

U.S. Particle Accelerator School July 15 – July 19, 2024

VUV and X-ray Free-Electron Lasers

Injector Beam Dynamics

Dinh Nguyen,¹ Christopher Mayes,¹ Nicole Neveu², Colwyn Gulliford³

¹ xLight Inc.

² SLAC National Accelerator Laboratory

³ Xelera

Injector Dynamics Motivation

- Create beam at cathode (sets initial beam quality)
- Accelerate beam to injection energy
- Take care to preserve emittances and LPS

Equations of Motion

Lorentz Force Law for single electron:

$$\dot{\overrightarrow{p}} = \overrightarrow{F} = e(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B})$$

$$d/dt \to c\beta_z d/dz$$
 $\overrightarrow{p}' = \overrightarrow{F}/c\beta_z = e(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B})/c\beta_z$

For a bunch of electrons, also care about evolution of the moments of the distributions:

$$\sigma_{x} = \langle x^{2} \rangle^{1/2} \qquad \sigma_{x}' = \frac{\langle xx' \rangle}{\sigma_{x}} \qquad x' = p_{x}/p_{z}$$

$$\sigma_{x}'' = \frac{1}{\sigma_{x}^{3}} \left[\langle x^{2} \rangle \langle (x')^{2} \rangle + \langle xx' \rangle^{2} \right] + \frac{\langle xx'' \rangle}{\sigma_{x}}$$

$$\sigma_{x}'' = \frac{1}{\sigma_{x}^{3}} \left(\frac{mc\epsilon_{n,x}}{pz} \right)^{2} + \frac{\langle xx'' \rangle}{\sigma_{x}} \qquad \epsilon_{n,x} = \frac{1}{mc} \sqrt{\langle x^{2} \rangle \langle p_{x}^{2} \rangle - \langle xp_{x} \rangle^{2}}$$

Intuitively, we want the emittance to be constant

$$\epsilon_{n,x}' \propto \frac{d}{dz} \epsilon_{n,x}^2 \propto \left[\langle xx' \rangle \langle p_x^2 \rangle + \langle x^2 \rangle \langle p_x p_x' \rangle - \langle xp_x \rangle (\langle x'p_x \rangle + \langle xp_x' \rangle) \right]$$

$$p'_x = F_x / c\beta_z$$

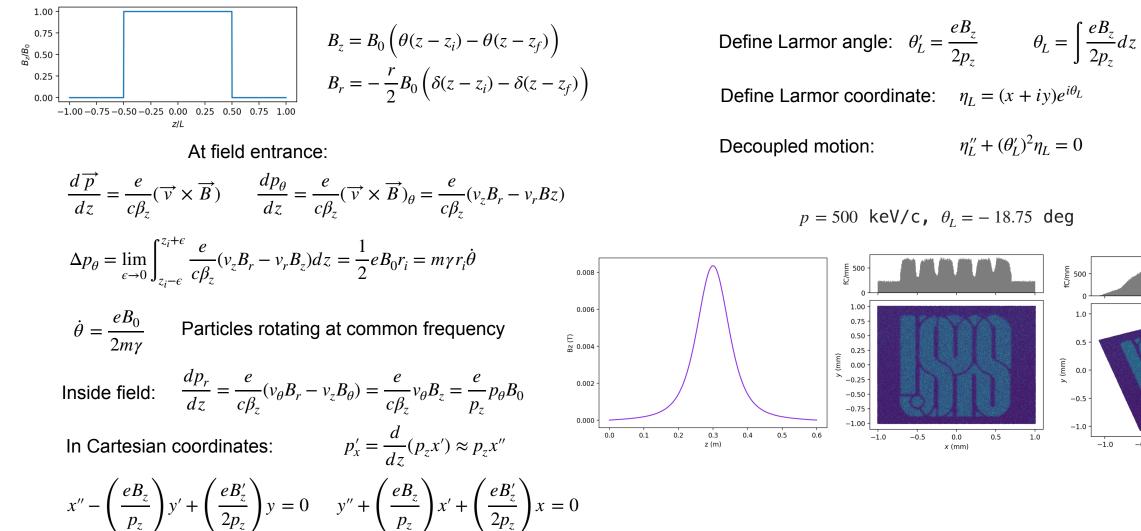
$$\epsilon'_{n,x} \propto \left[\langle x^2 \rangle \langle p_x F_x \rangle - \langle x p_x \rangle \langle x F_x \rangle \right]$$

$$F_x = \alpha x(z)$$
, then $\epsilon'_{n,x} = 0$

RMS Emittance will only be preserved if forces are linear!

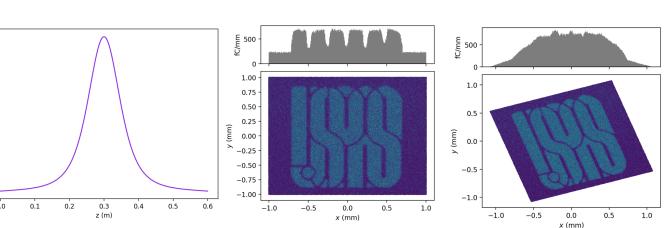
Emittance pressure term Force term (external and self)

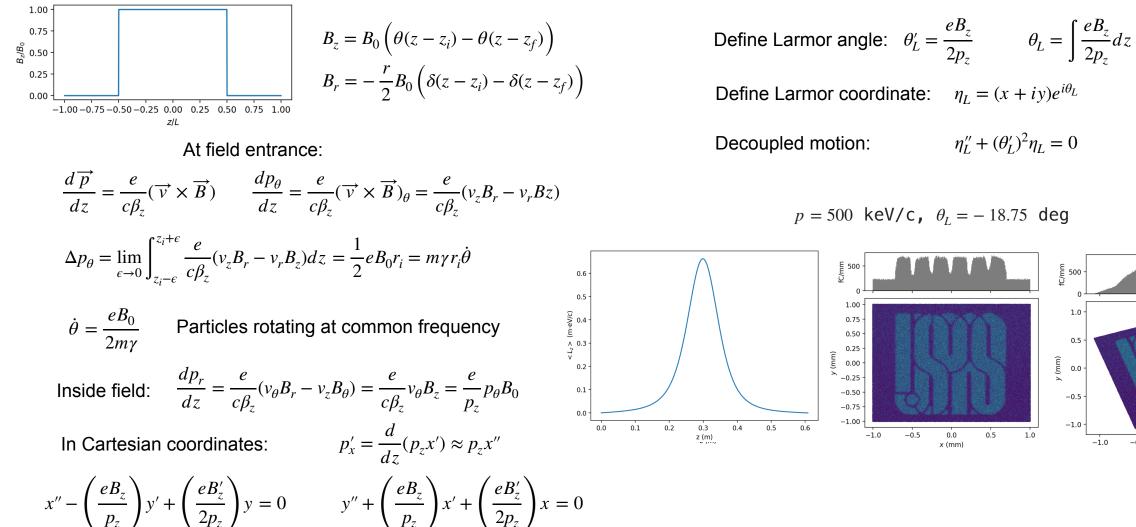
Fields from Beamline Elements

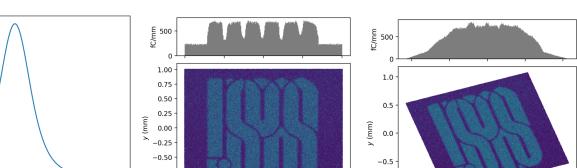

Most injectors feature cylindrical symmetry and are made up of RF Cavities & Solenoids

$$\begin{split} E_r(r,z) &\approx -\frac{r}{2}\frac{d}{dz}E_z^{(0)} + \frac{r^3}{16}\left(\frac{d^3}{dz^3} + \frac{\omega}{c^2}\frac{d}{dz}\right)E_z^{(0)} & \text{For DC gun, let } \omega = 0 & \text{For solenoid:} \\ B_\theta(r,z) &\approx \frac{i\omega}{c^2}\left[\frac{r}{2}E_z^{(0)} - \frac{r^3}{16}\left(\frac{d^2}{dz^2} + \frac{\omega}{c^2}\right)E_z^{(0)}\right] & E_r(r,z) \approx -\frac{r}{2}\frac{dE_z^{(0)}}{dz} + \frac{r^3}{16}\frac{d^3E_z^{(0)}}{dz^3} & B_r(r,z) \approx -\frac{r}{2}\frac{dB_z^{(0)}}{dz} + \frac{r^3}{16}\frac{d^3B_z^{(0)}}{dz^3} \\ E_z(r,z) &\approx E_z^{(0)} - \frac{r^2}{4}\left(\frac{d^2}{dz^2} + \frac{\omega}{c^2}\right)E_z^{(0)}. & E_r(r,z) \approx E_z^{(0)} - \frac{r^2}{4}\frac{d^2E_z^{(0)}}{dz^2} & B_r(r,z) \approx B_z^{(0)} - \frac{r^2}{4}\frac{d^2B_z^{(0)}}{dz^2} \end{split}$$

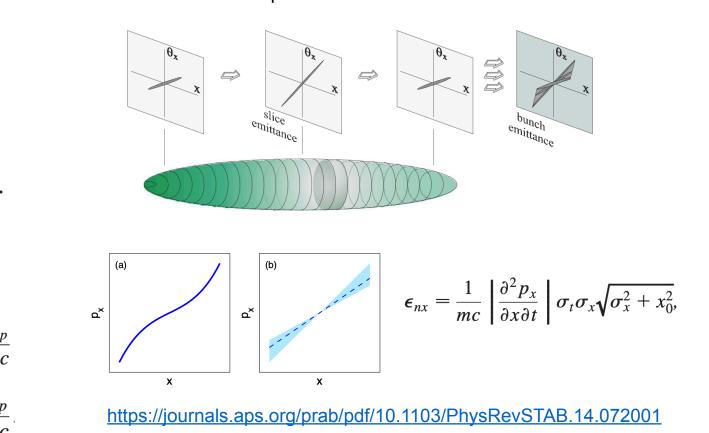
Knowledge of the field on-axis in principle defines field everywhere


Solenoid Dynamics: Larmor Angle


Define Larmor coordinate: $\eta_L = (x + iy)e^{i\theta_L}$


 $\eta_I'' + (\theta_I')^2 \eta_L = 0$

Solenoid Dynamics: Larmor Angle


1.0

-1.0-0.50.0 0.5 1.0 x (mm)

6

Misalignments, Aberrations, RF Focusing

The form of the higher order terms for the forces can be used to derive formulas for the geometric and chromatic aberrations in these elements

 $\epsilon_x^2 = 4\alpha^2 \sigma_x^6 (5x_0^2 + 2\sigma_x^2) \quad \text{for Gaussian,}$ $\epsilon_x^2 = \frac{8}{9}\alpha^2 \sigma_x^6 (9x_0^2 + \sigma_x^2) \quad \text{for elliptical,}$

For Solenoid:

$$\epsilon_x^2 = \frac{4}{147} \alpha^2 \sigma_x^6 (357x_0^2 + 50\sigma_x^2)$$
 for uniform.

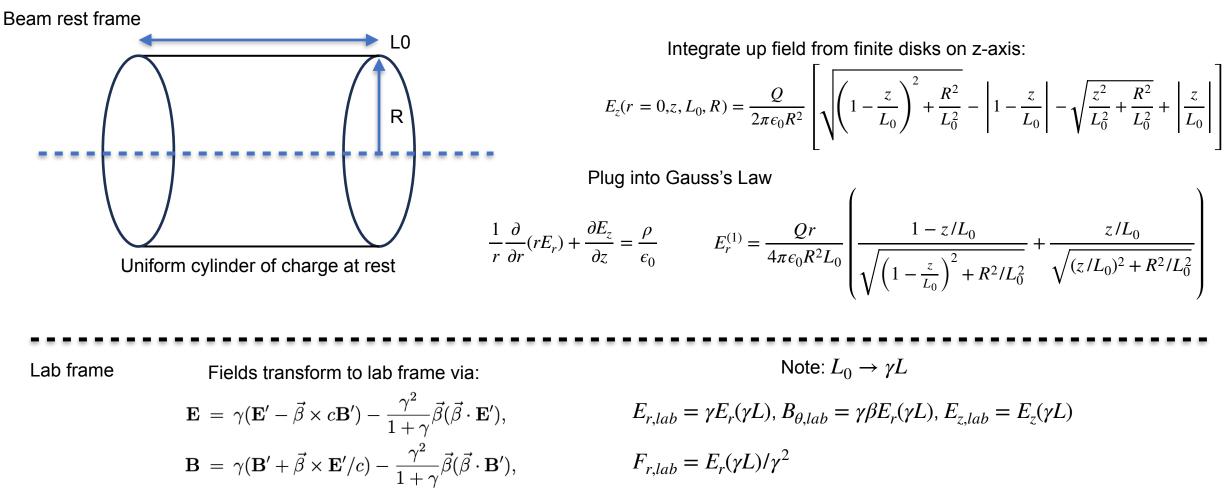
Here x_0 is a position offset of the beam entering the solenoid

Chromatic aberration:

$$\boldsymbol{\epsilon}_{nx} = 2 \left(\frac{1}{f}\right)_{\text{sol}} \sigma_x \sqrt{\sigma_x^2 + x_0^2} \frac{\sigma_p}{mc}$$

Similar expressions for accelerating elements: ϵ_n

 $\epsilon_{nx} = \kappa \sigma_x^4 \frac{\alpha_p}{mc}$

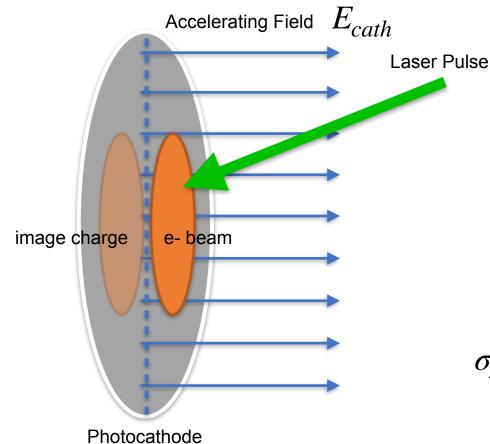

Concept of slice emittance:

XELERA

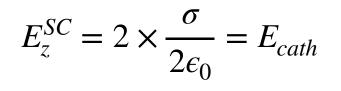
Space Charge

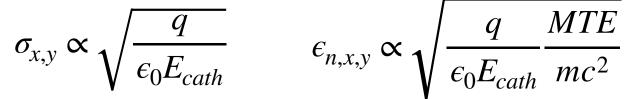
Space Charge: Simple Analytic Model

Both transverse and longitudinal fields vanish as $\gamma \to \infty$, getting beam up to high energy as fast as possible reduces effects


SLAC

XELERA


Space Charge Limited Emission

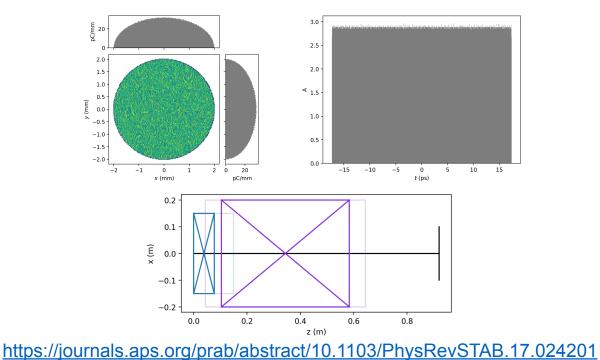

Consider a very short bunch being emitted from a photocathode:

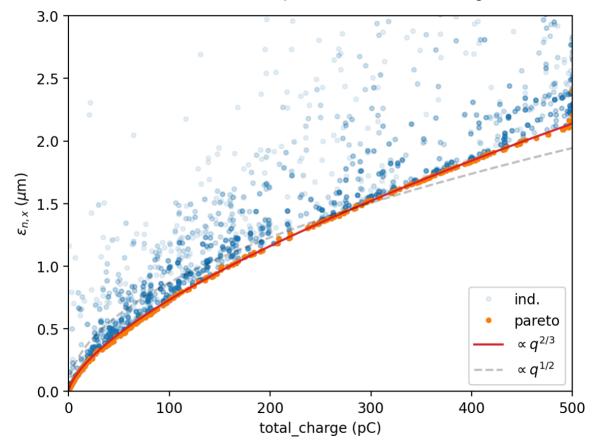
Maximum amount of charge extraction occurs when space charge field from beam + image cancel the accelerating field

$$\sigma = \frac{q}{\pi R^2} = \epsilon_0 E_{cath}$$

Pancake regime ONLY!

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.104801

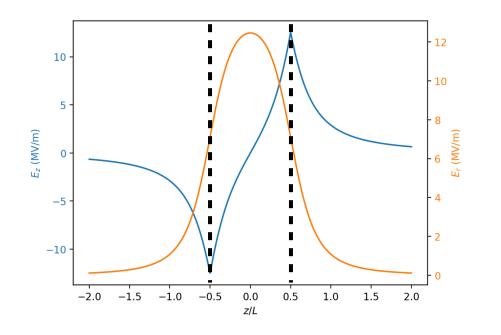

Space Charge Limited Emission

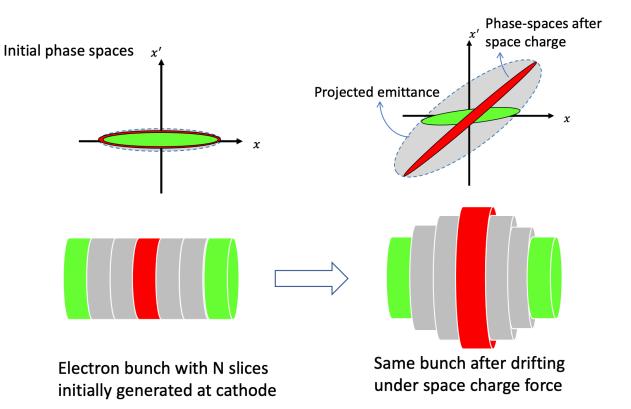

More careful analysis using the uniform cylinder of charge:

$$\epsilon_{n,x,y} \propto \left(\frac{q}{\epsilon_0 E_{cath}}\right)^{2/3} \sqrt{\frac{MTE}{mc^2}}$$

Test case: DC Gun + Solenoid, Uniform cylinder of charge:

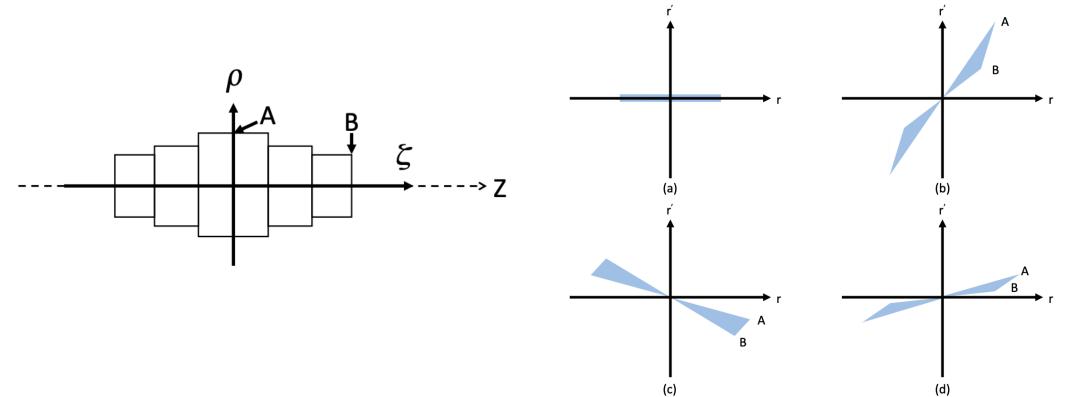
Minimize emittance and maximize bunch charge: Variables: laser spot size, solenoid strength



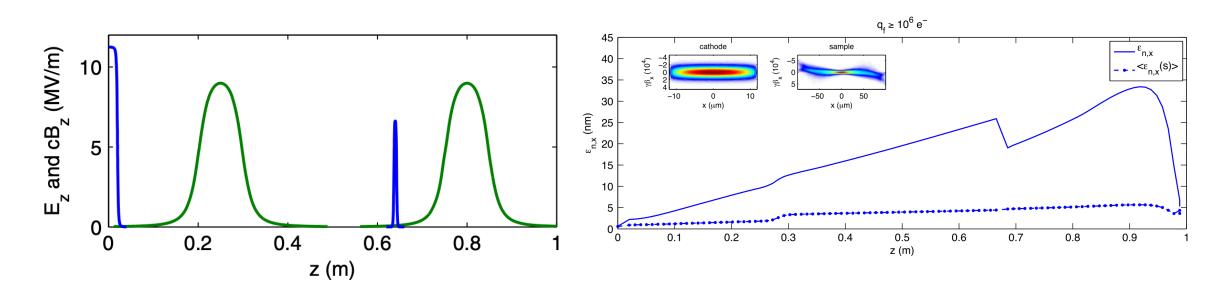

Space Charge Emittance Growth

Space charge has the potential to cause emittance growth in mainly two ways:

- 1. Non-linearity of the space charge fields (geometric aberration)
- 2. Fields which depend on the longitudinal coordinate in the bunch (similar to RF focusing)



Emittance Compensation


- Theory which explains emittance changes coming from slice alignment/misalignment
- First treatment by Carlsten (1989), show his simplified model here
- Expanded on by Serafini and Rosenzweig

Emittance Compensation

Example from an optimized UED beam line:

Emittance Compensation

Theory makes use of envelope equation we saw before, assuming a long beam

$$\sigma'' + \left(\frac{\gamma'}{\beta^2 \gamma}\right)\sigma' + K_r \sigma - \left(\frac{\kappa_s}{\beta^3 \gamma^3}\right)\frac{1}{\sigma} - \left(\frac{\epsilon_n}{\beta \gamma}\right)^2 \frac{1}{\sigma^3} = 0.$$

$$K_r \equiv -(dF_r/dr)/\beta^2 \gamma m_e c^2.$$
 $\kappa_s = I/2I_0$

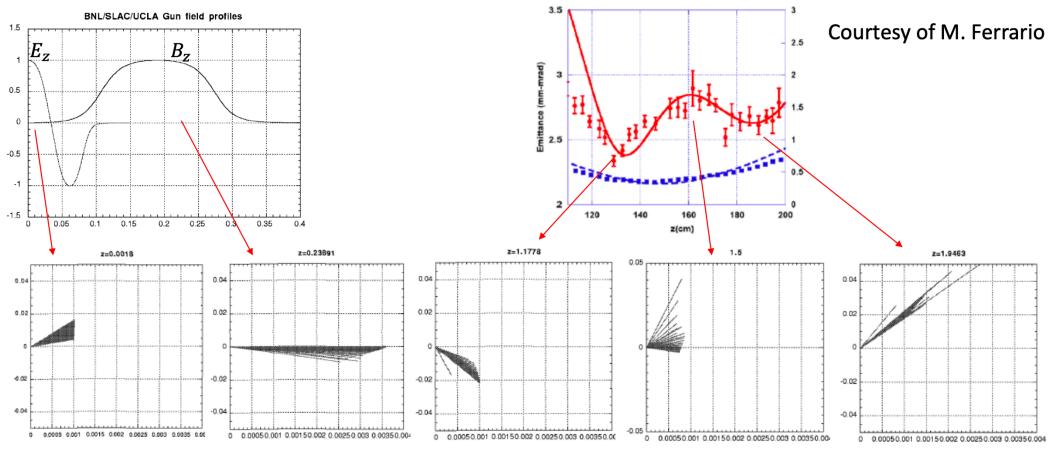
We know the emittance isn't constant (slice misalignment) and we used pulsed beams...

Assume there is an envelope equation of the form above for each slice: $\kappa_s \rightarrow \kappa_s(\zeta)$,

To handle acceleration, move to reduced variable $\hat{\sigma} = \sqrt{\gamma \beta} \sigma$

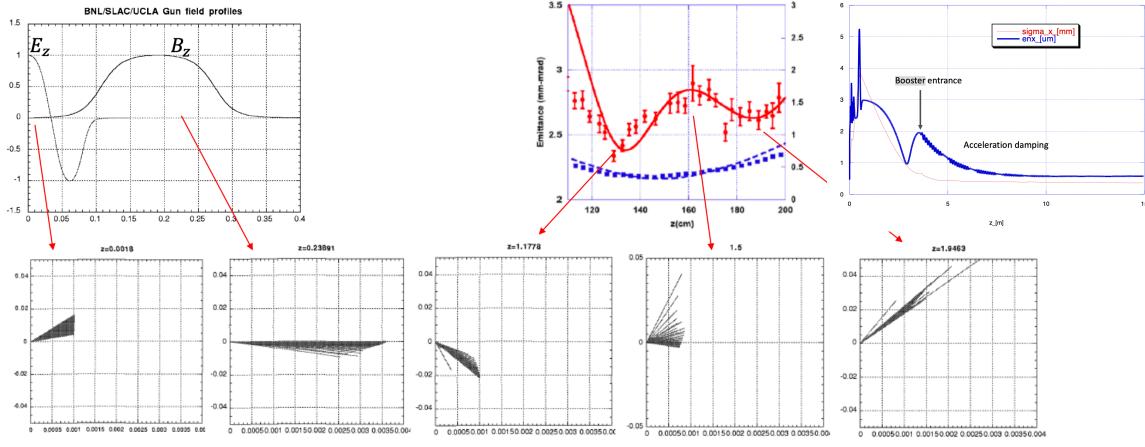
$$\hat{\sigma}'' + \left(K_r - \frac{(\sqrt{\beta\gamma})''}{\sqrt{\beta\gamma}}\right)\hat{\sigma} - \left(\frac{\kappa_s}{\beta^2\gamma^2}\right)\frac{1}{\hat{\sigma}} - \frac{\epsilon_n^2}{\hat{\sigma}^3} = 0,$$

$$\hat{\sigma}'' + \left(\frac{\kappa}{\beta^2 \gamma^2}\right) \hat{\sigma} - \left(\frac{\kappa_s}{\beta^2 \gamma^2}\right) \frac{1}{\hat{\sigma}} - \frac{\epsilon_n^2}{\hat{\sigma}^3} = 0$$


Assume constant acceleration and radial focusing, can find equilibrium solution known as invariant envelope

$$\hat{\sigma}_{\mathrm{inv}} = \sqrt{rac{\kappa_s}{\kappa}}, \qquad \hat{\sigma}'_{\mathrm{inv}} = 0.$$

Emittance will oscillate due to plasma oscillations around equilibrium solution


Emittance Compensation with a Short Solenoid

Transverse phase space at 5 different z (in m) as shown above the plots. The individual slices have zero emittance.

Emittance Compensation with a Short Solenoid

Transverse phase space at 5 different z (in m) as shown above the plots. The individual slices have zero emittance.

Injector Beam Dynamics In Practice

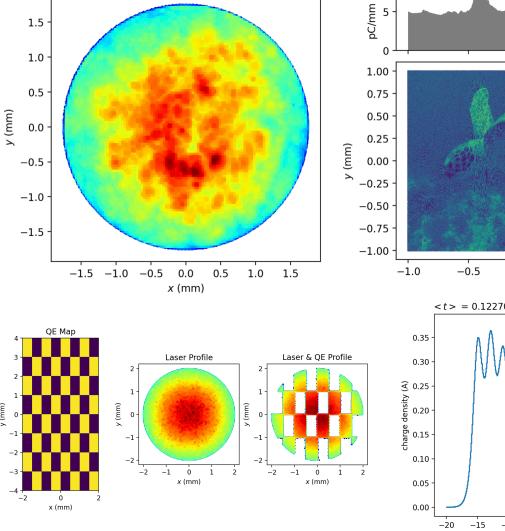
Field Solvers and Space Charge Codes:

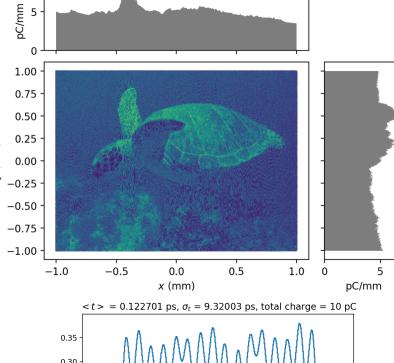
RF and Magnet Design Codes: These codes model the gun cavities via time and frequency domain solvers, as well as designing the solenoid magnets.

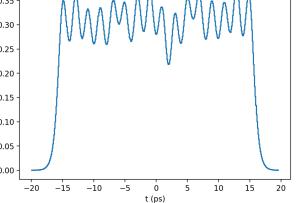
- SUPERFISH-POISSON: free codes from LANL; 2D
- MicroWave Studio: commercial code from CST; 3D

Particle Tracking Codes: These codes integrate the macroparticle trajectories under Lorentz forces, including space charge.

- IMPACT-t: particle tracking code from LBNL
- OPAL: free parallel code from PSI
- GPT: Commercial code from Pulsar Physics
- PARMELA: free code from LANL (also commercially available as T-STEP) Accelerator Codes:
- elegant: free code from ANL
- B-MAD
- IMPACT-z

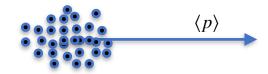

Particle Generation: Distgen

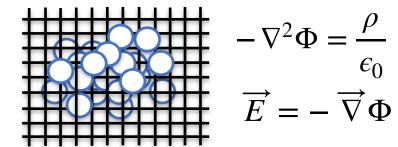


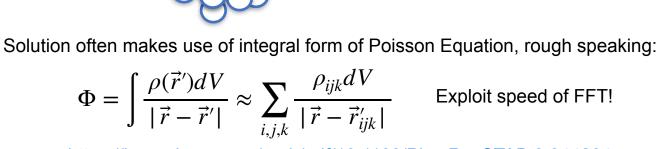

Python Package for generating wide array of useful initial particle distributions

- 1. Many standard distribution shapes (uniform, Gaussian, etc)
- 2. Generate distributions from 2d images
- 3. User can fold in QE maps
- 4. Simple syntax
- 5. Parallelization for generating lot's of particles (>= 100M)
- 6. Interfaces for writing input particle files for
 - 1. Bmad
 - 2. GPT
 - 3. Impact-T
 - 4. Astra
 - 5. SimION

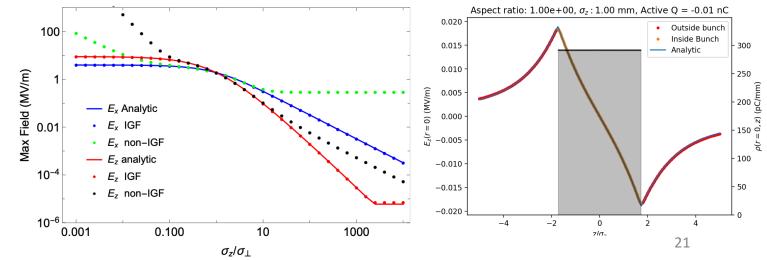
https://github.com/ColwynGulliford/distgen




Space Charge: Simulation Basics


N interacting $e_{-}(100 \text{ pC} = 625 \text{M} \text{ e}_{-})$

Boost to center of momentum frame, neglect remaining velocities Bin particles to compute charge density ρ on (3D) grid



Boost fields back to rest frame $\mathbf{E} = \gamma (\mathbf{E}' - \vec{eta} \times c\mathbf{B}') - rac{\gamma^2}{1+\gamma} \vec{eta} (\vec{eta} \cdot \mathbf{E}'),$ $\mathbf{B} = \gamma (\mathbf{B}' + \vec{\beta} \times \mathbf{E}'/c) - \frac{\gamma^2}{1+\gamma} \vec{\beta} (\vec{\beta} \cdot \mathbf{B}'),$ Represent with $n \ll N$ macro particles (charge:mass ratio = e/m_e)

 $\langle p \rangle$

Multi-objective Genetic Algorithm Optimization

The dynamics in the injector are complicated:

- Cathode materials/emission models
- Non-linear collective forces from Space charge
- Solenoid dynamics, Acceleration, RF focusing
- Longitudinal dynamics
- Laser shaping

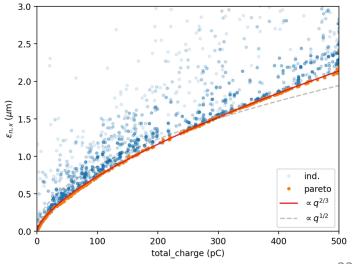
We can phrase trying to maximize the performance of the injector for an FEL a multi-objective optimization:

Given the settings of the injector (laser shape, solenoids, cavity voltages)

- Minimize transverse emittance(s)
- Maximize the bunch charge

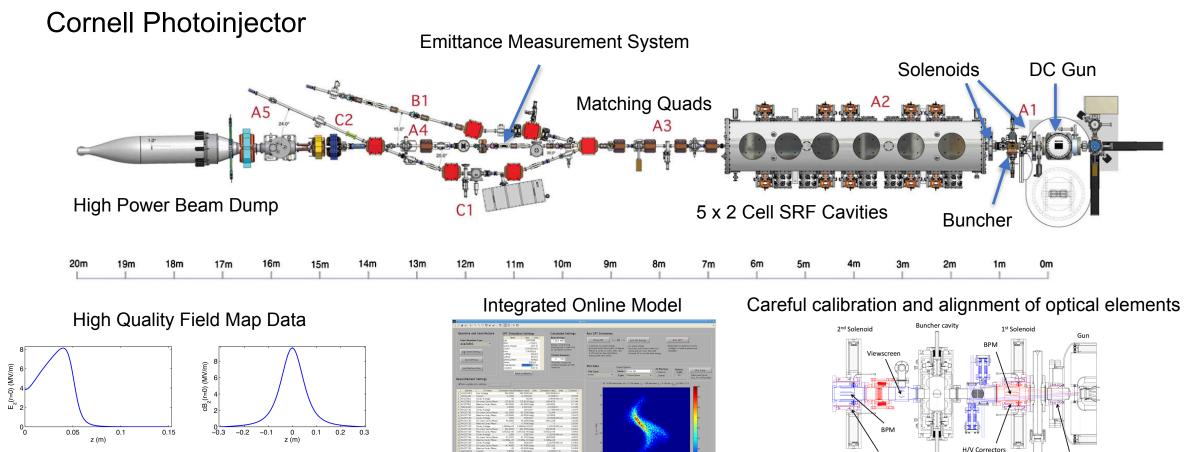
Maximize brightness:
$$\mathscr{B} \propto \frac{I}{\epsilon_x \epsilon_y}$$

T


- Minimize (or constrain) bunch length
- Minimize negative effects to longitudinal phase space

Subject to the limits of the input variable and constraints like no particle loss

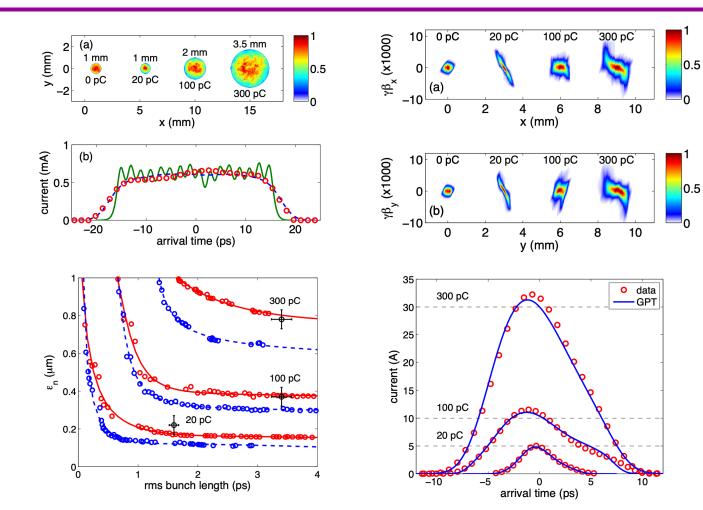
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.8.034202


Well suited for Multi-objective Genetic Algorithms:

- Population based approach implicit parallelization
- No derivative information necessary (direct search)
- Stochastic operators used for selection and variation of members in population to produce new solutions to try
- Map out tradeoffs between competing objectives

Simulation vs. Experiment

https://pubs.aip.org/aip/apl/article-abstract/106/9/094101/985161/Demonstration-of-cathode-emittance-dominated-high?redirectedFrom=fulltext


H/V Correctors

1 m

H/V Correcto

Simulation vs. Experiment

Beam Energy 9 - 9.5 MeV

(a) Horizontal (vertical) projected emittance data.

Charge	Thermal ϵ_n (μ m)	$95\%~\epsilon_n~(\mu{ m m})$	Ratio (%)
20 pC	$0.12 \ (0.11)$	$0.18 \ (0.19)$	67(58)
$100 \ \mathrm{pC}$	$0.24\ (0.23)$	$0.30\ (0.32)$	80(72)
$300 \ \mathrm{pC}$	0.42~(0.41)	$0.62\ (0.60)$	67~(68)

(b) Horizontal (vertical) projected core emittance data.

Charge	Cathode $\epsilon_{n, \text{core}}$ (μ m)	EMS $\epsilon_{n,\mathrm{core}}$ ($\mu\mathrm{m}$)	Ratio (%)
$20 \ \mathrm{pC}$		$0.09 \ (0.08)$	67 (75)
$100 \ \mathrm{pC}$	$0.14\ (0.13)$	$0.16\ (0.16)$	85 (79)
$300 \ \mathrm{pC}$	$0.26\ (0.24)$	0.30 (0.28)	87 (87)

https://pubs.aip.org/aip/apl/article-abstract/106/9/094101/985161/Demonstration-of-cathode-emittance-dominated-high?redirectedFrom=fulltext

Summary

- FELs want low emittance, "high charge", short pulses
- Emittance in the injector initially set by cathode, can be further diluted
- Linear forces help preserve emittance
- Proper alignment can reduce effects aberrations
- RF focusing can cause slice emittance mismatch
- Space charge forces scale strongly with beam energy bring beam to high energy as quick as possible
- High-brightness injector emittance is limited by space charge forces during charge extraction
- Space charge can cause emittance degradation (non-linearity and longitudinally dependent transverse focusing)
- Emittance compensation theory for handling slice emittance mismatch due to longitudinally dependent transverse focusing from SC and RF
- In practice use high fidelity models of beam line + modern SC codes and do detailed optimizations to map out trade offs between emittance, bunch length, and energy spread
- Can achieve high quality beams, with beam emittance dominated by cathode emittance component

Outline

- 1. Review injector requirements motivate emittance preservation
- 2. Basic Equations of Motion
- 3. Beam line Element Fields
 - i. Off-axis expansion
 - ii.Misalignment, aberrations, RF-focusing
- 4. Space charge
 - i. Analytic model
 - ii.Space charge limited emittance
- 5. Envelope equation and emittance compensation
- 6. A word on longitudinal dynamics
- 7. Putting it all together in practice