optical diffraction o2 (62 N 52
T u—
and k= \/k,% + k2 + k2 dx? = dy*
Paraxial approximation kx + ky K kz y
For axisymmetric Gaussian beams, kx = ky
r2 [, T2
E(r,z) = Ey =2 ¢ W@ eilkz-0t+y(2) el<k—2R(2))
! w(2) y
Gouy phase shift

Wy is the radius where the field

decays to 1/e of E, at the beam waist Radius of curvature of the

w(z) is the 1/e radius at location z Gaussian beam wavefront .
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Radiation FWHM, Radius and Emittance @ >%

XELERA

Gaussian beam radial FWHM
6rFWHM =V 2ln?2 Wy ( Wqo = 1/@2 radius)

Gaussian beam angular divergence FWHM

57"FWHM =V 2ln2 6 (9 = 1/62 half—angle) I(T)

W 1(r")
rms beam radius Oy = -
. 6
rms angular divergence 0, =7
2
Gaussian beam emittance €, = Jra,f Radial dimension (or angle)
A Photon beam emittance for
€r = 4— transversely incoherent (not € = M? — M? >1
i diffraction limited) radiation 41t
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FEL Radiation Beam Transverse Coherence X

XELERA

A

Incoherent
monochromatic
diffuse source
(e.g., Na lamp)

Slope = —

Radiation phase-space

2a ‘
i

I Screen
Narrow slit Young’s
diameter = 2a double slit
Condition for interference
pattern to appear on screen
y) Coherent phase-space area
A< >

A
[ A=2T[Er=5

32



How does an FEL differ from a laser? =

FEL gain medium is free electrons in vacuum (lasers have bound electrons)

FEL have broad wavelength tunability (lasers have no or limited tunability)

FEL beams are distortion-free (laser gain media have optical distortions)

FEL work at x-ray wavelengths (x-ray laser upper state lifetimes are too short)

The coherence length of a SASE FEL is much shorter than that of a typical laser.



Electron Motions in an Undulator

34
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Fast and Slow Electron Motions .. 4

XELERA

Motion

= Fast transverse motion in x
= Once every undulator period

" Fast longitudinal motioninz
= Twice every undulator period

= Slow transverse motion
= QOccurring over many undulator periods

= Slow longitudinal motion
= Occurring over the entire undulator length

What causes the motion

Lorentz force due to v, cross B,

Modulations of v, in a planar undulator

(Helical undulators do not have this motion)

Weak focusing due to transverse field gradient
Strong focusing due to external quadrupoles

Microbunching due to FEL interaction

35
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Lorentz Force =

XELERA

Lorentz force governs the rate of change in the electron beam energy and momentum

F=—e(E+vXxB)

Force caused by an electric field acts along the electron beam propagation direction, thus changing the
beam energy
AW=fF-ds=—feE-ds

Force caused by a magnetic field is perpendicular to the beam propagation direction, thus changing
the beam momentum by Ap and the beam direction by Ap/p,. Magnetic force does not change the
beam energy.

Ap = fF dt = —je(va)dt

36
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Fast Transverse Motion in a Planar Undulato?™®<
Electrons enter the undulator with a small initial Transverse acceleration
velocity Vy. Lorentz force is the restoring force d dv
. eper - .y px X . A
that brings them back to the equilibrium position, =ym,—— = —ev, Bosm(kuz) X
similar to an oscillating mass on a spring. dt dt
= = — sin(kyz)
v,dt dz ym,
Integrate with respect to z eB
Vy =C cos(k,z)
ymekyc
Transverse velocity Vy =C ; cos(k,z)
©2007 Yves Ptll?v ‘Ump Jwab.nef.ca/chBes)
Transverse X = sm(kuz)

displacement vk,
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Longitudinal Motion in a Planar Undulator X

XELERA
" R
[ A.
U,y = max /:L
Transverse velocity in x relative to ¢ Longitudinal velocity in 7 relative to ¢
By = fsind Jﬁz 2
Average transverse velocity squared ﬁ
2 B, =P |1——=
2 Omax z ﬁz
bx = "= \
0 _ K Average longitudinal velocity along the undulator
max — 2
14 R2 ~ ,32 K > 1 1 K*
x 2y 2 2= 2T oy2 T 42

38
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Particle Transverse Positions and Angles Xﬁﬁ

Consider a single electron (red) in an ensemble of billions of particles co-traveling with the
reference particle (blue)

\ 4

X is the transverse position of the particle relative to the reference particle

x' is the angle the particle makes with respect to the reference particle’s trajectory

dx Dpx  Vx
X = — ~
dz p, ¢

Similarly, the particle is also described by its transverse position y and angley’

Paraxial approximation: transverse velocities are much smaller than ¢ so the angles x’ and y' « 1

39
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Ensemble Averages and rms Values ";ﬁ'

XELERA

Ensemble average value of x? 1

(x?) = [xzf(x, x',y,y") dx dx'dy dy'

08
C

Ensemble average value of x'?

(x'?) = [x’zf(x, x',y,y)dx dx'dy dy'

Ensemble average value of xx’

(xx") = [xx’f(x, x',y,y)dx dx'dy dy'

xx is the correlation between the particle’s position

40



Normalized and Un-normalized Emittance X

Un-normalized rms emittance in x

Ex,rms = \[<x2><x’2> — (xx')?

Un-normalized emittance is larger at low energy

—

Un-normalized emittance decreases as the beams are
accelerated to higher energy (adiabatic damping)

!

> X

To compare emittance of particle beams with different
energy, we “normalize” the emittance by multiplying it
by By (ory since f~1). The normalized emittance is
conserved in the absence of non-linear forces.

08
0.6
04
0.2
wx -0
0.2
04
4.6
.48

50 -200 -150 -100 -50 4] 50 100 150 200 250

Enrms = .By\/<x2><x'2> — (xx')?

41



yLight

ol Ay
AN

Photon Beam Emittance XX

XELERA

* Consider a TEM,, Gaussian beam at the beam waist

E(r) =Eyexp (— ﬁ) E,exp ( r’ )

wé 40f

. Wo
rms beam radius Oy = —

2

E(r)

* We also write the electric field as a function of beam divergence

2 12
AN r _ r .
E(r') = Eyexp (— ﬁ) = Eyexp (_ 402’) Photon beam rms emittance
r
A
rms angular divergence O =3 " 4m

42
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Beam-limited Radiation Brightness XX
Phase space areainx, y Ay = 2m2y 2 Ay = 27szzy’
Source size X,y = \/O’% + o/
Angular di —
ngular divergence 3. = \/0'3?, n 0_7?,

Example: typical geometric emittance at ALS

Third generation synchrotrons are e-beam emittance dominated ,
g, =2nm—rad

O, > Oy O, > Ot Ex = Ox0,1 D & ¢, ~0.04nm—rad
iati i # photons
Undulator radiation brightness F F = Spectral photon flux( IZ )
BUR — 0.1% BW - s

2
4148, 8,y

43



Diffraction-limited Radiation Brightness
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P-4

XELERA

If the electron beam emittance is less than or equal to
the radiation beam emittance, the output radiation is
considered diffraction limited

A
S
Diffraction-limited phase-space area
A, =2no,0, = 2TE,
) A
T2
Diffraction-limited radiation brightness B = 4F
DL —

22

DLSR is coherent for A > 4mey ,,; below that, it is beam emittance dominated.

44
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Undulator Radiation and FEL Brilliance .4

XELERA

PEAK SPECTRAL BRIGHTNESS [photons/(s mm? mrad? 0.1% bandwidth)]

10%
10*4 -
10?6 -
1032 —
10‘)1 -
10%
10%
1023 -
1027
10%
1025 -
10%*
102
102

"

10°!

10%

BESSY

-
-~
European __-Z~SACLA

PETRA III

PAL-XFEL

10*

10!

10% 10° 10*
PHOTON ENERGY [eV]

10°

10°

Peak Brilliance # photons
(Spectral Brightness) B =

P AE
Axhy (F)T
Phase-space areas in x and y _ 1 dﬂj L
Relative x-ray energy bandwi Pulse length

T | Und.Radiation | FeL

# photons/pulse ~ 108 ~ 1012
Phase space area Ay, = 2méey, Ay, = .
Relative BW ~ 1% ~0.1%
Pulse length ~ ps 10s of fs
Total increase 1 108- 1010

45
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Benefits of FEL over Undulator Radiation X

XELERA

Small beam size

Low angular divergence

Femtosecond pulses

Narrow spectral BW

Higher photon flux {

R

Full transverse coherence
Diffraction limited radiation
Coherent diffractive imaging

Time-resolved studies of physical, chemical, biological
and materials science dynamics

High-resolution spectroscopy

X-ray diffraction of small crystals, single viruses, etc.

Better signal-to-noise ratios

46
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Electron Position & Velocity X
Electron position and velocity in one undulator period
x = ——sin(k,z) z =,

ky v

K
Vx = C?COS(kuZ) Example: A, = 5.6 cm,K=3and E, =8
€ Y, GeV, the maximum transverse position
1‘ )’ . v and angle of the trajectory are:

Xmax = 1.7 um

1
KZ 2
Omax = 192 urad

48
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Lorentz Force & Energy Exchange Rate P4

XELERA

The v x B force produces the transverse acceleration, i.e., rate of change in the electrons’ relativistic
transverse momentum. The rate of change in the transverse momentum is proportional to the
product of the electrons’ longitudinal velocity (m/s) and the undulator magnetic field (tesla).

d
—p = —evXB d(ymevx) = —e’UZBy

dt dt

The rate of change in the electron energy (W) is proportional to the dot product of the electron beam’s
transverse current (A-m) and radiation beam transverse electric field (V/m).

Vy dW_. E d)/
dc )

a
(

49
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Resonant Wavelength X

XELERA

\4

In the time the electrons travel one undulator period (blue), the optical wave (red) has traveled one
undulator period plus one wavelength. The wave slips ahead of the electron one wavelength. This
special wavelength is called the Resonant Wavelength.

M Ay ke M _ 1 .

v, c A My 1__[1+

50



Electron-Wave Energy Exchange P4
XELERA
Rate of energy exchange
daw
Transverse electron E =J-E Electromagnetic radiation
current density | | transverse electric field
cK | |
Jx = —37 cos(kyz) E, = E, cos(kz — wt + @)
d CKEO

— (ym,c?) = —e cos(kyz) cos(kz — wt + @)

dy cKE,
dz 2ym,c?

[cos[(ku +k)z+ @ —wt] +cos[(ky, —k)z— ¢ + a)t]]

J

|

Y

The phase of the upper beat wave is constant for a specific choice of £ o



Resonant Wavenumber
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=

XELERA

Ponderomotive phase

Differentiate with respect to f and set to zero

(ku +kr)172 — Wy = 0

There is a specific wavenumber, i.e., the resonant
wavenumber k,. whereby the ponderomotive
phase remains constant with time as the electrons
travel along the z axis. For this wavenumber, the
derivative of phase with respect to time is O.

Plugging in the average velocity of the nt" electron
|

Divide both sides of the above equality by ¢

(ky, +kr)(1—— 1+ D

1+ 5

_ 1 K*
Uy, = C 1—E 1+7

Resonant wavenumber

ky =ky

52



Resonance Condition
Energy Gain
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Snap shots of an optical wave (red) traveling collinearly
with an electron (black circle) that follows a sinusoidal
trajectory (blue) at three different points along an
undulator period from top to bottom.

The constant ponderomotive phase is equal to -1t/2.
The wave electric field vector points in the opposite
direction of the transverse electron velocity.

The rate of energy exchange is positive, i.e., the
electron gains energy from the optical wave.

VAV

Va4

53
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Resonance Condition -~
Energy Loss

\
\4
Snap shots of an optical wave (red) traveling
collinearly with an electron (black circle) that follows a
sinusoidal trajectory (blue) at three different points
along an undulator period from top to bottom. /
/NN /\

The constant ponderomotive phase is equal to /2.
The wave electric field vector points in the same
direction with the transverse electron velocity.

The rate of energy exchange is negative, i.e., the
electron loses energy to the optical wave. ;

54




yLight

o1 AL
OGN

FEL Energy-Phase & Pendulum Equations 23X
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Electrons Gain/Lose Energy & Bunch Togeth&x

XELERA

Hamiltonian (kinetic energy + potential energy) of the pendulum

b - mlz(é)2
2

—mgl(1 —cos8)

Pendulum potential energy

V =gl(1 —cosB)

Half of the electrons (with phase from -1 to 0) gain
energy and move up in the bucket. The other half of the
electrons (with phase from 0 to 1) lose energy and move
down in the bucket. In term of pendulum potential
energy, the electrons fall to the bottom of the potential
well and bunch together in the vicinity of phase = 0.
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Energy Modulations & Density Modulations

T T 1 0.01 T T T T T 0.01

relative energy deviation n

At entrance to the undulator Exponential gain regime Saturation(maximum bunching)

Electrons interacting with the ponderomotive waves develop energy and density modulations.
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Radiation from a Bunch of Electrons .4

XELERA

Electrons are randomly distributed along z o
Incoherent undulator radiation

/\/\/\/V\/WV\/\/
N N S U P U D e
S N T N N N N N N S

FEL interaction induces density modulations with period equal to the radiation wavelength.
The emitted fields are in phase and add coherently. Coherent intensity scales with N;

Electrons are bunched with period of a radiation A Coherent FEL radiation

<>

A

W

Q

Ratio of coherent power to incoherent power is N, (the number of electrons in one A)
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Bunched Beams Emit Coherent FEL Radlatlox‘ﬁ

Radiation from an ensemble of N, electrons
N, is number of electrons in one wavelength

Bunching factor N,
) — lE o Wn(2)
Unbunched beam N n |E|2 |E|2[N,1 + NA(NA _ 1)b2]
E " K s i |€|? = power emitted by one electron
E 0 il
x-m_; e | ! Bunching factor Incoherent undulator radiation
b =0 El3g = lelN,
Bunching factor Coherent FEL emission
b~1 |Eg; = lel?[Ny + N7]
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Segmented Undulators in a FODO Lattice K

Undulator

rms radius (m)

Undulator Undulator Undulator Undulator

QD QF Qb QF Qb
0.000015 | Xrms
0.000010} /
/ ' Vrms
5.x10" 6}

10 20 30 40
Distance along undulator beamline (m)
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FEL Bunching Animation P

Bottom: Electron beam distribution in energy and z
space over 2 wavelengths showing energy modulation.
Right: Power growth (top), energy modulation (middle),
and bunching over 6 wavelengths (bottom).
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Global FEL Facilities



World Map of VUV and X-ray FELs

FLASH A 4 ) |
FERMI
European XFEL taly N
Germany L ) SrEL
LCLS 4 h 4 N China
. J
LCLS-11 & LCLS-1I-HE SS‘_"t"SSFIELd PPollFEzI p
USA witzerian olan DAL XFEL
S. Korea
N

( SACLA
L Japan

( SDUV-SXFEL

: SHINE
l L China

/" Blue=VUV to Soft X-ray
Purple=Soft to Hard X-ray

63




RF-linac Driven FEL Pulse Format

Low-repetition-rate Mode (e.g., LCLS

CuRF)
/\ ~10 fs

Burst Mode (e.g., Eu-
XFEL) ~1 ms macropulse ~1 ms macropulse

IIIIIIIIIIIIIIIIIIEIII[IJ[IJ![I!{I!IIII ~100 ms (1/10 Hz) (LR EARRREARREARRRRA

/\ ~200ns /\

micropulses

~8 ms (1/120 Hz)

Continuous-Wave Mode (e.g., LCLS-II/HE,
SHINE) |

~1 us (1/MHz)
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LCLS, LCLS-Il and LCLS-II-HE

LCLS: Hard X-ray FEL driven by
the room-temperature Cu linac
operating at 120 Hz.

LCLS-1l: Soft-to-tender X-ray FEL
driven by the superconducting
linac operating at >10 kHz with
beam energy up to 4 GeV.

LCLS-II-HE: Soft-to-hard X-ray FEL
driven by the superconducting
lijac operating at >10 kHz with
beam energy up to 8 GeV.

___;.__-—-.f'a—_~ e, _/ ,.»,.',’- z

Llnac Coherent nght Source

SASS8 The last 1 km of the SLAC Iinac 3
. accelerates electrons up to 15 GeV St

electron bunches are
injected at 135 MeV

140-m long undulator hall with 2 side-by-side
< undulators, Hard X-ray (HXR) and Soft X-ray (SXR)
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Sub-systems of an RF Linac Driven X-ray FEEXX

XELERA

An RF-linac driven XFEL has the following sub-systems in order to produce

to generate low-emittance electrons in ps bunches

Low-emittance
electron beams

* RF LINAC to accelerate the electron beams to GeV energy

A 4

« BUNCH COMPRESSORS to shorten the bunches and produce kA current| )
LASER HEATER to reduce the microbunching instabilities High peak current
*  BEAM OPTICS to transport the electron beams to the undulators ; I <
« UNDULATORS to generate and amplify the radiation in a single pass Single-pass, high-
 DIAGNOSTICS to characterize the electron & FEL beams | gainXrayFEL
Laser

PhotoinjectL%r heater P BC1 L2 BC2 13 Optics Undulators '
Gun' f T/\f m 3.5-15 r
6Mey 139MeV . 250MeV 4.7 GeV 4.7 GeV _— electrons
) ik 300um 30um

Layout of the sub-systems of the LCLS first X-ray FEL 66
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Summary of FEL Radiation Properties P-4

XELERA

FELs are tunable sources of coherent radiation based on the same principle of
operation, i.e., resonant wavelength, energy and density modulations followed
by coherent bunched beam radiation, over the entire electromagnetic spectrum.

FEL radiation, similar to undulator radiation, originates from the sinusoidal
motions of electrons in undulators. However, the FEL beams have full transverse
coherence, large numbers of photons per pulse and peak brightness several
orders of magnitude above the peak brightness of undulator radiation.

X-ray FELs produce nearly Gaussian coherent beams similar to a high-quality
conventional laser beam but with very small angular divergence.

The radiation generation process in an FEL is completely classical. The motions of
electrons in energy-phase space can be described by two coupled differential
equations similar to those describing the motions of a classical pendulum.
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XELERA
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Gaussian Beam Intensity & Diffraction
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P-4

XELERA

* Optical intensity

* Gaussian beam

I(r,z) =1, (%)2 e w?

I(r,z) = LIE(r 7)|?

27,

212

* Gaussian beam diffracting from the beam waist

I(r)

laser

z=0
planar wavefront

Gaussian e \
/ -

planar wavefront——|

I
—
_
.......

A

profile - ___”J:‘_"_-;;--._ )

I=1IR —

maximum curvature

v

Beam profile at beam waist

Far-field divergence half-angle

_Wo_ A
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Hybrid Permanent Magnet Undulators P-4

XELERA

Steel poles

Magnets

Electrons travel mainly in the z direction

Electrons also have a small initial velocity in x

The on-axis (y = 0) magnetic field is
sinusoidal with z and points in the y direction

B = Bysin(kyz) y

2T
Undulator wavenumber  k,, = —

Ay

Lorentz force

F =-evxB

The Lorentz force imparts a force in the x direction that is sinusoidal with z and opposes the electrons’

motion (electrons going into the page experience a force pointing out of the page, and vice versa).
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X-ray FEL Wavelength Tuning
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P-4

XELERA

The FEL x-ray wavelength can be tuned by one of the following methods
1. varying the electron beam energy, E, and thus the beam y

2. varying the gap by moving the magnet jaws symmetrically in and out, thus changing the K value

2
B,(g, A,) = 3.13B, exp [—5.08 (i) + 1.54 (i) ‘
My Ay

Small gap — Large K — Long A Larger gap — Smaller K — Shorter A

—>

e- beam

«— period —*
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