Proton and Ion Linear Accelerators

Yuri Batygin¹, Sergey Kurennoy¹, Sebastian Szustkowski¹, Salvador Sosa Guitron¹, Vyacheslav Yakovlev²

1Los Alamos National Laboratory 2Fermi National Accelerator Laboratory

U.S. Particle Accelerator School

July 15 – July 26, 2024

Proton and Ion Linear Accelerators RF linacs: cavities, structures, EM design

Sergey Kurennoy, LANL

USPAS, July 19, 2024

Lecture 10

LA-UR-17-24573

Content

- Why linacs & RF together?
- Reminder: basics of linacs
- RF cavities
- Accelerating structures: RFQ, DTL, CCL, etc.
- Electromagnetic (EM) design of accelerating structures. Tools.

Sources:

T.P. Wangler. *RF linear accelerators*, Wiley-VCH, 2nd Ed., 2008. *Handbook of Accelerator Physics and Engineering*. 3rd Ed., Eds. A. Chao *et al*. World Scientific, 2023.

Linacs

Linear accelerator (linac) – a device that accelerates charged particles in a straight line.

Linac types:

- **Electrostatic** electric field is produced by a fixed voltage (e.g., old TV tubes)
- **Induction** electric field is produced by changing magnetic flux
- **Radio-Frequency (RF)** fields are produced by external sources of RF power

Why linacs & RF together?

LHC RF section = 2 short linacs!

SLAC – electron linac (1968): 3 km, & RF acceleration "section" ~3 km.

240 2856-MHz klystrons (design - 960), each with 50-MW peak power (x2 with pulse compression), provide total voltage up to ~50 GV (SLC, 1989).

LHC – circular p-p collider (2008): 27 km, but RF acceleration section <100 m. 8 SC 400.8-MHz RF cavities per ring; 8-16 MV; each cavity is only \sim 2 m long and powered by one klystron (16 klystrons total).

Why linacs & RF together?

SLAC linac (30' below) 960 traveling-wave structures (x3m)

LHC 4 RF cavities in cryo-module

Why linacs & RF together?

LANSCE (LAMPF) linac (1972)

800 m, 800 MeV Protons (p) and hydrogen ions (H-)

Drift-tube linac (DTL)

62 m, 0.75-100 MeV $β = v/c = 0.04 - 0.43$ 4 201.25-MHz tubes (≤3 MW) **Coupled-cavity linac (CCL)** 731 m, 100-800 MeV $β = v/c = 0.43 - 0.84$ 44 805-MHz klystrons (1 MW)

Induction Accelerator

Fig. 1. Induction accelerator principle: $I - \text{laminated iron core; } 2 - \text{switch; } 3 - \text{pulse forming network; } 4 - \text{primary loop; } 5 - \text{secondary (case).}$

 $\oint \vec{E} \cdot d\vec{l} = -\frac{1}{c} \int_{s} \overrightarrow{d\vec{B}} \cdot d\vec{s},$

Overhead view of the Astron accelerator as it appeared when first put into operation.

DARHT at LANL – two linear induction accelerators

Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility:

- Axis 1 (1999): 60-ns pulse, 2 kA, 20 MeV e-beam \rightarrow high-Z target \rightarrow X-rays (64 cells)
- Axis 2 (2008): 1.6-μs long flat-top pulse (4 short pieces cut), 2 kA, 17 MeV (74 cells)

Resonance acceleration principle

Alvarez accelerating structure

- Synchronism between the accelerating field and particles is due to the linac spatial structure: particles arrive at the gaps when the electric field is in the accelerating phase, and are hidden from the field inside drift tubes during the decelerating phase.
- The above example is a 0-mode accelerating structure (Alvarez DTL): the gap fields work in phase, $\Delta \varphi = 0$. BTW, $t_{\text{flight}} = mT_{\text{RF}}$, where $m = 2,3,...$ will work too (*mβλ*-mode).
- Note: all these tricks are for ions at β <(<) 1; for electrons, things are much simpler.

Resonance acceleration: *π***-mode**

Accelerating structure with π - type standing wave.

- This is a *π*-mode accelerating structure (e.g., Wideroe DTL): the fields in the adjacent gaps are in opposite phases, Δ*φ* = *π*.
- Particles accelerated in a gap should arrive to the next gap in one half of the RF period (strictly speaking, $(n+1/2)T_{RF}$) so that its electric field changes to the accelerating phase.
- Still there is a "synchronism" between the RF field and the linac spatial structure.
- In principle, one can accelerate simultaneously a beam of opposite charge (with the same particle mass) with its bunches shifted by *π* in phase.

Example: Inter-digital H-mode (IH) structure

IH-PMQ structure for deuterons from *β*=*v*/c=0.04 to 0.055: *f*=201.25 MHz, *I*=50 mA *L*=73.5 cm, *a*=0.5-0.55 cm. CST Studio simulations: RF fields (MWS), PM quadrupole fields (EMS), and beam dynamics (Particle Studio).

Inter-digital H-mode (IH) structure

10 bunches of 10K particles (*d*) are accelerated in the cavity

Buncher cavities

Two buncher cavities: (a) re-entrant and (b) coaxial quarter-wave (λ/4) types. Right – on the same scale.

Linac electromagnetic quadrupoles – LANSCE DTL

DTL tank 1 EM quadrupoles are installed inside drift tubes: (a) yoke and pole pieces (iron); (b) current coil (copper, hollow); (c) coil assembled with iron; (d) quadrupole fully assembled.

EM quadrupole gradients are adjusted by changing current: gradient *G*=73.5 T/m at ~562 A. *GL* = 2.59 T in Q1.

LANSCE DTL EM quadrupoles – material replacement

Permanent-magnet quadrupoles

Magnetic field in the cross section of *M*=16 PMQ calculated with CST EM Studio. For $r_{\text{in}} = 5.5$ mm, $r_{\text{out}} = 11$ mm, G= 170 T/m; length *L*=19 mm.

Permanent-magnet quadrupoles are installed in the DTL of the Spallation Neutron Source (SNS).

Permanent-magnet quadrupoles are assembled from segments of PM materials, usually SmCo or NdFeB, with properly oriented magnetization vectors in segments. The gradient of such a quadrupole with *M =* 16 segments (typically *M* = 12, 16), the remnant field B_r (~1 T), and radii r_{in} and r_{out} , is

$$
G = 2B_r \left(\frac{1}{r_{in}} - \frac{1}{r_{out}} \right) K_2; \quad K_2 = \cos^2 \frac{\pi}{M} \frac{\sin(2\pi / M)}{2\pi / M} \approx 0.937.
$$

focusing for IH-PMQ cavity. Notice field overlaps.

Permanent-magnet quadrupoles in SNS

Cut of the SNS DTL drift tube with PMQ. The bore aperture diameter is 2.5 cm.

SNS DTL tank 3 with PMQs inside drift tubes (DTs). Some DTs contain beam position monitors (BPM). FFODDO focusing structure.

Permanent-magnet quadrupoles (PMQ) are installed in the DTL of the Spallation Neutron Source (SNS, Oak Ridge). Now PMQ are also installed in Linac 4 at CERN.

Example: Inter-digital H-mode (IH) structure with PMQ

IH-PMQ structure for deuterons from *β*=*v*/c=0.04 to 0.055. Focusing structure FOFODODO. CST Particle Studio simulations.

7/19/24 18

Summary 1

- Linacs and RF are closely related.
- In ion linacs synchronism between accelerated particles and RF is achieved by designing a spatial structure with $L_c \sim \beta \lambda$. Fixed velocity profile! Independent-cavity structures can also used, e.g., in heavy-ion linacs, for more flexibility.
- Longitudinal and transverse beam focusing cannot be achieved simultaneously in RF fields. External transverse beam focusing is usually added.

Linac parts

Linac scheme: particle source + accelerating structure(s)

Electron linacs: electron gun + linac (TW or SW *β*=1 structure); with some tricks.

Ion linacs: ion source (injector) + various structures for different values of *β.*

Typical RF linac structures

RF Linac Types

LEDA RFQ SARAF RFQ

*Low-energy, several MeV/u Heavy-ions

INFN SARAF SPIRAL-2 FRIB Project X EURISOL ADS projects **Injectors (FNAL,KEK, CERN, IHEP….) MMF (Moscow) SNS**

CERN SPL ESS

From P. Ostroumov (2012)

Drift-Tube Linac (DTL)

Alvarez DTL structure (1946):

- TM₀₁₀-like mode (*E_z, E_r, B_θ)*
- DTs hide the beam bunches during the decelerating phase of electric field
- cell length *L*_c=βλ
- long cavities (tanks) are more efficient
- field stabilization by post-couplers in long tanks

7/19/24 23 tric field lines (Superfish, left) and CST model of cell 98 (1st in T3) of the LANSCE DTL.

LANSCE DTL (1968)

CST model of Tank 1

Usually, the average longitudinal field E_0 is constant (flat) along the tank length but in T1 it is ramped (increasing). Tilt tuners.

Table 4.1 DTL parameters for the LANSCE proton accelerator.

Total length including intertank spaces $= 61.7$ m

The best efficiency (higher effective shunt impedance) for DTL is achieved in the beam velocity range $β = 0.1$ -0.3. At LANSCE it is used for wider range, $β = 0.04$ -0.43.

LANSCE DTL tank models

CST model of the LANSCE DTL tank 2: 66 cells, 19.68-m long, *β* = 0.107-0.287

Fields in DTL tanks

Electric field arrows (MWS norm.) in *x* & *y*-planes near the entrance (right) and exit (bottom) of DTL tank 2.

Magnetic fields of quadrupoles near the entrance of DTL tank 1 (imported in PS).

DTL – PS simulations in LANSCE DTL tanks

Particle Studio simulations of 10 RF periods (10x10K) of 18-mA proton beam injected into DTL tank 1. Transmission 85% (80.6% in bunches, 4.4% in the tail).

DTL – PS simulations in LANSCE DTL tanks

Particle Studio simulations of 10 RF periods (10x10K) of 18-mA proton beam injected into DTL tank 1 – end-tank view. Transmission 85% (bunches 80.6%, tail 4.4%).

DTL cavities: tuning

Frequency and field profile slug tuners in the DTL tank 4 model

H-mode DTL – another type of DTL

TE-mode DTL cavities: interdigital H_{110} (IH) and cross-bar H_{210} (CH)

Coupled-Cavity Linac (CCL)

The coupling cells are not excited when the structure is tuned.

Various types of CCL (see below) are used at relatively high velocities, typically for *β*≥0.4.

Energy range 100-800 MeV High shunt impedance: up to 50 MΩ/m

Los Alamos Side Coupled Structure (1968)

LANSCE CCL – Module 5 Tank 1 (M5T1)

M5T1: 36 accelerating cells with 35 coupling cells (18 periods); length 2.89 m + 72-cm drift.

- Effective shunt impedance $ZT^2 = 31.5 M\Omega/m$.
- Energy in 100 MeV ($β = 0.43$), out 103.4 MeV.

Electric (left) and magnetic (middle) fields and surface-current magnitude (right) in one period of M5T1

LANSCE CCL – Module 5 Tank 1

M5T1 cavity (top); electric field of the operating π-mode (middle); on-axis longitudinal electric fields of the two lowest modes: π-mode (red) and mode 35/36 π per AC (blue dashed)

Coupling RF power to cavities

5 cm

"Dog-bone" coupling iris for high-power FEL photoinjector. Up to 0.5 MW at 100% duty.

Methods of coupling to RF cavities:

- (a) magnetic current loop;
- (b) electric antenna;
- (c) magnetic iris WG-cavity

Summary 2

• RF cavities and some common accelerating structures (DTL, CCL) are reviewed.

Figures of merit for accelerating structures

Quality factor (stored energy *U*, averaged power loss *P*)

Shunt impedance (total cavity voltage V_0)

Effective shunt impedance (effective voltage V_0T) $R_{\text{eff}} = R_{\text{sh}}T^2$

Shunt impedance per unit length (voltage $V_0 = E_0 L$)

Effective shunt impedance per unit length (Z_{eff}) $ZT^{2} = \frac{\left(E_{0}T\right)^{2}}{E+T}$

Ratio R_{eff}/Q is independent of surface losses and depends only on the cavity (structure) geometry

Ratios $E_{\rm max}/E_{\rm acc}$ ($E_{\rm acc}$ = $E_{\rm 0}$ T) and $B_{\rm max}/E_{\rm acc}$ – lower is better. The latter is very important for SC cavities.

ZT

RF cavities: cylindrical resonator (pillbox)

Longitudinally integer number of half-variations can be excited

Transverse boundary condition:

Frequency of oscillation mode is

Longitudinal component

$$
k_z = \frac{\pi p}{L}
$$

\n
$$
E_z(a) = 0 \qquad J_n(k,a) = 0 \qquad k_r = \frac{v_{nm}}{a}
$$

\n
$$
\frac{\omega_o^2}{c^2} - k_z^2 = \frac{v_{nm}^2}{a^2}
$$

$$
\omega_o = c \sqrt{\frac{v_{nm}^2}{a^2} + (\frac{\pi p}{L})^2}
$$

$$
E_z = E_o J_n (v_{nm} \frac{r}{a}) \cos n\theta \cos \frac{\pi p z}{L}
$$

mode TM_{nmp}

Example: TM₀₁₀ mode

 $J_1(2.405) = 0.5191$ $E_z = E_o J_o (v_{01} \frac{r}{a}) \cos \omega_o t$ $B_{\theta} = -\frac{E_o}{c} J_1(v_{01} \frac{r}{a}) \sin \omega_o t$ $E_z(a) = 0$ $v_{01} = 2.405$ $k_z = 0$ $\omega_o = 2\pi f = \frac{c v_{01}}{a}$
 $f = \frac{2.405 c}{2}$

Boundary condition

Field components

Frequency of resonator

TM010 mode in a pill-box cavity.

 $J'_1(x) = 0$ $x_1 = 1.841$ $J_1(x_1) = 0.5819$

Example: radius of resonator for $f = 201.25$ MHz:

$$
a = \frac{2.405 c}{2\pi f} = 0.57 m
$$

Note:

$$
B = \mu_0 H; \quad [B] = T; [H] = A/m; Z_0 = \sqrt{\mu_0 / \varepsilon_0} = 376.7 \,\Omega; \quad [E] = [Z_0 H] = V/m;
$$

$$
c = 1 / \sqrt{\mu_0 \varepsilon_0}; \quad \mu_0 c = Z_0.
$$

Energy dissipation in resonator and Q factor

Dissipated power is a combination of power losses inside cavity and outside cavity

Energy stored in cavity

Quality factor

Q-factor is a combination of unloaded quality factor of cavity and external quality (loaded Q factor)

External quality factor

Losses in metal with surface resistance R_{s} [Ohm]

Unloaded quality factor $\frac{1}{\sigma} = \sqrt{\frac{\mu_0 \omega}{2}}$, where σ is the surface conductivity, $R_s = \frac{1}{\sigma \delta} = \sqrt{\frac{\mu_0 \omega}{2\sigma}},$ $=\frac{1}{\sigma\delta}=\sqrt{\frac{\mu_0\omega}{2\sigma}}$ and δ is the skin depth $\delta = \sqrt{2 / (\mu_0 \sigma \omega)}$.

Physical meaning: $Q = G \frac{V}{S}$

 $W_o = \frac{1}{2} \int_{V_o} \mu H_m^2 dV = \frac{1}{2} \int_{V_o} \varepsilon E_m^2 dV$ $Q = \frac{\omega_o W_o}{P}$ $\frac{1}{\omega} = \frac{1}{\omega} + \frac{1}{\omega}$ $Q_{ext} = \frac{\omega_o W_o}{P}$

 $P = P_+ + P_{-}$

Quality factor of TM₀₁₀ cavity

 $H_{m\theta} = -E_o \sqrt{\frac{\varepsilon_o}{\mu_o}} J_1(\nu_{01} \frac{r}{a})$ Amplitude

$$
W_o = \frac{1}{2} \int_{V_o} \mu_o H_{m\theta}^2 dV = \frac{\pi \varepsilon_o E_o^2 L a^2 J_1^2(\nu_{01})}{2} = 0.135 \pi \varepsilon_o L a^2 E_o^2
$$

$$
P_o = \frac{R_s}{2} \int_S H_{m\theta}^2 dS = \pi a R_s E_o^2 \frac{\varepsilon_o}{\mu_o} J_1^2(\nu_{01})(L + a)
$$

Loss power in cavity

Energy stored in cavity

Magnetic field

$$
Q_o = \frac{\omega_o W_o}{P} = \frac{\omega_{01}}{2R_s} \sqrt{\frac{\mu_o}{\varepsilon_o}} \frac{1}{(1 + \frac{a}{L})} = 1.2025 \frac{376.7[Ohm]}{R_s} \frac{1}{(1 + \frac{a}{L})}
$$

For <u>ideal copper surface</u> σ = 5.8⋅10⁷ Sm/m, so that R_s = 2.6⋅10⁻⁴ √ $f(MHz)$ Ω. At 201.25 MHz, *R_s* = 3.7 mΩ, and Q_0 = 66500 for *a*/*L* = 1. In practice, typically 10%-20% less.

Surface conductivity in superconducting RF cavities

For RF cavities the power loss depends on the surface resistance: for normal-conducting

$$
R_s = \frac{1}{\sigma \delta} = \sqrt{\frac{\mu_0 \omega}{2\sigma}}
$$
 scales with RF frequency as \sqrt{f} .

In superconducting (SC) RF cavities the surface resistance is much lower; e.g., for Nb

$$
R_{s}(\Omega) = 9.10^{-5} \frac{f^{2}(GHz)}{T(\degree K)} \exp\left(-\alpha \frac{T_{c}}{T}\right) + R_{res},
$$

where R_{res} is the residual resistance (~1-10 nΩ), α = 1.83, and T_c = 9.2 K is the critical temperature.

SC R_s is ~10⁻⁵ of that in copper, and so are the cavity surface losses!

RF cavity design

Cavity design goals depend on many factors including the cavity type and its application: maximize accelerating gradient, minimize losses (NC), minimize max surface fields, etc.

Frequency dependence of cavity parameters: $a \sim 1/f$,

$$
P \propto \begin{Bmatrix} f^{-1/2}, & NC \\ f, & SC \end{Bmatrix} \qquad Q \propto \begin{Bmatrix} f^{-1/2}, & NC \\ f^{-2}, & SC \end{Bmatrix} \qquad ZT^2 \propto \begin{Bmatrix} f^{1/2}, & NC \\ f^{-1}, & SC \end{Bmatrix}
$$

Frequency choice also depends on available RF sources and beam parameters.

Changing cavity shape is the common way of achieving the design goals. Examples:

4-cell elliptical cavity (SC)

RF cavity design codes

- Calculation of EM fields in the cavity: frequencies, modes, secondary parameters (losses, *Q*, shunt impedance, surface fields, ...)
- Calculation methods:
	- Analytical (simple cavity shapes) + perturbation theory
	- 2D codes (axisymmetric or flat structures): Superfish, URMEL, …
	- 3D codes: CST, HFSS, Analyst, ACE-3P (Omega-3P), etc.

Los Alamos Accelerator Code Group (LAACG)

Available at laacg.lanl.gov/ laacg/services/services.phtml

Poisson / Superfish

- *collection of programs for calculating static magnetic and electric fields and radio-frequency electromagnetic fields in either 2-D Cartesian coordinates or axially symmetric cylindrical coordinates.*
- *triangular mesh*
- *includes plotting and post-processing*
- * Poisson / Pandira
- *static electric and magnetic fields*

* Superfish

- radio-frequency electromagnetic fields

Windows $PC - C \cdot U$ ANL contains *programs & utilities; \Docs; \Examples; etc.*

Los Alamos National Laboratory

Operated by the University of California for the National Nuclear Security Administr of the US Department of Energy. Copyright © 2003 UC | Disclaimer/Privacy

Superfish (SF)

Steps for running SF (from command window or with right click):

- create geo file (test.am); $x \rightarrow z$, $y \rightarrow r$ (cm); define BC and materials
- run Automesh on test.am > test.T35 with geo and mesh
- run Fish on test.T35 > test.T35 with fields
- double-click test.T35 to see field lines
- run post-processing of test.T35 > test.sfo to get cavity parameters

Alternative: run Autofish on test.am

Superfish input file

SF input (*.am or *.af):

- First line is the problem title (< 80 char) followed by 3 namelists: REG, PO, MT (actually parsing). Delimiters: & or \$; comment: ; or !
- \$reg: kprob problem type $(1 SF, 0 Poisson) in$ the 1st \$reg, symmetry: e.g., icylin=1 – cylindrical; BCs; approximate frequency (MHz); mat #.
- \$po: defines geometry; separate \$po list for each material. Note \$po … \$.
- \$mt: mt=2, 3, … material table defines mat properties (epsilon, mu).

Superfish problem 1. Pillbox cavity.

Design TM_{010} cavity for frequency 201.25 MHz

- Estimate radius *R*, choose length *L* (default units cm); define BCs or use default BCs (SF: left – symmetry: Dirichlet BC).
- Create cavity geometry file, e.g., pb.am
- run Automesh on pb.am > pb.T35 with geo and mesh
- run Fish on pb.T35 > pb.T35 with fields
- double-click pb.T35 to see field lines
- run SFO post-processing of pb.T35 > pb.sfo

For TM_{nmp} modes in a cylindrical cavity of radius R and length L , the frequency

$$
f_{nmp}=\frac{c}{2\pi}\sqrt{\left(\frac{j_{nm}}{R}\right)^2+\left(\frac{\pi p}{L}\right)^2},
$$

where j_{nm} are the roots of $J_n(j_{nm}) = 0$. The value of j_{01} = 2.4048.

SF problems 1a & 1b. Pillbox cavity with beam pipe.

SF 1a: Design TM_{010} cavity for frequency 201.25 MHz with beam pipe.

- Add beam pipe to the pillbox cavity you already designed. Use pipe radius *a << R*, choose pipe length *p* > 2*a*.
- Will the cavity frequency increase or decrease when you add the pipe?

SF 1b: TM_{010} cavity with rounded edge of cavity-pipe connection: blend the sharp edge by introducing an arc:

Use \$po nt=2, x0=11.0, y0=3.5, r=1, theta=270 \$ to make an arc.

Slater perturbation theorem relates the cavity frequency change with energy changes due to small deformations of cavity walls:

$$
\frac{\Delta f}{f_0} = \frac{\Delta W_m - \Delta W_e}{2W_0}.
$$

Sometimes it is useful to use *L-C* circuit analogy for the cavity frequency:

$$
f = \frac{1}{2\pi\sqrt{LC}}.
$$

SF problem 2. Pillbox cavity with drift tube

Design TM_{010} cavity for frequency 201.25 MHz with a drift tube.

- Recommended *g*/*L*=0.3, DT outer radius 10 cm. How large is the frequency shift from 201.25 MHz when DT is inserted?
- Adjust cavity radius to get back to 201.25 MHz.

DTL design using DTLfish

Tuning code DTLfish can design and tune a sequence of cells with some required parameters, e.g. frequency, in a given velocity range, e.g. $β = 0.1$ -0.3.

ENDFILE

Contract Contract

2

3

SF problem 3. DTL design using DTLfish.

Design DTL cells for frequency 201.25 MHz for $β = 0.135$.

- Recommended g/L=0.3, DT outer radius 10 cm. Note: *.dtl
- DTLfish can tune the cavity parameters, e.g. cavity radius or gap, to get the required frequency, 201.25 MHz.

