Proton and Ion Linear Accelerators

Yuri Batygin¹, Sergey Kurennoy¹, Sebastian Szustkowski¹, Salvador Sosa Guitron¹, Vyacheslav Yakovlev ²

¹Los Alamos National Laboratory ²Fermi National Accelerator Laboratory

> U.S. Particle Accelerator School July 15 – July 26, 2024

Proton and Ion Linear Accelerators RF linacs: cavities, structures, EM design

Sergey Kurennoy, LANL

USPAS, July 19, 2024

Lecture 10

LA-UR-17-24573

Content

- Why linacs & RF together?
- Reminder: basics of linacs
- RF cavities
- Accelerating structures: RFQ, DTL, CCL, etc.
- Electromagnetic (EM) design of accelerating structures. Tools.

Sources:

T.P. Wangler. *RF linear accelerators*, Wiley-VCH, 2nd Ed., 2008.

Handbook of Accelerator Physics and Engineering. 3rd Ed., Eds. A. Chao *et al.* World Scientific, 2023.

Linacs

Linear accelerator (linac) – a device that accelerates charged particles in a straight line.

Linac types:

- Electrostatic electric field is produced by a fixed voltage (e.g., old TV tubes)
- Induction electric field is produced by changing magnetic flux
- Radio-Frequency (RF) fields are produced by external sources of RF power

RF linac schematics

Why linacs & RF together?

LHC RF section = 2 short linacs!

SLAC – electron linac (1968): 3 km, & RF acceleration "section" ~3 km.
240 2856-MHz klystrons (design - 960), each with 50-MW peak power (x2 with pulse compression), provide total voltage up to ~50 GV (SLC, 1989).

LHC – circular p-p collider (2008): 27 km, but RF acceleration section <100 m. 8 SC 400.8-MHz RF cavities per ring; 8-16 MV; each cavity is only ~2 m long and powered by one klystron (16 klystrons total).

Why linacs & RF together?

SLAC klystron gallery

SLAC linac (30' below) 960 traveling-wave structures (x3m)

LHC 4 RF cavities in cryo-module

Why linacs & RF together?

LANSCE (LAMPF) linac (1972)

800 m, 800 MeV Protons (p) and hydrogen ions (H⁻)

Drift-tube linac (DTL)

62 m, 0.75-100 MeV β = v/c = 0.04-0.43 4 201.25-MHz tubes (≤3 MW)

$\frac{\text{Coupled-cavity linac (CCL)}}{731 \text{ m, 100-800 MeV}}$ $\beta = v/c = 0.43-0.84$ 44 805-MHz klystrons (1 MW)

Induction Accelerator

Fig. 1. Induction accelerator principle:
1 - laminated iron core; 2 - switch; 3 - pulse forming network; 4 - primary loop; 5 - secondary (case).

Table 3.	Parameters	for	Typical	Induction	Accelerators
----------	------------	-----	---------	-----------	--------------

Accelerator	Astron Injector Livermore 1963	ERA Injector Berkeley 1971	NEP 2 Injector Dubna 1971 -	ATA Livermore 1983
 Kinetic energy, MeV 	3.7	4.0	30	50
Beam current on target, A	350	900	250	10,000
Pulse duration, ns	300	2-45	500	50
Pulse energy, kJ	0.4	0.1	3.8	25
Rep rate, pps	0-60	0-5	50	5
 Number of switch modules 	300	17	750	200

 $\oint \vec{E} \cdot \vec{dl} = -\frac{1}{c} \int_{s} \vec{\frac{dB}{dt}} \cdot \vec{ds},$

Overhead view of the Astron accelerator as it appeared when first put into operation.

DARHT at LANL – two linear induction accelerators

Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility:

- Axis 1 (1999): 60-ns pulse, 2 kA, 20 MeV e-beam \rightarrow high-Z target \rightarrow X-rays (64 cells)
- Axis 2 (2008): 1.6-µs long flat-top pulse (4 short pieces cut), 2 kA, 17 MeV (74 cells)

Resonance acceleration principle

 $L = \beta \lambda$ Field distribution in RF structure: $E_z(z,r,t) = E_g(z,r)\cos(\omega t)$ $t_{flight} = T_{RF \, period} = \frac{1}{f}$ Time of flight between RF gaps $L = n\beta cT_{RF \ neriod} = n\beta\lambda$ Distance between RF gaps **RF** Frequency

- Alvarez accelerating structure
- <u>Synchronism</u> between the accelerating field and particles is due to the linac spatial structure: particles arrive at the gaps when the electric field is in the accelerating phase, and are hidden from the field inside drift tubes during the decelerating phase.
- The above example is a 0-mode accelerating structure (Alvarez DTL): the gap fields work in phase, $\Delta \varphi = 0$. BTW, $t_{\text{flight}} = mT_{\text{RF}}$, where m = 2,3,... will work too ($m\beta\lambda$ -mode).
- Note: all these tricks are for ions at $\beta < (<)$ 1; for electrons, things are much simpler.

Resonance acceleration: π **-mode**

Accelerating structure with π - type standing wave.

- This is a π -mode accelerating structure (e.g., Wideroe DTL): the fields in the adjacent gaps are in opposite phases, $\Delta \varphi = \pi$.
- Particles accelerated in a gap should arrive to the next gap in one half of the RF period (strictly speaking, $(n+1/2)T_{RF}$) so that its electric field changes to the accelerating phase.
- Still there is a "synchronism" between the RF field and the linac spatial structure.
- In principle, one can accelerate simultaneously a beam of opposite charge (with the same particle mass) with its bunches shifted by π in phase.

Example: Inter-digital H-mode (IH) structure

IH-PMQ structure for deuterons from $\beta = v/c=0.04$ to 0.055: f=201.25 MHz, I=50 mA L=73.5 cm, a=0.5-0.55 cm. CST Studio simulations: RF fields (MWS), PM quadrupole fields (EMS), and beam dynamics (Particle Studio).

Inter-digital H-mode (IH) structure

10 bunches of 10K particles (d) are accelerated in the cavity

Buncher cavities

Two buncher cavities: (a) re-entrant and (b) coaxial quarter-wave ($\lambda/4$) types. Right – on the same scale.

Linac electromagnetic quadrupoles – LANSCE DTL

DTL tank 1 EM quadrupoles are installed inside drift tubes:(a) yoke and pole pieces (iron);(b) current coil (copper, hollow);(c) coil assembled with iron;(d) quadrupole fully assembled.

EM quadrupole gradients are adjusted by changing current: gradient G=73.5 T/m at ~562 A. GL = 2.59 T in Q1.

LANSCE DTL EM quadrupoles – material replacement

Permanent-magnet quadrupoles

Magnetic field in the cross section of M=16 PMQ calculated with CST EM Studio. For r_{in} = 5.5 mm, r_{out} = 11 mm, G= 170 T/m; length *L*=19 mm.

Permanent-magnet quadrupoles are installed in the DTL of the Spallation Neutron Source (SNS).

Permanent-magnet quadrupoles are assembled from segments of PM materials, usually SmCo or NdFeB, with properly oriented magnetization vectors in segments. The gradient of such a quadrupole with M =16 segments (typically M = 12, 16), the remnant field B_r (~1 T), and radii r_{in} and r_{out} , is

$$G = 2B_r \left(\frac{1}{r_{in}} - \frac{1}{r_{out}}\right) K_2; \quad K_2 = \cos^2 \frac{\pi}{M} \frac{\sin(2\pi/M)}{2\pi/M} \cong 0.937.$$

Permanent-magnet quadrupoles in SNS

Cut of the SNS DTL drift tube with PMQ. The bore aperture diameter is 2.5 cm.

SNS DTL tank 3 with PMQs inside drift tubes (DTs). Some DTs contain beam position monitors (BPM). FFODDO focusing structure.

Permanent-magnet quadrupoles (PMQ) are installed in the DTL of the Spallation Neutron Source (SNS, Oak Ridge). Now PMQ are also installed in Linac 4 at CERN.

Example: Inter-digital H-mode (IH) structure with PMQ

IH-PMQ structure for deuterons from $\beta = v/c = 0.04$ to 0.055. Focusing structure FOFODODO. CST Particle Studio simulations.

Summary 1

- Linacs and RF are closely related.
- In ion linacs synchronism between accelerated particles and RF is achieved by designing a spatial structure with L_c~βλ. <u>Fixed velocity profile!</u> Independent-cavity structures can also used, e.g., in heavy-ion linacs, for more flexibility.
- Longitudinal and transverse beam focusing cannot be achieved simultaneously in RF fields. External transverse beam focusing is usually added.

Linac parts

Linac scheme: particle source + accelerating structure(s)

<u>Electron linacs</u>: electron gun + linac (TW or SW β =1 structure); with some tricks.

<u>Ion linacs</u>: ion source (injector) + various structures for different values of β .

Typical RF linac structures

RF Linac Types

SNS

several MeV/u Heavy-ions

FRIB Project X **EURISOL** ADS projects

From P. Ostroumov (2012)

Drift-Tube Linac (DTL)

Alvarez DTL structure (1946):

- TM_{010} -like mode (E_z, E_r, B_{θ})
- DTs hide the beam bunches during the decelerating phase of electric field
- cell length $L_c = \beta \lambda$
- long cavities (tanks) are more efficient
- field stabilization by post-couplers in long tanks

Expric field lines (Superfish, left) and CST model of cell 98 (1st in T3) of the LANSCE DTL.

LANSCE DTL (1968)

CST model of Tank 1

Usually, the average longitudinal field E_0 is constant (flat) along the tank length but in T1 it is ramped (increasing). Tilt tuners.

	Tank 1	Tank 2	Tank 3	Tank 4
Cell number	1 to 31	32 to 59 60 to 97	98 to 135	136 to 165
Energy in (MeV) B	0.75 0.04	5.39 0.107	41.33	72.72
Energy out (MeV) B	5.39	41.33 0.287	72.72 0.37	100.00
Energy gain (MeV)	4.64	35.94	31.39	27.28
Tank length (cm)	326.0	1968.8	1875.0	1792.0
Tank diameter (cm)	94.0	90.0	88.0	88.0
Drift-tube diameter	18.0	16.0	16.0	16.0
(cm)				
Drift-tube corner	2.0	4.0	4.0	4.0
radius (cm)				
Bore radius (cm)	0.75	1.0 1.5	1.5	1.5
Bore corner radius	0.5	1.0	1.0	1.0
(cm)				
g/L	0.21-0.27	0.16-0.32	0.30-0.37	0.37-0.41
Number of cells	31	66	38	30
Number of quads	32	29 38	20	16
Quad gradient (kG/cm)	8.34-2.46	2.44-1.89 1.01-0.87	0.900.84	0.84-0.83
Quad length (cm)	2.62 - 7.88	7.88 16.29	16.29	16.29
$E_0 (MV/m)$	1.60-2.30	(2.40)	2.40	2.50
$\phi_{\rm s}$ (°)	-26	-26	-26	-26
Power (MW)	0.305	2.697	2.745	2.674
Intertank space (cm)	15.90	85.62	110.95	-
Transit-time factor, T	0.72-0.84	0.87-0.80	0.82 - 0.74	0.74-0.68
Mean ZT²(M <u>Ø</u> /m)	26.8	30.1	23.7	19.2

Table 4.1 DTL parameters for the LANSCE proton accelerator.

Total length including intertank spaces = 61.7 m

The best efficiency (higher effective shunt impedance) for DTL is achieved in the beam velocity range β = 0.1-0.3. At LANSCE it is used for wider range, β = 0.04-0.43.

LANSCE DTL tank models

CST model of the LANSCE DTL tank 2: 66 cells, 19.68-m long, β = 0.107-0.287

Fields in DTL tanks

Electric field arrows (MWS norm.) in x & y-planes near the entrance (right) and exit (bottom) of DTL tank 2.

Magnetic fields of quadrupoles near the entrance of DTL tank 1 (imported in PS).

DTL – PS simulations in LANSCE DTL tanks

Particle Studio simulations of 10 RF periods (10x10K) of 18-mA proton beam injected into DTL tank 1. Transmission 85% (80.6% in bunches, 4.4% in the tail).

DTL – PS simulations in LANSCE DTL tanks

Particle Studio simulations of 10 RF periods (10x10K) of 18-mA proton beam injected into DTL tank 1 – end-tank view. Transmission 85% (bunches 80.6%, tail 4.4%).

DTL cavities: tuning

Frequency and field profile slug tuners in the DTL tank 4 model

H-mode DTL – another type of DTL

TE-mode DTL cavities: interdigital H_{110} (IH) and cross-bar H_{210} (CH)

Coupled-Cavity Linac (CCL)

The coupling cells are not excited when the structure is tuned.

Various types of CCL (see below) are used at relatively high velocities, typically for $\beta \ge 0.4$.

Energy range 100-800 MeV High shunt impedance: up to 50 M Ω/m

Los Alamos Side Coupled Structure (1968)

LANSCE CCL – Module 5 Tank 1 (M5T1)

M5T1: 36 accelerating cells with 35 coupling cells (18 periods); length 2.89 m + 72-cm drift.

- Effective shunt impedance $ZT^2 = 31.5 M\Omega/m$.
- Energy in 100 MeV (β = 0.43), out 103.4 MeV.

Electric (left) and magnetic (middle) fields and surface-current magnitude (right) in one period of M5T1

LANSCE CCL – Module 5 Tank 1

M5T1 cavity (top); electric field of the operating π -mode (middle); on-axis longitudinal electric fields of the two lowest modes: π -mode (red) and mode 35/36 π per AC (blue dashed)

Coupling RF power to cavities

5 cm

"Dog-bone" coupling iris for high-power FEL photoinjector. Up to 0.5 MW at 100% duty.

Methods of coupling to RF cavities:

- (a) magnetic current loop;
- (b) electric antenna;
- (c) magnetic iris WG-cavity

Summary 2

• RF cavities and some common accelerating structures (DTL, CCL) are reviewed.

Figures of merit for accelerating structures

Quality factor (stored energy U, averaged power loss P)

Shunt impedance (total cavity voltage V_0)

depends only on the cavity (structure) geometry

Ratios $E_{\text{max}}/E_{\text{acc}} = E_0 T$ and $B_{\text{max}}/E_{\text{acc}}$ – lower is better. The latter is very important for SC cavities.

RF cavities: cylindrical resonator (pillbox)

Longitudinally integer number of half-variations can be excited

Transverse boundary condition:

Frequency of oscillation mode is

Longitudinal component

$$k_{z} = \frac{\pi p}{L}$$

$$E_{z}(a) = 0 \qquad J_{n}(k_{r}a) = 0 \qquad k_{r} = \frac{\upsilon_{nm}}{a}$$

$$\frac{\omega_{o}^{2}}{c^{2}} - k_{z}^{2} = \frac{\upsilon_{nm}^{2}}{a^{2}}$$

77 77

$$\omega_o = c \sqrt{\frac{v_{nm}^2}{a^2} + (\frac{\pi p}{L})^2}$$

$$E_{z} = E_{o}J_{n}(\upsilon_{nm}\frac{r}{a})\cos n\theta\cos\frac{\pi pz}{L}$$

 $mode \ TM_{nmp}$

Example: TM₀₁₀ mode

Field components $E_{z} = E_{o}J_{o}(v_{01}\frac{r}{a})\cos\omega_{o}t$ $B_{\theta} = -\frac{E_{o}}{c}J_{1}(v_{01}\frac{r}{a})\sin\omega_{o}t$ $E_{z}(a) = 0$ $v_{01} = 2.405$ Frequency of resonator $k_{z} = 0$ $\omega_{o} = 2\pi f = \frac{cv_{01}}{a}$ $f = \frac{2.405c}{2\pi a}$

Example: radius of resonator for f = 201.25 MHz:

$$a = \frac{2.405 \, c}{2\pi f} = 0.57 m$$

TM010 mode in a pill-box cavity.

 $J_1'(x) = 0$ $x_1 = 1.841$ $J_1(x_1) = 0.5819$

Note:

$$B = \mu_0 H; \quad [B] = T; [H] = A/m; Z_0 = \sqrt{\mu_0 / \varepsilon_0} = 376.7 \Omega; \quad [E] = [Z_0 H] = V/m;$$
$$c = 1/\sqrt{\mu_0 \varepsilon_0}; \quad \mu_0 c = Z_0.$$

Energy dissipation in resonator and Q factor

Dissipated power is a combination of power losses inside cavity and outside cavity

Energy stored in cavity

Quality factor

Q-factor is a combination of unloaded quality factor of cavity and external quality (loaded Q factor)

External quality factor

Losses in metal with surface resistance R_s [Ohm]

 $R_{s} = \frac{1}{\sigma\delta} = \sqrt{\frac{\mu_{0}\omega}{2\sigma}}, \text{ where } \sigma \text{ is the surface conductivity,}$ and δ is the skin depth $\delta = \sqrt{2/(\mu_{0}\sigma\omega)}.$ Unloaded quality factor $Q_{o} = \frac{\omega_{o}V}{P_{o}}$ Physical meaning: $Q = G \frac{V}{S\delta}$ $P = P_o + P_{ext}$

Quality factor of TM₀₁₀ cavity

 $H_{m\theta} = -E_o \sqrt{\frac{\varepsilon_o}{\mu_o}} J_1(\upsilon_{01} \frac{r}{a})$ Amplitude

$$W_{o} = \frac{1}{2} \int_{V_{o}} \mu_{o} H_{m\theta}^{2} dV = \frac{\pi \varepsilon_{o} E_{o}^{2} L a^{2} J_{1}^{2}(\upsilon_{01})}{2} = 0.135 \pi \varepsilon_{o} L a^{2} E_{o}^{2}$$

$$P_o = \frac{R_s}{2} \int_{S} H_{m\theta}^2 dS = \pi a R_s E_o^2 \frac{\varepsilon_o}{\mu_o} J_1^2(\upsilon_{01})(L+a)$$

Loss power in cavity

Energy stored in cavity

Magnetic field

$$Q_{o} = \frac{\omega_{o}W_{o}}{P} = \frac{\upsilon_{01}}{2R_{s}}\sqrt{\frac{\mu_{o}}{\varepsilon_{o}}}\frac{1}{(1+\frac{a}{L})} = 1.2025\frac{376.7[Ohm]}{R_{s}}\frac{1}{(1+\frac{a}{L})}$$

For ideal copper surface $\sigma = 5.8 \cdot 10^7$ Sm/m, so that $R_s = 2.6 \cdot 10^{-4} \sqrt{f}$ (MHz) Ω . At 201.25 MHz, $R_s = 3.7 \text{ m}\Omega$, and $Q_0 = 66500$ for a/L = 1. In practice, typically 10%-20% less.

Surface conductivity in superconducting RF cavities

For RF cavities the power loss depends on the surface resistance: for normal-conducting

$$R_s = \frac{1}{\sigma\delta} = \sqrt{\frac{\mu_0\omega}{2\sigma}}$$
 scales with RF frequency as \sqrt{f} .

In superconducting (SC) RF cavities the surface resistance is much lower; e.g., for Nb

$$R_{s}(\Omega) = 9 \cdot 10^{-5} \frac{f^{2}(GHz)}{T(^{\circ}K)} \exp\left(-\alpha \frac{T_{c}}{T}\right) + R_{res},$$

where R_{res} is the residual resistance (~1-10 n Ω), α = 1.83, and T_c = 9.2 K is the critical temperature.

SC R_s is ~10⁻⁵ of that in copper, and so are the cavity surface losses!

RF cavity design

Cavity design goals depend on many factors including the cavity type and its application: maximize accelerating gradient, minimize losses (NC), minimize max surface fields, etc.

Frequency dependence of cavity parameters: $a \sim 1/f$,

$$P \propto \begin{cases} f^{-1/2}, \text{ NC} \\ f, \text{ SC} \end{cases} \qquad Q \propto \begin{cases} f^{-1/2}, \text{ NC} \\ f^{-2}, \text{ SC} \end{cases} \qquad ZT^2 \propto \begin{cases} f^{1/2}, \text{ NC} \\ f^{-1}, \text{ SC} \end{cases}$$

Frequency choice also depends on available RF sources and beam parameters.

Changing cavity shape is the common way of achieving the design goals. Examples:

4-cell elliptical cavity (SC)

RF cavity design codes

- Calculation of EM fields in the cavity: frequencies, modes, secondary parameters (losses, *Q*, shunt impedance, surface fields, ...)
- Calculation methods:
 - Analytical (simple cavity shapes) + perturbation theory
 - 2D codes (axisymmetric or flat structures): Superfish, URMEL, ...
 - 3D codes: CST, HFSS, Analyst, ACE-3P (Omega-3P), etc.

Los Alamos Accelerator Code Group (LAACG)

Available at laacg.lanl.gov/ laacg/services/services.phtml

Poisson / Superfish

- collection of programs for calculating static magnetic and electric fields and radio-frequency electromagnetic fields in either 2-D Cartesian coordinates or axially symmetric cylindrical coordinates.
- triangular mesh
- includes plotting and post-processing
- * Poisson / Pandira
- static electric and magnetic fields

* Superfish

- radio-frequency electromagnetic fields

Windows PC – C:\LANL contains programs & utilities; \Docs; \Examples; etc.

Los Ala NATIONAL LAB EST.194	DRATORY
LAAC Los Alamos Accelerator Code Gr	G LANL LANSCE LANL Accelerators Home About Us LAACG Codes Accelerator Physics News Beam Physics General Resources Software/Methods Site Index
LAACG - Codes/Databas	LAACG - Codes/Databases
->LAACG Code	Top/Topics/Bottor
<u>->Poisson</u> Superfish	LAACG - Codes/Databases
->Parmela	LAACG - Codes/Databases->All
<u>->Parmila</u>	Top Topics Bottor
<u>->Parmteq</u> ->Trace-2D/3E	LAACG Design Codes
<u>->Announcen</u> _>Access	LAACG - Codes/Databases->LAACG Design Codes->Poisson Superfish LAACG - Codes/Databases->LAACG Design Codes->Parmila LAACG - Codes/Databases->LAACG Design Codes->Trace-2D/3D
->LAACG Datal:	
	* EAACO - Codes/Databases/ EAACO Design Codes- 1 ameta
-> Software	LAACG - Codes/Databases->LAACG Design Codes->Parmeta
	• LAACG - Codes/Databases.>LAACG Design Codes.>Parmteq • LAACG - Codes/Databases.>LAACG Design Codes.>Appouncements
-> Software	LAACG - Codes/Databases->LAACG Design Codes->Parmeta LAACG - Codes/Databases->LAACG Design Codes->Parmeta LAACG - Codes/Databases->LAACG Design Codes->How to get the Software LAACG - Codes/Databases->LAACG Design Codes->Mailing Lists
-> Software	LAACG - Codes/Databases->LAACG Design Codes->Parmeta LAACG - Codes/Databases->LAACG Design Codes->Parmeta LAACG - Codes/Databases->LAACG Design Codes->Announcements LAACG - Codes/Databases->LAACG Design Codes->How to get the Software

Los Alamos National Laboratory Operated by the <u>University of California</u> for the <u>National Nuclear Security Administration</u>, of the US <u>Department of Energy.</u> <u>Copyright © 2003 UC | Disclaimer/Privacy</u>

Superfish (SF)

Steps for running SF (from command window or with right click):

- create geo file (test.am); $x \rightarrow z$, $y \rightarrow r$ (cm); define BC and materials
- run Automesh on test.am > test.T35 with geo and mesh
- run Fish on test.T35 > test.T35 with fields
- double-click test.T35 to see field lines
- run post-processing of test.T35 > test.sfo to get cavity parameters

Alternative: run Autofish on test.am

Superfish input file

SF input (*.am or *.af):

- First line is the problem title (< 80 char) followed by 3 namelists: REG, PO, MT (actually parsing). Delimiters: & or \$; comment: ; or !
- \$reg: kprob problem type (1 SF, 0 Poisson) in the 1st \$reg, symmetry: e.g., icylin=1 – cylindrical; BCs; approximate frequency (MHz); mat #.
- \$po: defines geometry; separate \$po list for each material. Note \$po ... \$.
- \$mt: mt=2, 3, ... material table defines mat properties (epsilon, mu).

	WSFPplot 7.17 Poisson Superfish Plotting Program File PB_TEST.735
	File HardCopy Display View Zoom Help
b_test.am ×	test - pillbox with short pipes F = 1148.274 MHz
est - pillbox with short pipes	
reg kprob=1,	
=0.2,dy=0.2,	
dri=0.,ydri=0.5,freq=1500.00,dslope=-1, point=7 &	
o x= 0.0, y= 0.0 &	
o x= 0.0, y= 10.0 &	
o x= 5.0, y= 10.0 & o x= 5.0, y= 1.0 &	
x= 8.0, y= 1.0 &	
x= 8.0, y= 0.0 & x= 0.0, y= 0.0 &	
	0 - 1 2 4 6 1 10 12 C:\USERS\119894\DOCUMENTS\SOF\SF\SF TEST\FP\FB TEST.AM 6-16-2017 17:16:1
	C. (USEAS) 15555 (DCOMERTS (SDF1)(SF1)ES1.RM (0-10-201) 1/.101

Superfish problem 1. Pillbox cavity.

Design TM_{010} cavity for frequency 201.25 MHz

- Estimate radius R, choose length L (default units cm); define BCs or use default BCs (SF: left – symmetry: Dirichlet BC).
- Create cavity geometry file, e.g., pb.am
- run Automesh on pb.am > pb.T35 with geo and mesh
- run Fish on pb.T35 > pb.T35 with fields
- double-click pb.T35 to see field lines
- run SFO post-processing of pb.T35 > pb.sfo

For TM_{nmp} modes in a cylindrical cavity of radius *R* and length *L*, the frequency

$$f_{nmp} = \frac{c}{2\pi} \sqrt{\left(\frac{j_{nm}}{R}\right)^2 + \left(\frac{\pi p}{L}\right)^2},$$

where j_{nm} are the roots of $J_n(j_{nm}) = 0$. The value of $j_{01} = 2.4048$.

SF problems 1a & 1b. Pillbox cavity with beam pipe.

SF 1a: Design TM_{010} cavity for frequency 201.25 MHz with beam pipe.

- Add beam pipe to the pillbox cavity you already designed. Use pipe radius a << R, choose pipe length p > 2a.
- Will the cavity frequency increase or decrease when you add the pipe?

SF 1b: TM₀₁₀ cavity with rounded edge of cavity-pipe connection: blend the sharp edge by introducing an arc:

Use \$po nt=2, x0=11.0, y0=3.5, r=1, theta=270 \$ to make an arc.

Slater perturbation theorem relates the cavity frequency change with energy changes due to <u>small</u> deformations of cavity walls:

$$\frac{\Delta f}{f_0} = \frac{\Delta W_m - \Delta W_e}{2W_0}$$

Sometimes it is useful to use *L*-*C* circuit analogy for the cavity frequency:

$$f = \frac{1}{2\pi\sqrt{LC}}.$$

SF problem 2. Pillbox cavity with drift tube

Design TM_{010} cavity for frequency 201.25 MHz with a drift tube.

- Recommended g/L=0.3, DT outer radius 10 cm. How large is the frequency shift from 201.25 MHz when DT is inserted?
- Adjust cavity radius to get back to 201.25 MHz.

DTL design using DTLfish

Tuning code DTLfish can design and tune a sequence of cells with some required parameters, e.g. frequency, in a given velocity range, e.g. β = 0.1-0.3.

DTL201.dtl ×	DTL201.dtl ×			
; DTLfish control fi	040			
,,				
TITLE				
DTL 201.25 MHz, Beam	energy = 8.5 MeV			
ENDTITLE				
PARTICLE	H+			
FILEname_prefix	DTL			
SEQuence_number	1			
FREQuency	201.25			
;BETA	0.135			
G_OVER_Beta_lambda	0.3			
LENGTH	20.			
DIAMeter	90.			
DRIFT_TUBE_Diameter	20.0			
;GAP_Length	5.			
E0_Normalization	1.0			
CORNER_radius	1.			
OUTER_nose_radius	1.			
INNER_nose_radius	0.5			
BORE_radius	1.5			
FLAT_length	0			
STEM_Diameter	1.905			
STEM_Count	1			
PHASE_length	180			
DELTA_frequency	0.005			
MESH_size	0.05			
INCrement	2			
START	2			

DTLfish_seq.txt X . . . START -2 : Start codes for DTLfish: ; 1 No tuning ; 2 Adjust tank diameter ; 3 Adjust drift tube diameter (not recommended) ; 4 Adjust gap ; 5 Adjust face angle SEQuence number ; Problem 2 2 BETA 0.1 LENGTH 7.053940188235 DIAMeter PREVIOUS G OVER Beta lambda 0.2042467589655 GAP Length 1.440744421384 START -4 SEQuence number 3 : Problem 3 BETA 0.15 DIAMeter PREVIOUS START -4

ENDFILE

SF problem 3. DTL design using DTLfish.

Design DTL cells for frequency 201.25 MHz for β = 0.135.

- Recommended g/L=0.3, DT outer radius 10 cm. Note: *.dtl
- DTLfish can tune the cavity parameters, e.g. cavity radius or gap, to get the required frequency, 201.25 MHz.

