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Introduction
Reminder of Monday lecture:
• Linear uncoupled theory of motion

3/50



• Par6cles oscillate around the reference 
orbit:
• Oscilla<on in the transverse plane (betatron 

oscilla<on) – Horizontal and Ver5cal mo<on 
studied independently for uncoupled mo<on

• Oscilla<on in the longitudinal direc5on 
(along the beam)

Linear and uncoupled theory of mo5on 
~
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Introduction
Reminder of Monday's lecture:
• Linear uncoupled theory of motion

• The 1D harmonic oscillator

• State of the particle represented with phase space coordinates
• Transverse geometric coordinates: ! = #, #!, %, %! "
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Linear and uncoupled theory of motion 
• Accelerator beam dynamics often implies to study the particle motion in phase space

!
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Introduction
Reminder of Monday's lecture:
• Linear uncoupled theory of motion

• The 1D harmonic oscillator

• State of the particle represented with phase space coordinates
• Transverse geometric coordinates: ! = #, #!, %, %! "

• Canonical variables: &' = #, (#, %, ($
"

• With no longitudinal field, canonical variables = geometric variables

• The orbit in phase space is an ellipse:
• Its shape is described by the Twiss parameters.
• Its area is given by )*%: 

• In this lecture, +# = ,.
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Linear and uncoupled theory of motion 
• Accelerator beam dynamics often implies to study the particle motion in phase space

(#, #!) sampled 
at each turn
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Number of oscillations the particle performs in the cell (Tune): & = "
#$ 8/50



Introduction
Reminder of Monday's lecture:
• Linear uncoupled theory of mo6on

• Horizontal and Ver<cal mo<on studied independently

• Matrix formalism:

• Propaga<on of transverse coordinates with a transfer matrix

• Transfer matrix for one complete turn or one period can be parametrized with the Twiss 
parameters

• For uncoupled mo<on, the 4x4 transfer matrix is block-diagonal (off-diagonal blocks = 0):

̂
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Normalization matrix
Matrix formalism:

• The one-turn transfer matrix 23 can be expressed as being the product of a rotation matrix 4, 
depending on the phase advance, and a normalization matrix 5, depending on the lattice parameters. 
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Parametrization of uncoupled motion

• Twiss parameters:
• Parametrize the transfer matrix and normalization matrix.
• Describe the phase space ellipse (parametrize the generating vectors 

of this ellipse).

• Can be related to the beam size -  beam envelope ,-.

• Clear physical meaning with information on the focusing 
properties of the lattice:
• - limits the betatron oscillation amplitude of the particles and is 

related to the beam size.
• 6 is the phase advance of the oscillation.
• / and 1 are directly related to the β-function.
• The linear tune is directly related to the phase advance 6 on a period. 
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Linear and uncoupled theory of motion 
• Linear à Only dipole and quadrupole 

magnets in the accelerator:
• Dipole: Bend the beam.
• Quadrupole: Focus the beam.

• Uncoupled 
• Normal field component
• Transverse magnetic field components without 

any longitudinal field components: !( = !) = 0

• Equation of motion coming from the 
truncated quadratic hamiltonian:

*% = *& *' = +#
*% = +,
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Coupled betatron motion

• Skew quadrupole
• Quadrupole rotated by 45° around the beam axis.
• Horizontal displacement à horizontal magnetic field à 

vertical force à vertical displacement. 
• Initial horizontal displacement transformed into a 

vertical displacement à coupling between the two 
transverse directions. 

• Solenoids and longitudinal fields
• Rotation of the transverse plane around the longitudinal 

axe àCoupling between the vertical and horizontal 
motions.

• Non-zero transverse components of the vector 
potential.

• Canonical variables nonequal to geometric coordinates.

*( = +#
*' = −+,
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Strongly coupled optics 
• Particles oscillate around the 

reference orbit:
• Oscillation in the transverse plane 

(betatron oscillation) – Horizontal 
and Vertical motion are coupled

• Need an adequate parametrization for 
the linear coupled transverse motion
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Equations of motion, symplecticity 
and stability



Hamiltonian formula5on – Equa5on of mo5on
• Quadra;c Hamiltonian accoun;ng for skew quadrupole components 

and longitudinal field:

• New terms due to the skew component of the field gradient (N) and due to 
the longitudinal field component ($0, $1).

• From this Hamiltonian, it is possible to derive the coupled equa;ons 
of mo;on:
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•  The Jacobian matrix of a canonical transformation is symplectic 
• Linear case: transfer matrix = Jacobian matrix

• Symplecticity condition:

à('1−')/2 scalar conditions on the ' × ' transfer matrix à 2
1 (' + 1) independent 

elements:
• For a 1D motion, at least 3 independent parameters are needed.
• For a 2D motion, at least 10 independent parameters are needed.

• The symplecticity condition can be found from the Lagrange invariant, which 
a constant of motion for any solutions /03 and /04 of the equations of motion.

Matrix formalism – Symplecticity condition
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Matrix formalism – Stability
• The 4x4 transfer matrix has 4 eigenvectors corresponding to the 

eigenvalues 

• The eigenvalues appear in reciprocal pairs and form two complex 
conjugate pairs.

• To guarantee stable motion, ! = 1.

• The eigenvectors of the transfer matrix are complex conjugates      
with their corresponding eigenvalues                       .

• Eigenvector normalization:
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Transverse coupled mo0on 
parametriza0ons
Edwards and Teng (ET) & Mais and Ripken (MR) parametrizations
 



Edwards and Teng’s parametrization: Mais and Ripken’s parametrization: 

Coupled motion parametrizations - overview
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Edwards and Teng’s parametrization: 
• Compute the linear invariants and study the 

motion in the linearly decoupled planes.
• !-functions not directly related to the beam 

size in the physical plane à complicated 
interpretation.

Mais and Ripken’s parametrization: 
• Linked to measurable beam parameters, 

such as beam sizes (!-functions are positive 
and finite).

• Allows computing the elements of the 
correlation matrix explicitly .

Coupled mo4on parametriza4ons - overview

x

y
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Edwards and Teng’s parametrization: 
• Compute the linear invariants and study the 

motion in the linearly decoupled planes 
• !-functions not directly related to the beam 

size in the physical plane à complicated 
interpretation

Mais and Ripken’s parametriza7on: 
• Linked to measurable beam parameters, 

such as beam sizes (!-funcMons are posiMve 
and finite)

• Allows compuMng the elements of the 
correla7on matrix explicitly 

Coupled motion parametrizations - overview

à Parametrizations extended and revisited by different authors in several works, often employing 
slightly different formalisms and notations 

• Variants:

Sagan and 
Rubin

Edwards and 
Teng

Parzen
Willeke 

and 
Ripken

Lebedev 
and 

Bogacz

Wolski
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Edwards and Teng (ET) 
parametrization

Sagan and 
Rubin

Edwards 
and Teng

Parzen



• Transforms the transfer matrix into a block-diagonal matrix via a symplec>c 
rota>on and parametrizes the blocks on the diagonal as a Twiss matrix 

• The Twiss parameters !! , #!, and $! characterize the eigenmode mo?on and are 
unrelated to the physical axes. 

Coupled mo4on parametriza4ons – ET
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Explicit analy3cal solu3on

• Another decoupling matrix exist at some places of the laQceà the blocks of the decoupled 
matrix can be associated with different eigenmodes. Mode flipping = change in mode 
iden5fica5on at different loca<ons of the laQce.

• At some loca<ons of the laQce, only the first solu5on may exist, which forces the iden<fica<on of 
the modes à Possible forced mode flip.

Coupled motion parametrizations – ET
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v

u x

uv
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Solution based on eigenvectors

• 23 and 24 related by similarity transformation à Same eigenvalues associated with the 
oscillation eigenmodes.
• Method that solves the problem of mode identification of the ET parametrization.
• A « forced mode flip » indicates that the mode identification is incorrect:

• Either the mode identification is changed, keeping finite !-functions but with mode identification 
difficulties.

• Or the mode identification is kept à Lattice functions can diverge and can no longer be associated 
with finite beam sizes.

Coupled motion parametrizations – ET
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• 10 parameters: 2 !-functions, 2 #-functions, 2 phase advances $, and 4 
periodic functions which describe the decoupling matrix (coupling strength 
% and coupling structure &).

• Lattice functions connected to the eigenmodes of oscillation in the 
decoupled plane and not the physical directions of the transverse plane
• Twiss parameters no longer have their usual physical interpretation.

• The mode identification is difficult, and the #-functions can become 
negative or infinite if computed with the wrong mode identification.

• The linear invariants are easily expressed in terms of the eigenmode lattice 
functions !, #, and $ and have the same expression as the usual Courant-
Snyder invariants.

ET - Summary
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Mais and Ripken (MR) 
parametrization

Willeke 
and 

Ripken
Lebedev 

and 
Bogacz

Wolski



• Parametrizes the normalization matrix with lattice functions, 
equivalent to parameterizing the eigenvectors of the coupled 
transfer matrix. 

Coupled motion parametrizations – MR
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• Parametrizes the normaliza:on matrix with laOce func;ons, 
equivalent to parameterizing the eigenvectors of the coupled 
transfer matrix. 

• LaOce func;ons depend on the oscilla:on modes and physical 
direc:ons along which the beam envelope can be measured.

Coupled motion parametrizations – MR
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• The generating vectors "& # , "' # , "( # , 
") #  define the phase space trajectories.

• The normalization matrix transforms the transfer 
matrix into a rotation matrix.

Coupled motion parametrizations – MR

Parametrization of the generating vectors 
(Willeke and Ripken)

Parametriza3on of the normaliza3on matrix
(Lebedev & Bogacz, Wolski) 
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• The generating vectors "& # , "' # , "( # , 
") #  define the phase space trajectories.

• The eigenvectors of the transfer matrix fully 
describe the motion.

• The normalization matrix transforms the transfer 
matrix into a rotation matrix.

• % can be expressed with the real and imaginary 
part of the one-turn transfer matrix eigenvectors.

à Both methods parameterize the eigenvectors of the one-turn transfer matrix: 

Coupled motion parametrizations – MR

Parametrization of the generating vectors 
(Willeke and Ripken)

Parametrization of the normalization matrix
(Lebedev & Bogacz, Wolski) 

31/50



Willeke and Ripken (WR)

• Set of interrelated parameters:

Lebedev and Bogacz (LB)

Coupled motion parametrizations – MR variants

àPrincipal lattice functions ! and " on the 
diagonal.

àOff-diagonal blocks characterize the coupling 
between the two transverse oscillations with 
“non-principal” lattice functions.

à10 independent parameters and 3 additional 
real functions (#!, #" and u). 

• Projection of the 4D phase space in the 
x-x’ and y-y’ planes: superposition of two 
ellipses.

Lebedev 
and 

Bogacz

Willeke 
and 

Ripken

Wolski
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Willeke and Ripken (WR)

• Set of interrelated parameters.
• Projection of the 4D phase space in the x-x’ and 

y-y’ planes: superposition of two ellipses.

Coupled motion parametrizations – MR variants Lebedev 
and 

Bogacz

Willeke 
and 

Ripken

WolskiLebedev and Bogacz (LB)

à 10 independent parameters (principal and non-
principal lattice functions) and 3 additional real 
functions (&&, &' and u). 

à Main optical functions !#, '#, !$, '$.

à Functions reflecting the coupling (#, ($, )(#, )($, 
combining non-principal optical functions appearing in 
WR and LB.

Wolski
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Willeke and Ripken (WR)

• Each oscillation is described by a set of distinct 
parameters.

• Describes the motion with geometrical coordinates .

Coupled mo4on parametriza4ons – MR variants Lebedev 
and 

Bogacz

Willeke 
and 

Ripken

WolskiLebedev and Bogacz (LB)

• Reduced number of parameters, with real 
functions (*, +) highlighting the differences 
between the principal and non-principal 
oscillations linked to an oscillation eigenmode. 

• Combine amplitudes and phase shifts in phasors for 
non-principal oscillations.

Wolski
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Coupled motion parametrizations – MR variants Lebedev 
and 

Bogacz

Willeke 
and 

Ripken

WolskiComparison of the parameters appearing in WR, LB and Wolski

Reflect the 
coupling. If there 
is no coupling, 
5)' = 5#( = 0
7)' = 7#( = 0
8' = 8( = 9 = 0.

{Similar principal 
laOce funcPons 
except for the 
coupling due to 
longitudinal field.

Phase 
shifts

Additional parameter ::
• Quantifies the lattice 

coupling.
• Linked to the surfaces of 

the two ellipses due to a 
mode in the phase planes 
# − #!; , − ,′.

• Related to the rotation 
angle of ET 
parametrization.

Describe the oscillation of a 
mode in its « principal » 
transverse direction. 



• At least 10 parameters: 
• Four « principal » lattice functions 5, 6 (or 7), two main phase advances 8, and 

four « non-principal » parameters reflecting the coupling. 
• The parameter set depends on the parametrization variant.

• Similar interpretation of the lattice functions to the usual Twiss 
interpretation in Courant-Snyder theory:
• Lattice parameters are associated with the amplitudes of transverse betatron 

oscillations and with physical beam parameters that can be measured. 
• The β-functions are always positive and finite and are related to the beam sizes. 

MR - Summary

• Allows computing the elements 
of the correlation matrix 
explicitly, which provides a path 
to the beam-based measurements 
of these parameters. 36/50



Rela/onship between the 
ET and MR parametriza/on

MRET



Coupled and decoupled spaces linked by the decoupling matrix

Relationship between ET and MR parametrizations
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Application on typical lattices
LaZces with skew quadrupoles and solenoids
 



• Weakly coupled example laZces: 
• FODO la<ce with short skew quadrupole (     ) 

or solenoid (     ). 

• More strongly coupled laZce: « Snake » 
laZce     .

Lattices with skew quadrupoles and solenoids

1
2

• Two ways of computing the lattice functions:
• Find the periodic conditions for periodic lattices
• Propagate initial lattice functions in a beamline 

ET

MR

• ET parametriza7on à Find linear invariants & Compute the DA.

• MR parametriza7on à Evolu7on of the beam envelope in the laboratory axes.
• LB parametrizaGon provides interesGng addiGonal quanGGes (", $!, $").

3
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FODO with a short skew quadrupolar insertion 1

• LaZce func6ons reflec6ng the global coupling of 
the laZce.

• Non-principal laOce func3ons (50) and 51() are 
non-zero at the beginning of the laZce.

• The parameter 9 gives a measure of the overall 
coupling of the laZce:
§ Constant value in elements not introducing coupling.
§ Varies in the elements introducing coupling and 

indicates whether the element couples more or less the 
mo<on than the laQce does globally. 

§ A fully coupled laRce would have principal laQce 
func<ons equal to the non-principal ones, and - = /. 1. 

§ Linked to the area of the ellipses in the coupled phase 
spaces. 
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FODO with a short skew quadrupolar insertion 1

• The parameter 9 is linked to the area of the ellipses in the coupled phase spaces. 

Decoupled 
phase space: ET

Coupled phase 
space: MR

A = >?* = invariant
@* = >?* 3 − :
@+ = >?+:	
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FODO with a short solenoid insertion 2

Coupled phase space: Different parametriza6ons depending on the variables 
(geometric or canonical variables).

Canonical 
variables: LB

Geometric 
variables: WR
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Snake lattice3

ET parametriza;on: Forced mode flip condi;ons
• $-func7ons become discon7nuous/infinite when %à 0: can not be related to beam sizes.

• Parzen method (ET): The mode iden7fica7on is kept throughout the transfer line.

• Incorrect mode iden7fica7on: the planes are completely exchanged.

IniPally uncoupled laOce funcPons: BC = D (ET) 
and 5)' = 5#( = 9 = E) = E# = 0 (MR).
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Snake lattice3

MR parametrization: Forced mode flip conditions
• Incorrect mode identification: the planes are completely exchanged.

• In the MR parametrization, the ! functions are reflected first on one plane and then on the 
other plane. When & = 0: !#$ = !%& = 0; Dominant « non-principal » lattice functions.

IniPally uncoupled laOce funcPons: BC = D (ET) 
and 5)' = 5#( = 9 = E) = E# = 0 (MR).
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Snake lattice3

MR parametrization: Local coupling and : parameter

• Evolution of u propagated throughout the lattice:
• Constant in elements not introducing coupling ; Solenoids introduce variations in u.
• When - > /. 1, the non-principal lattice functions become more important than the principal ones.

à When propagated in a lattice from initial conditions, the parameter u thus gives a 
measure of the local coupling. 

Initially uncoupled lattice functions: BC = D (ET) 
and 5)' = 5#( = 9 = E) = E# = 0 (MR).
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Summary



• Transverse motion coupling from residual coupling/imperfections or « by design » from 
strong systematic coupling fields.

• The ET and MR parametrizations are complementary and are used for different 
purposes. 

ET parametrization:
• Allows for finding the linear invariants of motion and analyzing the motion in the 

decoupled axes.
• Difficult interpretation of the lattice functions in terms of beam Σ −matrix.

• ET parameters: generalized Twiss parameters in decoupled axes and decoupling matrix 
parameters.

• Parzen method allows for mode identification to be kept, but the beta functions can 
diverge where the forced mode flip conditions are met.

Summary
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MR parametrization:

• Interpretation similar to that of the Courant-Snyder theory, allowing the linking of these 
lattice functions to measurable beam parameters, such as the beam sizes.

• Describes the quasi-harmonic motions in the coupled phase spaces resulting from the 
eigen oscillations in the decoupled space.

• MR variants: Willeke & Ripken (parameter sets for each oscillation, geometric variables), 
Lebedev & Bogacz (additional interesting quantities to describe the coupling, canonical 
variables), and Wolski (amplitudes and phase shifts gathered in phasors, canonical 
variables).

• Parameter + of LB parametrization:
ØQualitatively evaluates the coupling strength.
ØCharacterizes the size of the two ellipses coming from an oscillation eigenmode in the two 

transverse phase spaces. 
ØCan indicate a forced mode flip because it is linked to the γ parameter of the ET parametrization. 

Summary
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