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Wednesday Schedule K
XELERA
» Self-Amplified Spontaneous Emission 09:00 - 10:00
10:00 - 10:10
* 1D Theory of High-Gain FEL 10:10 — 11:10
11:10 — 11:20
* Ming-Xie Parameterization of 3D Effects 11:20 — 12:00
12:00 — 13:30
» Lab Project 13:30 - 17:00

FEL Simulations with Genesis



Self-Amplified Spontaneous Emission
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SASE is most common approach in XFELs X

XELERA

Start with high-brightness electron beams.
* Low emittance
* High peak current
* Low energy spread

Match the electron beams into a long
undulator with a quad FODO lattice.

Produce high FEL gains.
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Optimize the FEL to shorten the gain length.

FEL power saturates after 20 gain lengths.
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SASE Characteristics
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Radiation starts up from “white noise” radiation due to the discrete
nature of electrons.

The FEL interaction amplifies the “white noise” within a narrow FEL
gain spectrum.

In a long undulator with strong focusing, the FEL enters the
exponential growth regime with a characteristic gain length.

FEL instability:
High field region — Large energy modulation
Large energy modulation — Strong bunching
Strong bunching — Higher field

The randomness of the initial bunching is apparent in the final
temporal profile and SASE spectrum with both exhibiting “spikes.”
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Start-up Noise

We have been describing electron current as a smooth function
I(t). A more accurate description of current, which accounts for

the discrete nature of electrons, is a sum of Dirac delta functions:
N
I(t) = ez 5(t—t;)
j=1

Taking the Fourier Transform of I(t):

ir(w) = J"" eifw—tj)
o = |

1
S(@) = —(lir(@)?)

N

exp(iwt)dt = e z exp(iwtj)

j=1
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SASE Random Behavior

 The discrete nature of the electrons leads to random
fluctuations in current as a function of s.

* Taking the Fourier transform of current fluctuations
yields “white noise” in the frequency domain, i.e.
the bunching factor versus frequency is random.

* The FEL amplifies a narrow portion of the “white
noise” spectrum. This portion of the spectrum
grows to high power. The randomness of the initial
bunching is still apparent in the final SASE spectrum.

Gain Bandwidth for z = 8L; before saturation
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Start-up power scaling

* The spontaneous noise power and the number of photons at startup are given by

— Electrons beam power
_ 3 pZPb

P =
M2 Ny — # of electrons/wavelength

* As the FEL wavelength decreases (higher photon energy), the # of electrons/wavelength
decreases and the start-up power increases.

Wavelength Region Estimated Start-up Power (W)

Visible 1
EUV 10
Soft X-rays 100

Hard X-rays 1000



Power Growth Curves

In the exponential region, the slope of the
semi-log plot (for one e-folding) is equal to

1
Slope x E

The peak power fluctuates wildly in the
exponential growth regime due to the
stochastic nature of the FEL instability.

At saturation, the pulse-to-pulse amplitude
fluctuations decrease and FEL power can be
approximated by

_ pEpr
Psat ~ e
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Strong Focusing in an Undulator FODO X

In a FODO lattice, the electron beam radii in x and y oscillate between a maximum and minimum
values set by the S functions and the un-normalized emittance in x and y. We consider the case

where £, = ¢, and 5, > ,By
Undulator Undulator

Undulator X Undulator UdIt Undulator
.

Omin = /ﬁygy oy \/
(1+ a2) L (1+a?)

Electron beam rms angle O, = |& ; y Ey F;
N x \ 7
10

O-max _ ﬁ X gx




Optical Diffraction =~

The rms radius of the radiation beam is determined by two competing effects: optical guiding (beam
focusing) and diffraction (beam expanding). The minimum radiation radius is approximately the larger

of the x and y electron beam radii in the FODO lattice.
0y = mMax(0y y)

The Rayleigh length is chosen to minimize the effect of optical diffraction.

Oy Ao
_r Zp =
ZR A

0, =

To minimize diffraction effect, the radiation Rayleigh range must be longer than the 1D gain length
ZR > LlD

11



Optical Guiding in an Undulator FODO XELERA

Beam radius
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SASE Transverse Coherence

1
)

W KN = O 4 N

Incoherent Spontaneous Emission SASE in exponential region SASE at saturation

13
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Slippage Length & Coherence Length )%

Coherence length, [,

A AAAAAA s =
VVVVVVVV

: : : : : : : : Undulator exit

lslippage = Ny

In the time the electron traverses N, undulator periods, the optical wave slips ahead of the electron
N, wavelengths, a distance known as the slippage length. The coherence length is the slippage

length over one gain length. 1
l. =
© amp
In a SASE FEL, the radiation coherence extends over only one coherence length. For bunch length
longer than the coherence length, each coherence length is independent from the others.

cAt
The number of coherence length in a SASE pulse N, = l &
¢ 14
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SASE Time-Bandwidth .4
XELERA
o0 Time Domain 10lgExpanded Energy Spectrum
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The radiation pulse width (electron bunch) is the Fourier conjugate of the individual
spectral spike width. The longer the overall electron bunch (Af) in the time domain, the
narrower the spectral spike width (0¢€) in the energy (frequency) domain.

15



SASE Time-Bandwidth (continued)
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In the expanded time scale, the temporal spike width is the Fourier conjugate of the full
spectral (energy) width. The shorter the temporal spikes (0¢) in the time domain, the

broader the overall spectral width (A¢€) in the energy domain.

16



SASE Bandwidth vs. z

The relative spectral bandwidth of a SASE FEL is plotted as a function of undulator length. The

relative BW decreases along the undulator and reaches the minimum just before saturation.

Dependence of relative rms BW on z
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First Observations of SASE FEL

XELE
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Microwave*
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IR-Visible
Visible-UV
VUV

Soft X-ray

Hard X-ray
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* The LLNL SASE experiment was done in a waveguide, not free space



SASE Amplitude Fluctuations XX

SASE pulse energy fluctuates significantly frormr
pulse to pulse in the exponential growth
regime, due to the stochastic nature of SASE
shot noise.

1010 -

(Upulse> = Average pulse energy 10° F

Power (W)

Define normalized pulse energy

106 -

Upulse
(Upulse>

u =

10 &

Fluctuation statistics of normalized amplitude

A ’M 102 1 1 !
10 20 30 40 50

M = number of modes (spikes) in each SASE pulse Undulator Length (m)
19
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Poisson Statistics

Probability distribution of normalized pulse energy

14 T

101

Number of counts

65 1 15 2 25 3



1D Theory of High-Gain FEL




Some Important Basic Concepts XX

* FEL coupled first-order differential equations
A Normalized radiation field amplitude

1 Normalized electron energy modulation
b  Electron bunching

Slowly Varying Amplitude (SVA) approximation _ ~
y Varying Amp (SVA) app 2p ap

Radiation field amplitude is a smooth and slowly varying function of z Fpy & ka_
Z Z

Optical guiding

The radiation beam is guided by the high-current electron beams in the exponential gain regime

Third-order differential equation
For small 77, combine the FEL coupled equations into a single third-order differential equation

* Cubic dispersion equation & the three roots ~Exponentially growing
For the resonant case and assuming solutions are of the form  _ gyponentially decaying
E, = Ae%** , solve the cubic equation and obtain three roots

—Oscillatory 22



FEL Coupled First-Order Equations XX

Normalized radiation field amplitude grows with electron microbunching

ffffffffffffff dA 1< oy
""""""" dT o N exp ll/)n
n=1
d d
I % = —2Re(4e'¥n)

Energy modulation grows with radiation field

Electron microbunching grows with the
amplitude correlated with electron phase

normalized electron energy modulation

23
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Normalized FEL Variables P4
XELERA
o 1.50-
Normalized undulator coordinate = .
T = 2kypz = 1.00-
Z 0.75
Normalized energy deviation from resonance % 050
Ny = @ E 0.25 -
p T T T T
0 2 4 6 8 10
Normalized radiation field amplitude Normalized undulator coordinate, 7
A = E Saturated normalized SASE power
- E — at zero initial energy detuning
ZopPyp
Saturation electric field  E¢ = 5 |A|? < 1.5
o5
\ 2




Definitions of Important Variables P-4

Yn

Nn

st N b

Y]
[

: Resonant dimensionless energy Yr =

Phase of the n'" electron with respect to the FEL resonant radiation wave

Energy deviation of the n'" electron with respect to the FEL resonant dimensionless energy
Yn — Vr
rr k, [ K? 21

1+— k, =—
2k, 2 ’

Nn =

\

. Initial energy detuning from the FEL resonant energy
: Undulator parameter corrected for the reduction due to figure-8 motion
. Initial electron beam DC current density (A/m?)

: Transverse bunching current density at the fundamental wavelength
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FEL Coupled First-Order Equations xX
XELERA
Evolution of the nt" electron phase Evolution of the nt" electron energy deviation
l/)n _ dn e EE .
dZ = 2kl == — > Re {[ —E ] eXp(“/)n)}
dz moC~Yr 2YR
Radiation field amplitude grows with
the first harmonic current density
Radiation-electron interaction
dEx ,uOCK
. J1
dz 4yr Electron-electron interaction (space charge)
First harmonic current density Space charge effects are negligible for FELs
T N operating in the Compton regime (e.g., X-ray
Jj1=Jjo— eXp(—il/Jn) FELs). S-paFe charge cannot .be ignored for FELs
N operating in the Raman regime (e.g., THz FELs).

n=1



Evolution of Harmonic Current Density

relative energy deviation n

norm. charge density pn

ponderomotive phase y ponderomotive phase

Initial DC current density
Jo = —ngec
N
ApAy

Ne

1

T 0.01
0.002 T T T T g i 0.01 T T T T 0.01 T T T T 1
3 FEL buckets z=0.2Lgo z=12Lgo z=14Lgo
AT ~ e e ,/ \\\\\ N,
N 4 N \\\\ /4 \\ /s k
0 [\ ‘*0, 2\ -] O
\\ ,l/ \\\ v \\ ,//
1 1 1 1 ! —0.01 1 1 1 1 -0.01 1 1 ! 1 -0.01 ! 1
2 I ' i ' ' 2 T T T T T 2 T T T T T 10 T T
L i | /‘\\ ‘/,a,\\ i
Y o i / \ \ ‘/ \\
1 1 ~— > - 1 / \ / \ 5 L
e Bd Nl ot {\
0 ! L I ! I 0 : . ) L L 0 L f ! L 1 0 = L
—2n 9 2n —2n 0 2n —2n 0 2n on

ponderomotive phase v

First harmonic current density is
proportional to the electron bunching
N
Ky

—ec—C
A4,

2T

N

n=1

J1 =Jo

0

ponderomotive phase y

exp(_ilpn)



Phase Space Distribution Function, F

Consider a 2D phase-space density function with small 15t harmonic modulations.

F(y,n,z) = Fy(n) + Re{F (1, z) - e}

Assume F|, is a Gaussian function of energy with small energy spread.

_ (77—770)2
2
20,7

e

Fo(m) = N
n

The 15t harmonic current is related to 1t harmonic phase-space density

o)
J1 =]'0j6F1(77,Z)d77

28



Liouville’s Theorem & Vlasov Equation D¢

Liouville’s equation governs the evolution of phase-space distribution with the independent
coordinate. According to Liouville’s Theorem, in the absence of dissipative force, the phase-space

volume occupied by an ensemble of particles is conserved along the trajectory.

Generalized continuity equation (also known as Vlasov equation).

dF aF 6Fd1/)+0Fd77 0
dz (’)1/) dz o0ndz

Rewrite the continuity equation for the 15t harmonic distribution function

0F1+ 2k, Fy — —— 4Fo EE’“+E =0
9z Y mgc?ys dn |2ve |
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Longitudinal Space Charge Field . ¢

XELERA

Longitudinal space charge force is the repulsive force felt by an electron due to the presence of other
electrons. This effect is important for FELs operating in the Raman regime such as THz FELs. It is
negligible for FELs operating in the Compton regime, e.g., all X-ray FELs.

In the text book, the longitudinal space charge electric field is expressed as the first derivative of the
transverse electric field with respect to z.

- 4)/ ch
By =i K dz

Rewrite the continuity equation for the 15t harmonic distribution function

oF e |[KE 4y..c dE, | dF
—— + 2k, Fy = Ol |
0z Mmoc?yr | 2YR w,.K dz | dn
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Slowly Varying Amplitude Approximation X

Treat the radiation as a 1D (no optical diffraction) wave equation driven by a complex transverse

electron current along the x direction
92 1 92 Bt 07,
—_— Z’ — —
922 c2 0t2 Ho 5¢
Consider the following trial solution for an EM wave with complex amplitude that depends only on z

E(z,t) = E,(z)e!kz—wt)

Insert the above trial solution into the wave equation and expand

dE,(z) d°E,(2) ; dj
. (kz—wt) — ,, 2%
+ 2ik e + 7,2 + e Uo Py

Applying the SVA approximation, i.e., the second derivative is much smaller than the first derivative

~

dEx(2)\ 0j
.y, X\ (kz—wt) — X
(2”‘ dz )e o 5¢



FEL Integro-differential Equation Sﬁi
dE(2) K J o
de MZ; 1= Jo f Fan, 2)dn

Integrate the continuity equation with respectto s, froms=0tos =z

Fi(n,2) = e~ 12kul(2=5)gs

4‘er dE ] dFO

MeC%Yy ZVR w-K dz | dn

Integro-differential equation

dE.(z) . poKnee? (%[KE, 4YrC dE
— lku > (Z — S)dS
dz Mme)y ZVR (U
For a mono-energetic electron beam with (z S)

initial energy detuning A =y, — ¥, h(Z — S) = (Z — S)e
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Third-Order Equation D). "¢
XELERA
Detuning Plasma wavenumber
~ =~ | —
E_9’C”_|_2iEE_9’C’_|_ ﬁ_(z)ZE_’;_iE —
I3 pI'2 rz \p/ |T x
Gain parameter T \
nK?L, 13 T Special case:
I'= 4y32,021, P= 2k, 1. Beam energy does not deviate significantly
from the resonant energy
Prime denotes full derivatives with respect to z 2. X-ray FEL (Compton regime)
i The second and third terms vanish for this case,
El(2) = x(2) and the third order equation reduces to
dz -
- d?E.(z =
dz? _ 3 LE, =
. d3E,(z) I
EY' (2) =——=—

dz3 .



Cubic Equation & the Three Roots XX

Applying the resonant condition to an FEL operating
in the Compton regime, and assuming solution of the
form E,(z) = Ae™ , we obtain the cubic equation

The three roots of the cubic equation:

(l+\/—)

=i =
ay = il 5

(l V3)

a, = l‘ler

a3 = lﬂgr = —il’

Exponentially growing mode

Exponentially decaying mode

Oscillatory mode

a3 = i3 Gain parameter
I'=2k,p

34



General Solutions & the 4 Matrix D.. ¢
XELERA
Write the solution as a linear combination of the eigen-functions V; = e%i’

Ex(Z) == C]_Vl + C2V2+ C3V3

where c|, ¢, and c; are the coefficients of the linear combination. Taking the derivatives of the eigen-
functions and expressing them in terms of the 4 matrix, we arrive at the initial conditions given below

initial radiation electric field /EX(O)\ Cq
1 1 1
initial bunching | EL(0) | =A-]| C2 A= |0 a a3
af a; a3

initial energy modulation \E‘a’c’ (0)/ €3
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Finding the General Solution Coefficients X

XELERA

The general solution can be expressed as a linear combination of eigenfunctions

Ex(Z) = C1V1 + C2V2+ C3V3

where the eigenfunctions are V] —e

The coefficients of the general solution can be calculated by applying the inverse 4 matrix to the

initial condition vector.

C1 ~x(0)
C2 | =A"1-| EL(0)
“3 £ (0)

Use 4! matrix to calculate c;, ¢,, and c; coefficients from the initial conditions



Resonant Case and Zero Energy Spread K

Eigenvalues (roots of cubic equation)

1 1 1
BGEON A=<<i+f3>r/z (-2 —ir)
2 (i+V3)°T2/4 (i-V3)'r2/4 17
a2=(i_2\/§)f‘

Invert the above A4 matrix

A7l == (—V3-i)/@D) (V3 +1)/(21?%)

(3 = —il . (1 (V3-i)/@r) (-iV3+ 1)/(2r2))
1
3
1 i/T —1/T'?



Seeding with an External Laser D "4

The initial condition vector of a externally seeded FEL involves a coherent radiation electric field
and an initially unbunched (with no density modulation) electron beam at the undulator entrance

x(O) EO Radiation electric field
~J,C (O) =1 0 Zero initial bunching
nl (O) 0 Zero initial energy modulation
X
Coefficients of the solution
o) E, €1 Eo
1
— C = _
l=4"10o] = 2 | = 3| Lo
3 0 Cs Eo



SiLAC
High-gain Seeded FEL D¢
XELERA
Complex electric field versus z
- i ++/3)T i —/3)r
E.(z) = 3 [exp <( > 3) ) + exp <( 3) ) + exp(—il“z)]
FEL intensity versus z in the exponential regime . ' | /7 thirdorder equation
o
E2 a 108 u/ﬁ\ coupled first-order
~ 2 0 \/_F —~ ; equations
E (7 — 31z N expoenential :
| x( )| 9 o 104 region /
=
= ,
o 7
Gain parameter T = 2kup 2 100 —
=
o 7
In the lethargy region (~2 L) the three roots ’ ﬁjl | |
interfere with one another and the radiation lethargy 10 20 30

power does not grow or grows slowly with z region  Position in undulator z/L 4

39



SASE FEL Starting with Noise

SASE FEL initial condition involves a beam of
monoenergetic electrons with start-up shot noise
due to the electron’s discrete nature as the seed.

Ex(o) 0 2
~, cK .
Ex(0) | ={~1]5~7(0)
E¢(0) 0
Equivalent current density
5 (0) = 1 810
Ja( )—E T W

Initial bandwidth is ~ twice beam energy spread

0 0.
(f)noise =2 (7]/)

e—beam

10°
108

107

FEL power [W]
o o o
£~ (%)) (2]

—
o
w

10

1

|

|

%
e
j

0

5

15 20

The solid (red) line corresponds to power for a
constant bandwidth and the dash (blue) line
corresponds to power for a variable bandwidth.

40



FEL Seeded with Bunched Beams

Another initial condition is when the electrons are
periodically bunched before injected into the
undulator, with zero initial radiation power.

E,(0) 0 .

~ CK o
() |=( -1 22700
7 (0)/ N2k

Initially, the electron beam has density modulations
with a period equal to the radiation wavelength.
The radiation power starts out zero, but rises to the
equivalent seed power as given below

Peq(O) ~ pP,b*(0)

FEL power in arbitrary units

10

10

100

10

01

0.01

4 6
number of gain lengths

10

41



Three-dimensional Effects

42



Beam Optics (Twiss) Functions 3’%
% tan2¢ = ca
4 y—8
Beta function™ (beam size) <x2> VI
By = <
X
Gamma function (beam divergence) \<P
> X
<x12> \/@
Vx = -
X
Alpha function (phase-space angle)
_ ) 1dBx
T T T T 274z

VX2 + 20, xx" + Bex'? = &,
* Note Sy is the Twiss beta function, not

x velocity relative to the speed of light. 43



yLight

ol AL

o b M\

Focusing # and Rayleigh Range 1

XELERA

For the electron beam to efficiently transfer its energy to the radiation beam, the electron beam
un-normalized emittance must be smaller than the photon beam emittance, i.e.,
4me,
Ay
This stringent condition is not satisfied in most hard X-ray FELs. The 3D effect due to emittance

shows up as large angles in the electron beam as it traverses the FODO lattice. To minimize this
effect, the FODO lattice is designed with focusing flarger than the 1D gain length, i.e., L;p <1

<1

:Bave
O-max
< 22 I A 22
O-max — Sx’ ﬁmax 1 + X 777777777777777777777777777777777777777777777777777777 O-r — _ZR 1 + )
g ﬁ?%lax T 41 ZI%
|
ZR Bave™ Zr
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Optimum Focusing S Function
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Too short S functions increase the angular modulations, thus increase

ﬁave“’% (,Bmax + ,Bmin)

the electron beam’s effective energy spread, resulting in lower power.
Too long £ functions reduce the current density and also lead to lower

power. Note the reduction is gradual beyond the optimum £ function.
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ectron Beam Energy Spread =~

Electrons must maintain the same axial velocity during the coherence length [,

ik

SASE coherence length is

1 | i approximately the slippage
Ng =~ — length over the 1D gain length
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Ming-Xie Parameterization — Part 1 =~

Ming-Xie parameters Conditions for 1D Theory

Diffraction
Lip Nng <1
Lip < zp Ma = —— e
R [ ZR > LlD J
Emittance
Lip 4 Lip 4me
1D 7Tgugl n, = 1D *TEyY 773<1
,Bave /11* ,Bave Ar
[ IBave > LlDJ
Energy spread
1 _ 4‘7TL1D O-y r"}/ < 1

oy ,
Y ~ 4mNg Y Ay ¥ [&<p }
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Ming-Xie Parameterization — Part 2

3D effects increase the power gain length by a factor F(nd, Ne, ny) =1+ A(nd, Ne, ny)

A(nd'ne' 77)/) = a Nqg™? + azng" + asn,
+a;m:8n,% + a;onq"1n, M2 + a13n314 N 415 + ageng“17n18n, 40

a1=0.45 82=0.57 a3=0.55 a4=1 .6
as=3 ag=2 a;=0.35 |ag=2.9
a9=2.4 a10=51 a11=0.95 a12=3
a13=5.4 a14=0.7 a15=1.9 a16=1140
a17=2.2 a18=2.9 a19=3.2

3D Power gain length Leosp = Lgo(l + A)

_ php
PSClt,3D — (1 +A)2

3D Saturated power
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Comparing MX, Genesis to Data o

Beam energy E, 13.6 GeV

Peak current I, 3.0 kA

Slice emittance S g 0.4 um

rms energy spread awms/y 0.01%

FEL wavelength A 1.5A

FEL parameter o, 7 x 104

1D gain length Lgo 20m

1D Saturated power Pt 28 GW
[ winexie | Geness | Laisbana_
3D effect, A 0.21

Power gain length 24 m 3.6m 35m
Saturated power 20 GW 20 GW 15 GW

FEL power (W)

=— Simulation
-“:}1':1_E *  Measured 1;-{;;--_._
¥eg,= 0.4 pm (slice)
ka=3.DkA

ag/E;=0.01% (slice)

v {mm)

-1 -08 -0& -04 -02
x{mm}

&0 80 100
Undulator magnetic length (m)
LCLS experimental data from “First lasing and operation of

an angstrom-wavelength free-electron laser” P. Emma et al.,
Nature Photonics 4, 641-647(2010)
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Summary of SASE & High-Gain FEL D 4

» SASE starts from noise, grows exponentially along a very undulator and saturates at peak power
of 10s of GW. The SASE x-ray pulses only have partial temporal coherence and consist of multiple
sub-femtosecond spikes, each with its own coherence length. The SASE x-ray FEL output has
significant pulse-to-pulse energy and spectral fluctuations.

 The 1D FEL theory is based on interaction between a mono-energetic electron beam and a
paraxial radiation beam under SVA approximation. This interaction is described by three coupled
equations involving the radiation field amplitude, electron bunching and energy detuning.

* For small energy detuning, we combine the three first-order equations into a single third-order
equation that gives rise to the cubic equation with three roots. One of these roots corresponds to

the mode that grows exponentially along z with a characteristic 1D gain length.

* The effects of diffraction, emittance and energy spread can be analyzed using the Ming-Xie
parametrization approach that provides estimates of the 3D gain length and saturated power.



FEL Bucket & Synchrotron Oscillations A

Radiation electric field amplitude
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