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Wednesday Schedule

• Self-Amplified Spontaneous Emission    09:00 – 10:00
• Break        10:00 – 10:10
• 1D Theory of High-Gain FEL     10:10 – 11:10
• Break        11:10 – 11:20
• Ming-Xie Parameterization of 3D Effects   11:20 – 12:00
• Lunch Break       12:00 – 13:30
• Lab Project        13:30 – 17:00

2FEL Simulations with Genesis



Self-Amplified Spontaneous Emission
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SASE is most common approach in XFELs
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• Start with high-brightness electron beams.
• Low emittance
• High peak current
• Low energy spread

• Match the electron beams into a long 
undulator with a quad FODO lattice.

• Produce high FEL gains.

• Optimize the FEL to shorten the gain length.

• FEL power saturates after 20 gain lengths.
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SASE Characteristics
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• Radiation starts up from “white noise” radiation due to the discrete 
nature of electrons.

• The FEL interaction amplifies the “white noise” within a narrow FEL 
gain spectrum.

• In a long undulator with strong focusing, the FEL enters the 
exponential growth regime with a characteristic gain length.

• FEL instability:
 High field region → Large energy modulation

 Large energy modulation → Strong bunching

 Strong bunching → Higher field

• The randomness of the initial bunching is apparent in the final 
temporal profile and SASE spectrum with both exhibiting “spikes.”
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Start-up Noise
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We have been describing electron current as a smooth function 
𝐼(𝑡).  A more accurate description of current, which accounts for 
the discrete nature of electrons, is a sum of Dirac delta functions:  

𝐼(𝑡) = 𝑒1
()'

*
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Taking the Fourier Transform of 𝐼(𝑡):
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SASE Random Behavior
• The discrete nature of the electrons leads to random 

fluctuations in current as a function of s.

• Taking the Fourier transform of current fluctuations 
yields “white noise” in the frequency domain, i.e. 
the bunching factor versus frequency is random. 

• The FEL amplifies a narrow portion of the “white 
noise” spectrum.  This portion of the spectrum 
grows to high power. The randomness of the initial 
bunching is still apparent in the final SASE spectrum.
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Gain Bandwidth for                    before saturation 
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Start-up power scaling
• The spontaneous noise power and the number of photons at startup are given by

• As the FEL wavelength decreases (higher photon energy), the # of electrons/wavelength 
decreases and the start-up power increases.

  

# of electrons/wavelength

Electrons beam power

𝑃2" =
3
2
𝜌#𝑃3
𝑁4

Wavelength Region Estimated Start-up Power (W)

Visible 1

EUV 10

Soft X-rays 100

Hard X-rays 1000



Power Growth Curves
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10                     20                      30                     40                      50

In the exponential region, the slope of the 
semi-log plot (for one e-folding) is equal to

The peak power fluctuates wildly in the 
exponential growth regime due to the 
stochastic nature of the FEL instability.

At saturation, the pulse-to-pulse amplitude 
fluctuations decrease and FEL power can be 
approximated by
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Strong Focusing in an Undulator FODO
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𝜎7! = 𝜀7
1 + 𝛼78

𝛽7

In a FODO lattice, the electron beam radii in x and y oscillate between a maximum and minimum 
values set by the b  functions and the un-normalized emittance in x and y. We consider the case 
where 𝜀5 = 𝜀6  and 𝛽5 > 𝛽6
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Optical Diffraction
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The rms radius of the radiation beam is determined by two competing effects: optical guiding (beam 
focusing) and diffraction (beam expanding). The minimum radiation radius is approximately the larger 
of the x and y electron beam radii in the FODO lattice.

𝜎> ≥ max(𝜎7,=)

The Rayleigh length is chosen to minimize the effect of optical diffraction.

𝜎>! =
𝜎>
𝑧@

𝑧@ =
4𝜋𝜎>8

𝜆

To minimize diffraction effect, the radiation Rayleigh range must be longer than the 1D gain length

𝑧@ >	𝐿AB



12

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

4.00E-05

4.50E-05

0.0 6.7 13.3 20.0 26.6 33.3 39.9 46.6 53.2 59.9 66.6 73.2

xrms yrms rad_size

Optical Guiding in an Undulator FODO
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SASE Transverse Coherence
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Incoherent Spontaneous Emission SASE in exponential region SASE at saturation



Slippage Length & Coherence Length

In the time the electron traverses Nu undulator periods, the optical wave slips ahead of the electron 
Nu wavelengths, a distance known as the slippage length. The coherence length is the slippage 
length over one gain length.

In a SASE FEL, the radiation coherence extends over only one coherence length.  For bunch length 
longer than the coherence length, each coherence length is independent from the others.
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𝑙278%%9:; = 𝑁"l
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Coherence length, 𝑙C

Undulator exit
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The number of coherence length in a SASE pulse



SASE Time-Bandwidth
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𝛿𝜀 7 ∆𝑡 = 1.8	𝑒𝑉 7 𝑓𝑠
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Δ𝑠 = 𝑐Δ𝑡 Spectral spikes

𝛿𝜀

Time Domain Expanded Energy Spectrum

The radiation pulse width (electron bunch) is the Fourier conjugate of the individual 
spectral spike width.  The longer the overall electron bunch (Dt) in the time domain, the 
narrower the spectral spike width (de) in the energy (frequency) domain. 

Full pulse width



SASE Time-Bandwidth (continued)
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Temporal spikes
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𝛿𝑠 = 𝑐𝛿𝑡

Bunch coordinate (m)

Δ𝜀

Expanded Time Scale Overall Energy Spectrum

Δ𝜀 7 𝛿𝑡 = 1.8	𝑒𝑉 7 𝑓𝑠

In the expanded time scale, the temporal spike width is the Fourier conjugate of the full 
spectral (energy) width.  The shorter the temporal spikes (dt) in the time domain, the 
broader the overall spectral width (De) in the energy domain. 

Full spectral width



SASE Bandwidth vs. z
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Δ𝜔
𝜔

= 2 𝑙𝑛2
𝜎/ 𝑧
𝜔

Relative BW (FWHM)

Δ𝜔
𝜔

≈ 1.5𝜌

Dependence of relative rms BW on z

𝜎/ 𝑧
𝜔

= 3 2𝜌
𝐿:=
𝑧

The relative spectral bandwidth of a SASE FEL is plotted as a function of undulator length. The 
relative BW decreases along the undulator and reaches the minimum just before saturation.

Number of 1D gain lengths to reach saturation

𝐿29> = 21.8𝐿:=
Minimum BW (FWHM)



First Observations of SASE FEL
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Infrared  LANL (1997)
  UCLA-LANL-RRK-SLAC (1998)

IR-Visible UCLA-BNL-SLAC-LLNL (2001)

VUV  DESY (2000)
  BNL (2003)

Microwave* LLNL (1986)

Soft X-ray DESY (2007)

Hard X-ray SLAC (2009)

Visible-UV ANL LEUTL (2001)

* The LLNL SASE experiment was done in a waveguide, not free space



SASE Amplitude Fluctuations
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SASE pulse energy fluctuates significantly from 
pulse to pulse in the exponential growth 
regime, due to the stochastic nature of SASE 
shot noise. 

𝑈&'(") = Average	pulse	energy

𝑢 =
𝑈%"72;
𝑈%"72;

Define normalized pulse energy

10                     20                      30                     40                      50

M = number of modes (spikes) in each SASE pulse

𝜎" =
1
𝑀

Fluctuation statistics of normalized amplitude



Poisson Statistics
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Probability distribution of normalized pulse energy

𝑝S 𝑢 𝑑𝑢 =
𝑀S𝑢STA

Γ 𝑀
𝑒TSU𝑑𝑢
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1D Theory of High-Gain FEL
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Some Important Basic Concepts
• FEL coupled first-order differential equations 

• Slowly Varying Amplitude (SVA) approximation

• Optical guiding

• Third-order differential equation

• Cubic dispersion equation & the three roots
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Radiation field amplitude is a smooth and slowly varying function of z 

The radiation beam is guided by the high-current electron beams in the exponential gain regime

For small h, combine the FEL coupled equations into a single third-order differential equation

For the resonant case and assuming solutions are of the form 
Q𝐸5 = 𝐴𝑒?0 , solve the cubic equation and obtain three roots

Exponentially growing

Exponentially decaying

Oscillatory

𝜕# U𝐸
𝜕𝑧# ≪ 𝑘

𝜕 U𝐸
𝜕𝑧

A Normalized radiation field amplitude

h Normalized electron energy modulation

b Electron bunching



FEL Coupled First-Order Equations

23

𝑑𝜓<
𝑑𝜏

= 𝜂̅<

Electron microbunching grows with the 
normalized electron energy modulation

Energy modulation grows with radiation field 
amplitude correlated with electron phase

𝑑𝜂<
𝑑𝜏

= −2Re 𝐴𝑒;V"

Normalized radiation field amplitude grows with electron microbunching

𝑑𝐴
𝑑𝜏 = −

1
𝑁P
<WA

X

exp −𝑖𝜓<



Normalized FEL Variables
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𝜏 = 2𝑘U𝜌𝑧

𝜂̅< =
𝜂<
𝜌

Saturation electric field

Normalized radiation field amplitude

Normalized undulator coordinate

Normalized energy deviation from resonance

𝐴 =
𝐸
𝐸Y

𝐸Y =
𝑍Z𝜌𝑃[
𝜋𝜎>8

Saturated normalized SASE power 
at zero initial energy detuning 

𝐴 8 ≤ 1.5



Definitions of Important Variables
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𝜓< :  Phase of the nth electron with respect to the FEL resonant radiation wave

𝜂< :  Energy deviation of the nth electron with respect to the FEL resonant dimensionless energy

𝜂< =
𝛾< − 𝛾>
𝛾>

:  Resonant dimensionless energy𝛾>

:  Initial energy detuning from the FEL resonant energyD

̃𝚥A :  Transverse bunching current density at the fundamental wavelength

̃𝚥\ :  Initial electron beam DC current density (A/m2)

:  Undulator parameter corrected for the reduction due to figure-8 motion]𝐾

𝛾> =
𝑘>
2𝑘U

1 +
𝐾8

2
𝑘> =

2𝜋
l>



FEL Coupled First-Order Equations
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𝑑𝜓<
𝑑𝑧

= 2𝑘U𝜂<

Evolution of the nth electron phase Evolution of the nth electron energy deviation

𝑑𝜂<
𝑑𝑧

= −
𝑒

𝑚\𝑐8𝛾@
Re

]𝐾 a𝐸7
2𝛾@

− a𝐸] exp 𝑖𝜓<

𝑑 a𝐸7
𝑑𝑧

= −
𝜇\𝑐 ]𝐾
4𝛾@

̃𝚥A

̃𝚥A = 𝑗\
2𝜋
𝑁
P
<WA

X

exp −𝑖𝜓<

First harmonic current density

Radiation field amplitude grows with 
the first harmonic current density

Electron-electron interaction (space charge)

Space charge effects are negligible for FELs 
operating in the Compton regime (e.g., X-ray 
FELs). Space charge cannot be ignored for FELs 
operating in the Raman regime (e.g., THz FELs).

Radiation-electron interaction



Evolution of Harmonic Current Density

27

First harmonic current density is 
proportional to the electron bunching

𝑛^ =
𝑁

𝐴[𝜆>

Initial DC current density

𝑗\ = −𝑛^𝑒𝑐

̃𝚥A = 𝑗\
2𝜋
𝑁
P
<WA

X

exp −𝑖𝜓<
𝑗\ = −𝑒𝑐

𝑘>
𝐴[
𝑐\
2 𝑗A = −𝑒𝑐

𝑘>
𝐴[
𝑐A



Phase Space Distribution Function, F
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𝐹 𝜓, 𝜂, 𝑧 = 𝐹\ 𝜂 + 𝑅𝑒 a𝐹A 𝜂, 𝑧 7 𝑒;V

Consider a 2D phase-space density function with small 1st harmonic modulations.

Assume F0 is a Gaussian function of energy with small energy spread.

𝐹\ 𝜂 =
1
2𝜋𝜎_

𝑒
T _T_# $

8 %̀
$

The 1st harmonic current is related to 1st harmonic phase-space density

̃𝚥A = 𝑗\h
Ta

a
a𝐹A 𝜂, 𝑧 𝑑𝜂 



Liouville’s Theorem & Vlasov Equation
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Liouville’s equation governs the evolution of phase-space distribution with the independent 
coordinate. According to Liouville’s Theorem, in the absence of dissipative force, the phase-space 
volume occupied by an ensemble of particles is conserved along the trajectory.

Generalized continuity equation (also known as Vlasov equation).

𝑑𝐹
𝑑𝑧

=
𝜕𝐹
𝜕𝑧

+
𝜕𝐹
𝜕𝜓

𝑑𝜓
𝑑𝑧

+
𝜕𝐹
𝜕𝜂

𝑑𝜂
𝑑𝑧

= 0

Rewrite the continuity equation for the 1st harmonic distribution function

𝜕 a𝐹A
𝜕𝑧

+ 𝑖2𝑘U a𝐹A −
𝑒

𝑚\𝑐8𝛾@
𝑑𝐹\
𝑑𝜂

]𝐾 a𝐸7
2𝛾@

+ a𝐸] = 0



Longitudinal Space Charge Field
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Longitudinal space charge force is the repulsive force felt by an electron due to the presence of other 
electrons. This effect is important for FELs operating in the Raman regime such as THz FELs. It is 
negligible for FELs operating in the Compton regime, e.g., all X-ray FELs.

In the text book, the longitudinal space charge electric field is expressed as the first derivative of the 
transverse electric field with respect to z.

a𝐸] = 𝑖
4𝛾>𝑐
𝜔> ]𝐾

𝑑 a𝐸7
𝑑𝑧

Rewrite the continuity equation for the 1st harmonic distribution function

𝜕 a𝐹A
𝜕𝑧

+ 𝑖2𝑘U a𝐹A =
𝑒

𝑚\𝑐8𝛾@

]𝐾 a𝐸7
2𝛾@

+ 𝑖
4𝛾>𝑐
𝜔> ]𝐾

𝑑 a𝐸7
𝑑𝑧

𝑑𝐹\
𝑑𝜂



Slowly Varying Amplitude Approximation
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a𝐸(𝑧, 𝑡) = a𝐸7 𝑧 𝑒; b]Tcd
Consider the following trial solution for an EM wave with complex amplitude that depends only on z

Insert the above trial solution into the wave equation and expand

Treat the radiation as a 1D (no optical diffraction) wave equation driven by a complex transverse 
electron current along the x direction

𝜕8

𝜕𝑧8
−
1
𝑐8

𝜕8

𝜕𝑡8
a𝐸(𝑧, 𝑡) = 𝜇\

𝜕 ̃𝚥7
𝜕𝑡

−𝑘8 a𝐸7 𝑧 + 2𝑖𝑘
𝑑 a𝐸7 𝑧
𝑑𝑧

+
𝑑8 a𝐸7 𝑧
𝑑𝑧8

+
𝜔8

𝑐8
a𝐸7 𝑧 𝑒; b]Tcd = 𝜇\

𝜕 ̃𝚥7
𝜕𝑡

Applying the SVA approximation, i.e., the second derivative is much smaller than the first derivative

2𝑖𝑘
𝑑 a𝐸7 𝑧
𝑑𝑧

𝑒; b]Tcd = 𝜇\
𝜕 ̃𝚥7
𝜕𝑡



FEL Integro-differential Equation
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Integrate the continuity equation with respect to s, from s = 0 to s = z 

𝑑 a𝐸7 𝑧
𝑑𝑧

=−
𝜇\𝑐 ]𝐾
4𝛾>

̃𝚥A= 𝑗\h
Ta

a
a𝐹A 𝜂, 𝑧 𝑑𝜂

a𝐹A 𝜂, 𝑧 =
𝑒

𝑚^𝑐8𝛾>
h
\

] ]𝐾 a𝐸7
2𝛾@

+ 𝑖
4𝛾>𝑐
𝜔> ]𝐾

𝑑 a𝐸7
𝑑𝑧

𝑑𝐹\
𝑑𝜂 𝑒T;8b&_e ]TY 𝑑𝑠

Integro-differential equation

𝑑 a𝐸7 𝑧
𝑑𝑧

= 𝑖𝑘U
𝜇\]𝐾𝑛^𝑒8

𝑚^𝛾>8
h
\

] ]𝐾 a𝐸7
2𝛾@

+ 𝑖
4𝛾>𝑐
𝜔> ]𝐾

𝑑 a𝐸7
𝑑𝑧

ℎ 𝑧 − 𝑠 𝑑𝑠

For a mono-energetic electron beam with 
initial energy detuning ℎ 𝑧 − 𝑠 = 𝑧 − 𝑠 𝑒T;8b&

f
g'

]TY
Δ = 𝛾= − 𝛾!



Third-Order Equation

33

a𝐸7h

Γi
	+ 	2𝑖

𝜂
𝜌
a𝐸7j

Γ8
	+

𝑘k8

Γ8
−

𝜂
𝜌

8 a𝐸7l

Γ
	− 	𝑖 a𝐸7 = 0

Q𝐸5@ 𝑧 =
𝑑# Q𝐸5 𝑧
𝑑𝑧#

Q𝐸5A 𝑧 =
𝑑$ Q𝐸5 𝑧
𝑑𝑧$

Q𝐸5B 𝑧 =
𝑑 Q𝐸5 𝑧
𝑑𝑧

Gain parameter

𝜌 =
𝛤
2𝑘"

Detuning

Prime denotes full derivatives with respect to z

𝛤 =
𝜋%𝐾#𝐼%

4𝛾!$𝜆"𝜎#𝐼&

'
$

Plasma wavenumber

a𝐸7h

Γi − 𝑖
a𝐸7 = 0

Special case: 
1. Beam energy does not deviate significantly 

from the resonant energy
2. X-ray FEL (Compton regime)
The second and third terms vanish for this case, 
and the third order equation reduces to



Cubic Equation & the Three Roots
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Applying the resonant condition to an FEL operating 
in the Compton regime, and assuming solution of the 
form                             , we obtain the cubic equation 

The three roots of the cubic equation:

Exponentially growing mode

Exponentially decaying mode

Oscillatory mode

𝛼i = 𝑖Γi

Im

Re
-1

Ö3
2

-Ö3
2

µ2

µ1

µ3

Q𝐸5 𝑧 = 𝐴eC0 

𝛼' = 𝑖𝜇'Γ =
𝑖 + 3
2 Γ

'
#

𝛼# = 𝑖𝜇#Γ =
𝑖 − 3
2

Γ

𝛼$ = 𝑖𝜇$Γ = −𝑖Γ

Γ = 2𝑘"𝜌
Gain parameter



initial energy modulation

where c1, c2 and c3 are the coefficients of the linear combination. Taking the derivatives of the eigen-
functions and expressing them in terms of the A matrix, we arrive at the initial conditions given below

General Solutions & the A Matrix
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Write the solution as a linear combination of the eigen-functions 𝑉m = 𝑒n(	]

a𝐸7 𝑧 = 𝑐A𝑉A + 𝑐8𝑉8+ 𝑐i𝑉i

𝜜 =
1 1 1
𝛼A 𝛼8 𝛼i
𝛼A8 𝛼88 𝛼i8

a𝐸7 0

a𝐸7l 0

a𝐸7j 0

= 𝜜 7

𝑐A

𝑐8

𝑐i

initial radiation electric field

initial bunching



Finding the General Solution Coefficients

36

𝑐A
𝑐8
𝑐i

= 𝜜TA 7
a𝐸7 0
a𝐸7l 0
a𝐸7j 0

The general solution can be expressed as a linear combination of eigenfunctions

𝑉m = 𝑒n(	]

a𝐸7 𝑧 = 𝑐A𝑉A + 𝑐8𝑉8+ 𝑐i𝑉i

where the eigenfunctions are

The coefficients of the general solution can be calculated by applying the inverse A matrix to the 
initial condition vector.

Use A-1 matrix to calculate c1, c2, and c3 coefficients from the initial conditions



Resonant Case and Zero Energy Spread
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𝑨	 =

1 1 1
𝑖 + 3 Γ/2 𝑖 − 3 Γ/2 −𝑖Γ

𝑖 + 3
8
Γ8/4 𝑖 − 3

8
Γ8/4 −Γ8

𝛼A =
𝑖 + 3
2

Γ

𝛼8 =
𝑖 − 3
2

Γ

𝛼i = −𝑖Γ

Eigenvalues (roots of cubic equation)

𝑨TA 	=
1
3

1 3 − 𝑖 / 2Γ −𝑖 3 + 1 / 2Γ8

1 − 3 − 𝑖 / 2Γ 𝑖 3 + 1 / 2Γ8

1 𝑖/Γ −1/Γ8

Invert the above A matrix



Seeding with an External Laser
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!𝐸! 0
!𝐸!" 0
!𝐸!# 0

=
𝐸$
0
0

The initial condition vector of a externally seeded FEL involves a coherent radiation electric field 
and an initially unbunched (with no density modulation) electron beam at the undulator entrance

Zero initial energy modulation

Radiation electric field

Zero initial bunching

𝑐%
𝑐&
𝑐'

= 𝑨(%
𝐸$
0
0

𝑐%
𝑐&
𝑐'

= %
'

𝐸$
𝐸$
𝐸$

Coefficients of the solution



High-gain Seeded FEL
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a𝐸7 𝑧
8 =

𝐸\8

9
𝑒 i	o]

Q𝐸5 𝑧 =
𝐸=
3
⋅ exp

𝑖 + 3 Γ
2

z + exp
𝑖 − 3 Γ

2
z + exp −𝑖Γz

In the lethargy region (~2 Lg0) the three roots 
interfere with one another and the radiation 
power does not grow or grows slowly with z

lethargy 
region

exponential 
region

Complex electric field versus z

FEL intensity versus z in the exponential regime

Γ = 2𝑘"𝜌Gain parameter



SASE FEL Starting with Noise
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a𝐸7 0
a𝐸7l 0
a𝐸7j 0

=
0
−1
0

p#C qr
sg'

̃𝚥A 0

The solid (red) line corresponds to power for a 
constant bandwidth and the dash (blue) line 
corresponds to power for a variable bandwidth.

SASE FEL initial condition involves a beam of 
monoenergetic electrons with start-up shot noise 
due to the electron’s discrete nature as the seed.

Equivalent current density

̃𝚥' 0 =
1
𝐴3

𝑒𝐼=
𝜋
Δ𝜔

𝜎/
𝜔 DE82;

= 2
𝜎F
𝛾 ;,3;9G

Initial bandwidth is ~ twice beam energy spread



FEL Seeded with Bunched Beams
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a𝐸7 0
a𝐸7l 0
a𝐸7j 0

=
0
−1
𝑖2𝑘U𝜂

p#C qr
sg'

̃𝚥A 0

Initially, the electron beam has density modulations 
with a period equal to the radiation wavelength. 
The radiation power starts out zero, but rises to the 
equivalent seed power as given below

Another initial condition is when the electrons are 
periodically bunched before injected into the 
undulator, with zero initial radiation power.

𝑃 t 0 ≈ 𝜌𝑃[𝑏8 0



Three-dimensional Effects
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Beam Optics (Twiss) Functions
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𝑥′

𝑥

Beta function* (beam size)

Gamma function (beam divergence)

Alpha function (phase-space angle)

𝛽7 =
𝑥8

𝜀7

𝛾7 =
𝑥l8

𝜀7

𝛾7𝑥8 + 2𝛼7𝑥𝑥l + 𝛽7𝑥l8 = 𝜀7
𝛼7 =

− 𝑥𝑥l

𝜀7
= −

1
2
𝑑𝛽7
𝑑𝑧

Note       is the Twiss beta function, not 
x velocity relative to the speed of light.

𝛽**

𝛽!𝜀!

𝛾!𝜀!

𝜑

𝑡𝑎𝑛2𝜑 =
2𝛼
𝛾 − 𝛽



Focusing b  and Rayleigh Range 

44

For the electron beam to efficiently transfer its energy to the radiation beam, the electron beam 
un-normalized emittance must be smaller than the photon beam emittance, i.e.,            

This stringent condition is not satisfied in most hard X-ray FELs. The 3D effect due to emittance 
shows up as large angles in the electron beam as it traverses the FODO lattice. To minimize this 
effect, the FODO lattice is designed with focusing b larger than the 1D gain length, i.e., 𝐿'H

𝛽9I;
< 1

4𝜋𝜀"
𝜆!

≤ 1

𝜎+#*

𝑧,

𝜎! =
𝜆
4𝜋

𝑧J 1 +
𝑧#

𝑧J#
𝜎G95 = 𝜀5,6𝛽G95 1 +

𝑧#

𝛽G95#

𝛽9I;~	𝑧J

𝜎-
𝜎.



Optimum Focusing b Function 
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𝛽9I;~'# 𝛽G95 + 𝛽G8D

Too short b  functions increase the angular modulations, thus increase 
the electron beam’s effective energy spread, resulting in lower power. 
Too long b  functions reduce the current density and also lead to lower 
power. Note the reduction is gradual beyond the optimum b  function.



Electron Beam Energy Spread
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𝜎g
𝛾 ≤ 𝜌

Electrons must maintain the same axial velocity during the coherence length 𝑙<

𝜎g
𝛾
≤

1
4𝜋𝑁y

𝑙C ≈ 𝑁y𝜆

𝑁y ≈
1
4𝜋𝜌

𝑙/

The initial relative beam energy spread must be less than r

SASE coherence length is 
approximately the slippage 
length over the 1D gain length 



   Ming-Xie parameters  Conditions for 1D Theory
Diffraction

Emittance

Energy spread

Ming-Xie Parameterization – Part 1
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𝐿AB ≤ 𝑧@ 𝜂z =
𝐿AB
𝑧@

𝐿AB
𝛽:{^

4𝜋𝜀U
𝜆>

≤ 1 𝜂| =
𝐿AB
𝛽:{^

4𝜋𝜀U
𝜆>

𝜎g
𝛾
≤

1
4𝜋𝑁y

𝜂g =
4𝜋𝐿AB
𝜆U

𝜎g
𝛾

𝛽:{^ > 𝐿AB

𝜂z < 1

𝜂| < 1

𝜂g < 1

𝑧@ > 𝐿AB

𝜎g
𝛾
< 𝜌



Ming-Xie Parameterization – Part 2
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Λ 𝜂z, 𝜂|, 𝜂g = 𝑎A𝜂z:$ + 𝑎i𝜂|:) + 𝑎}𝜂g:*
+𝑎~𝜂|:+𝜂g:, + 𝑎A\𝜂z:--𝜂g:-$ + 𝑎Ai𝜂z:-)𝜂|:-. + 𝑎A�𝜂z:-/𝜂|:-+𝜂g:-,

𝐿y,iB = 𝐿�\ 1 + Λ

3D effects increase the power gain length by a factor 𝐹 𝜂L, 𝜂M, 𝜂F = 1 + Λ 𝜂L, 𝜂M, 𝜂F

a1=0.45 a2=0.57 a3=0.55 a4=1.6

a5=3 a6=2 a7=0.35 a8=2.9

a9=2.4 a10=51 a11=0.95 a12=3

a13=5.4 a14=0.7 a15=1.9 a16=1140

a17=2.2 a18=2.9 a19=3.2

3D Power gain length

3D Saturated power 𝑃Y:d,iB =
𝜌𝑃[
1 + Λ 8

	



Comparing MX, Genesis to Data
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Ming-Xie Genesis LCLS Data

3D effect, Λ 0.21

Power gain length 2.4 m 3.6 m 3.5 m

Saturated power 20 GW 20 GW 15 GW

Parameters Symbol Value

Beam energy 𝐸% 13.6 GeV

Peak current 𝐼& 3.0 kA

Slice emittance 𝜀0,-+" 0.4 µm

rms energy spread 𝜎2,-+"/𝛾 0.01%

FEL wavelength l 1.5 Å

FEL parameter r 7 x 10-4

1D gain length 𝐿34 2.0 m

1D Saturated power 𝑃"#$ 28 GW

LCLS experimental data from “First lasing and operation of 
an angstrom-wavelength free-electron laser” P. Emma et al., 
Nature Photonics 4, 641–647(2010)



Summary of SASE & High-Gain FEL
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• SASE starts from noise, grows exponentially along a very undulator and saturates at peak power 
of 10s of GW.  The SASE x-ray pulses only have partial temporal coherence and consist of multiple 
sub-femtosecond spikes, each with its own coherence length. The SASE x-ray FEL output has 
significant pulse-to-pulse energy and spectral fluctuations.

• The 1D FEL theory is based on interaction between a mono-energetic electron beam and a 
paraxial radiation beam under SVA approximation. This interaction is described by three coupled 
equations involving the radiation field amplitude, electron bunching and energy detuning.

• For small energy detuning, we combine the three first-order equations into a single third-order 
equation that gives rise to the cubic equation with three roots. One of these roots corresponds to 
the mode that grows exponentially along z with a characteristic 1D gain length.

• The effects of diffraction, emittance and energy spread can be analyzed using the Ming-Xie 
parametrization approach that provides estimates of the 3D gain length and saturated power.



FEL Bucket & Synchrotron Oscillations

FEL bucket half-height
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Radiation electric field amplitude

𝐸\ = 2𝑍\𝐼> =
2𝐼\
𝑐𝜖\

𝜂9:7 =
𝑒𝐸\𝐾
𝑘U𝑚^𝑐8

Synchrotron oscillation period

𝜂+#*

𝐿� =
𝜆U

2𝜂9:7

𝑳𝑺


