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Linacs

Linear accelerator (linac) — a device that accelerates charged particles in a
straight line.

Linac types:
« Electrostatic — electric field is produced by a fixed voltage (e.g., old TV tubes)

* Induction — electric field is produced by changing magnetic flux
« Radio-Frequency (RF) — fields are produced by external sources of RF power

Klystron
RF power
|—> system
Input RF control l
beam system Output
DC = = beam
article p—— Linac structure
%jectnr (Accelerating cavities and focusing magnets) ’

| Electric Water |
| power iagr:nT cooling I
| system y system :

RF linac schematics



Why linacs & RF together?

LHC= 274nt

LHC RF section = 2 short linacs!

SLAC - electron linac (1968): 3 km, & RF
acceleration “section” ~3 km.

240 2856-MHz klystrons (design - 960),
each with 50-MW peak power (x2 with

pulse compression), provide total voltage
up to ~50 GV (SLC, 1989).

<

LHC — circular p-p collider (2008): 27
km, but RF acceleration section <100
m. 8 SC 400.8-MHz RF cavities per
ring; 8-16 MV; each cavity is only ~2
m long and powered by one klystron
(16 klystrons total).




Why linacs & RF together?

b — —

@ SLAC klystron gallery

SLAC linac (30’ below)
960 traveling-wave structures (x3m)

LHC 4 RF cavities in cryo-module



Why linacs & RF together?
LANSCE (LAMPF) linac (1972)
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Los Alamos Neutron Science Center
at Los Alamos National Laboratory

Drift-tube linac (DTL) Coupled-cavity linac (CCL)
iootm’ 800 M:V 62 m, 0.75-100 MeV 731 m, 100-800 MeV
rotons (p) an B = v/c = 0.04-0.43 B = v/c = 0.43-0.84

hydrogen ions (H")

"3 4 201.25-MHz tubes (=3 MW) 44 805-MHz klystrons (1 MW)
<



Induction Accelerator

Fig. 1. Induction accelerator principle:

! — laminated iron core; 2 — switch; 3 — pulse farming net-
work; 4 — primary loop: § — secondary {case).

Table 3. Parameters for Typical Induction Accelerators
Astron Injector ERA Injector NEP 2 Injector  ATA

Accelerator Livermore Berkeley Dubna Livermore
_ 1963 1971 S L' 16 B 1983
" Kinetic energy, 3.7 4.0 30 50
MeV
Beam current on 350 900 250 10,000
target, A
Pulse duration, 300 2-45 500 50
ns
Pulse energy, 0.4 0.1 3.8 25
kJ
Rep rate, pps 0-80 0-5 50 5 Overhead view of the Astrom accelerator as it appeared when first put into operation.
~ Number of 300 17 750 200
switch modules VA=)
— ;v"wg

<



DARHT at LANL - two linear induction accelerators

- Induction cells of Axis 2:
Beam pipe diameter 12" (8 cells) and 10" (66 cells)

i

Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility:
« Axis 1 (1999): 60-ns pulse, 2 kA, 20 MeV e-beam — high-Z target — X-rays (64 cells)
» Axis 2 (2008): 1.6-us long flat-top pulse (4 short pieces cut), 2 kA, 17 MeV (74 cells)

<




Resonance acceleration principle

Field distribution in RF structure: E_(z,r.1)=E (z, r)cos(wr)

|
Time of flight between RF gaps  tight = LR period = ?
Distance between RF gaps L =nPcTy period — npA

Alvarez accelerating structure

RF Frequency ¥

» Synchronism between the accelerating field and particles is due to the linac spatial
structure: particles arrive at the gaps when the electric field is in the accelerating phase,
and are hidden from the field inside drift tubes during the decelerating phase.

« The above example is a 0-mode accelerating structure (Alvarez DTL): the gap fields
work in phase, Ag = 0. BTW, fgg, = MTgg, where m = 2.3,... will work too (mBA-mode).

* Note: all these tricks are for ions at 8 <(<) 1; for electrons, things are much simpler.

<




Resonance acceleration: m-mode

______________________________________________________________________________________

Accelerating structure with « - type standing wave.

« This is a m-mode accelerating structure (e.g., Wideroe DTL): the fields in the
adjacent gaps are in opposite phases, Ag = .

 Particles accelerated in a gap should arrive to the next gap in one half of the
RF period (strictly speaking, (n+1/2) Tgg) so that its electric field changes to the
accelerating phase.

« Still there is a “synchronism” between the RF field and the linac spatial
structure.

* In principle, one can accelerate simultaneously a beam of opposite charge
(with the same particle mass) with its bunches shifted by in phase.



Example: Inter-digital H-mode (IH) structure

Flottype  Brta

e
| Particles 1osu0e

.....
llllll

IH-PMQ structure for deuterons
from B=v/c=0.04 to 0.055:
=201.25 MHz, I=50 mA
[=73.5 cm, a=0.5-0.55 cm.
CST Studio simulations: RF
fields (MWS), PM quadrupole
fields (EMS), and beam
dynamics (Particle Studio).
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Inter-digital H-mode (IH) structure
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Plottype Energy

SSSSSS ( 1432)

Time 0.000e+000 ns

10 bunches of 10K particles (d) are accelerated in the cavity



Buncher cavities

b.
Two buncher cavities: (a) re-entrant and
(b) coaxial quarter-wave (A/4) types.
Right — on the same scale. '
' '/,;- -------- - i " [ Wa—resonator
0.9 | | 0.9 . | i :.1(:};:1.
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0-1'; B=0.04, r=a/2| 0.1 | |
0 005 01 045 O.ZB 025 03 035 04 0 005 01 045 O.ZB 025 03 035 04

Transit-time factors for two cavities vs velocity
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Linac electromagnetic quadrupoles — LANSCE DTL

DTL tank 1 EM quadrupoles are
installed inside drift tubes:

(a) yoke and pole pieces (iron);
(b) current coil (copper, hollow);
(c) coil assembled with iron;

(d) quadrupole fully assembled.

®)

EM quadrupole gradients are
adjusted by changing current:
gradient G=73.5 T/m at ~562 A.
GL=2.59Tin Q1.

(S
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LANSCE DTL EM quadrupoles — material replacement

g o o TR ]
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3 The design strength in Q1 with C1006 steel
is achieved at higher current, ~586 A.

=
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Permanent-magnet quadrupoles

Permanent-magnet quadrupoles are assembled from
segments of PM materials, usually SmCo or NdFeB,
with properly oriented magnetization vectors in
segments. The gradient of such a quadrupole with M =
16 segments (typically M = 12, 16), the remnant field
B, (~1T), and radii r,, and r,, is

1 1
G=2B, (———]Kz; K, =cos
r

in rout

, w sin(2x/ M)
M 2x/M

=~ (.937.

Magnetic field in the cross
section of M=16 PMQ
calculated with CST EM Studio. & °
Forr,, = 5.5 mm, r ;=11 mm, 5
G= 170 T/m; length L=19 mm.

0.5

Permanent-magnet quadrupoles
are installed in the DTL of the
Spallation Neutron Source (SNS).

Array of 22 PMQ with FF-DD
focusing for IH-PMQ cavity.
Notice field overlaps.

<



Permanent-magnet quadrupoles in SNS

Permanent-magnet quadrupoles (PMQ) are installed in
the DTL of the Spallation Neutron Source (SNS, Oak
Ridge). Now PMQ are also installed in Linac 4 at CERN.

v - J’I

Cut of the SNS DTL drift tube
with PMQ. The bore aperture
diameter is 2.5 cm.

SNS DTL tank 3 with PMQs inside
drift tubes (DTs). Some DTs contain
beam position monitors (BPM).
FFODDO focusing structure.

<
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Example: Inter-digital H-mode (IH) structure with PMQ

IH-PMQ structure for deuterons
from B=v/c=0.04 to 0.055.
Focusing structure FOFODODO.
CST Particle Studio simulations.

8.0551

B.053%
B.08529
0. 0519
0. 0509
B.Baee
0.048%
0. 8479
0. 8469
0. Bub
0. 645
0. Bl
0. 843
a.8az
a.6ud

B.an
B.8393

Plottype Beta

Sample {  5/232)
Time 1.081e+000 ns
= Particles




Summary 1

» Linacs and RF are closely related.

* Inion linacs synchronism between accelerated particles and RF is achieved
by designing a spatial structure with L_~BA. Fixed velocity profile!
Independent-cavity structures can also used, e.g., in heavy-ion linacs, for
more flexibility.

« Longitudinal and transverse beam focusing cannot be achieved
simultaneously in RF fields. External transverse beam focusing is usually
added.

'\
“9 7/19/24 19



Linac parts

Linac scheme: particle source + accelerating structure(s)

Electron linacs: electron gun + linac (TW or SW (=1 structure); with some tricks.

lon linacs: ion source (injector) + various structures for different values of B.

402.5 MHz 805 MHz

< > <

RFQ DTL |I—|CCL |T(SR|=, |3=0.61)T| SRF, p=0.81 IT:-%?:R:;’Q
1 I

Injector 2.5MeV 86.8 MeV 186 MeV 387 MeV 1000 MeV

Scheme of SNS linac:

- RFQ = RF Quadrupole accelerator

- DTL = Drift-Tube Linac

- CCL = Coupled-Cavity Linac

- SRF = SC RF linac

- HEBT = High-Energy Beam Transport




Typical RF linac structures

[Front end ][ Medium-gnergy ][ High-energy section ]
section
lon source DTL /&ﬁ]vity Linac \
RFQ SDTL (Side coupled structure
IH-structure Disk-and Washer Structure
\_ ) \_SC cavities Annular Coupled Structure)
SC Cavities
(Elliptical
\ Spoke-loaded TEM-class)
Frequency \
Jjump
Lattice
\transmon P

From P. Ostroumov (2012)



RF Linac Types

ADS projects

RF
Linacs
| ' |
CwW Pulsed
| [
| | | |
NC* SC NC SC
ISAC-| ATLAS LANSCE SNS
RIKEN in;j. ISAC-II Synchrotron e
LEDA RFQ INFN Injectors ESS
SARAF RFQ SARAF (FNAL,KEK,
SPIRAL-2 CERN, IHEP....)
“Low-energy, FRIB MMF (Moscow)
several MeV/u Project X SNS
Heavy-ions FEURISOL

From P. Ostroumov (2012)



Drift-Tube Linac (DTL)

Alvarez DTL structure (1946):

* TMy,o-like mode (E,, E,, By)

* DTs hide the beam bunches during the
decelerating phase of electric field

« celllength L_.=A

* long cavities (tanks) are more efficient

 field stabilization by post-couplers in long

tanks

Stem

Post-coupler

Drift tube (DT)

10 —| /
<

E‘péklc field lines (Superfish, left) and CST model of cell 98 (1stin T3) of the LANSCE DTL.

-~
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LANSCE DTL (1968)

Table 4.1 DTL parameters for the LANSCE proton accelerator.

CST model of Tank 1

Usually, the average longitudinal field E,
is constant (flat) along the tank length but
in T1 it is ramped (increasing). Tilt tuners.

Tank 1 Tank 2 Tank 3 Tank 4

Cell number 1teo 31 321059 60to 97 9810135 136to 165
Energy in (MeV) S 075 0.04 5.39 0.107 41,33 72.72
Energy out (MeV) f3 5.39 41.330.287 72.720.37 100.00
Energy gain (MeV) 464 35.94 31.39 27.28
Tank length {cm) 326.0 1875.0 1792.0
Tank diameter {cm) 94.0 90.0 88.0 88.0
Drift-tube diameter 18.0 16.0 16.0 16.0
(cm)
Drift-tube corner 2.0 4.0 4.0 4.0
radius (em)
Bore radius {em} 0.75 1.0 1.5 1.5 1.5
Bore corner radius 0.5 1.0 1.0 1.0
(cm)

0.21-0.27 0.16-0.32 0.30-0.37 .37-0.41
Number of cells 31 38 30
Number of quads 29 38 20 16
Quad gradient (kG/cm) (8.34-246 2.44-1.89 1.01-087 090-0.84 0.84-083
Quad length {cm) 2.62-7 88 7.88 16.29 16.29 16.29
Eo (MV/m) 2.40 2.50
o () —26 -26 —26 —26
Power (MW) 0.305 2.697 2.745 2.674
Intertank space (cm) 15.90 85.62 110.95 -

0.72-0.84 0.87-0.80 0.82-0.74 0.74-0.68

Transit-time factor, T
ean ZT?(ME)m 26.8 30.1 23.7 19.2

Total length including intertank spaces = 61.7 m

The best efficiency (higher effective shunt impedance) for DTL is achieved in the
beam velocity range B = 0.1-0.3. At LANSCE it is used for wider range, 8 = 0.04-0.43.

<
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LANSCE DTL tank models

Py
CST model of the LANSCE DTL tank 2: 66 cells, 19.68-m long, 8 = 0.107-0.287
‘:3 7/19/24 25
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Fields in DTL tanks

s
Electric field arrows (MWS norm.) in

x & y-planes near the entrance (right)
and exit (bottom) of DTL tank 2.

Magnetic fields of quadrupoles
near the entrance of DTL tank 1
(imported in PS).

Cplarenane  Cro Setent
Cutplave noesat 0, 1,0
. 0

Cutpiare postion:

Db i) | A0l

Froguity: 00w
o
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DTL — PS simulations in LANSCE DTL tanks

Particle Studio simulations of 10 RF periods (10x10K) of 18-mA proton beam injected
into DTL tank 1. Transmission 85% (80.6% in bunches, 4.4% in the tail).

(<




DTL - PS simulations in LANSCE DTL tanks

Particle Studio simulations of 10 RF periods (10x10K) of 18-mA proton beam injected
into DTL tank 1 — end-tank view. Transmission 85% (bunches 80.6%, tail 4.4%).

<




DTL cavities: tuning

Frequency and field profile slug tuners in the DTL tank 4 model

(S
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H-mode DTL — another type of DTL

Low and Medium - 3 Structures in H-Mode Operation

H210
100 - 400 MHz ®, ©

H110
100 MHz

-h

OomMm>a
I\ A

250 - 700 MHz
B<05

TE-mode DTL cavities: interdigital H,,, (IH) and cross-bar H,,, (CH)
‘:9 7/19/24 30



Coupled-Cavity Linac (CCL)

The coupling cells are not excited
when the structure is tuned.

Various types of CCL (see below)
are used at relatively high velocities,
typically for 320.4.

(a) /2 mode of periodic structure

T T i

il N ||

(6) Biperiodic on-axis-coupled structure

—_— e e

|

1
| |L
(©) Biperiodic side-coupled structure Energy range 100_800 Mev
High shunt impedance: up to 50 MQ/m

Los Alamos Side Coupled Structure (1968)



LANSCE CCL — Module 5 Tank 1 (M5T1)

M5T1: 36 accelerating cells with 35 coupling cells (18 periods); length 2.89 m + 72-cm drift.
- Effective shunt impedance ZT2 = 31.5 MQ/m.
- Energy in 100 MeV (B = 0.43), out 103.4 MeV.

Electric (left) and magnetic (middle) fields and surface-current magnitude (right) in one period of M5T1

(S
“9 7/19/24 32



LANSCE CCL — Module 5 Tank 1
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Coupling RF power to cavities

Cylindrical
cavity

Coaxial a \ . Cylinqrical
line } ! cavity

) : Waveguide
_ﬁ :

Cylindrical 5cm

cavity \

Antenna probe “Dog-bone” coupling iris for

b high-power FEL photoinjector.
Up to 0.5 MW at 100% duty.

Methods of coupling to RF cavities:
(a) magnetic — current loop;

(b) electric — antenna;

(c) magnetic — iris WG-cavity

Model of coupling loop for
the LANSCE DTL tank 4.
Up to 3 MW, duty 10%.

"‘ ¥
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Summary 2

» RF cavities and some common accelerating structures (DTL, CCL) are
reviewed.

7/19/24 35



Figures of merit for accelerating structures

Quality factor (stored energy U, averaged power loss P) 0= %
Shunt impedance (total cavity voltage V) R, = VT;
Effective shunt impedance (effective voltage V,,T) R, = R, T’
Shunt impedance per unit length (voltage V,, = E,L) 2 — PE/gL
Effective shunt impedance per unit length (Z;) 277 = (}EDO/TL)

Ratio R./Q is independent of surface losses and =

depends only on the cavity (structure) geometry 0 oU

Ratios E,. . /E... (E,..=E;T)and B, .,/E... — lower is better.

The latter is very important for SC cavities.

<



RF cavities: cylindrical resonator (pillbox)

L
< >

o

BEAM

Longitudinally integer number of half-variations can be

p
excited i i
L
v
Transverse boundary condition: E (a)=0 J (ka)=0 k= %

2 2
w i B

;7 _k: = n;u

£ a-

Frequency of oscillation mode is

Longitudinal component
T pz

-
E =EJ (v, —)cosnBcos
a

<



Example: TM,,, mode

=
Field components & =E J {0, —)cos0).1
) a
B
B,=——=J,(V,,—)sma,i
c a
Boundary condition H2)=0
U,; = 2405
Frequency of resonator k.=0
@ =25 = al
° a
2405¢
=
21ra

Note:

J(x)=0 x =1841 J(x)=0.5819
J(2.405)=0.5191

)7

Hg
Y L/ Jy
AT ;
< Pl o i
11 R
- - T~
~l o j Jo :
!
|
i
kﬂ_// 4 L
e il
T _H,

TMO10 mode in a pill-box
cavity.

B=uH; |B|=T,[H|=Am;Z,=\/p,/&,=376.7Q; [E|=|Z,H]|=V/m;

o=l meEys pe=2,.
9



Energy dissipation in resonator and Q factor

P=F+F,

Dissipated power is a combination of power losses inside cavity
and outside cavity

Energy stored in cavity 0

Quality factor

Q-factor is a combination of unloaded quality factor of cavity L_L_I_i
and external quality (loaded Q factor) O B o, 0.
: 0]
External quality factor Q. =—2-2
R
Losses in metal with surface resistance R_[Ohm R 5
- [ohml P,==*[H}ds
1 Ly @ . . 25
R =—= , Where o is the surface conductivity,
o) 20
and & is the skin depth & = /2 / (1,00). [Hav
GJCJVO w "
Unloaded quality factor Q,= 0 =——=5 1
F, R, jH};dS
%
Physical meaning: Q=G— S
y g: 9 o

<



Quality factor of TM,,, cavity

. c .
REGIIEEE, H,o=—E, |7 (v, ) Amplitude
luo a
1 ) me E2La*J;} (v,,) . >
Energy stored in cavity W, = EJ.”onedV = == =0.1357¢, La’E,
VO
R 2 o 2 €, 2
Loss power in cavity F,= 5 JngdS = maR,L; y_Jl (Vo (L+a)
hY o

Unloaded quality factor 0 = oW, Uy [H, 1 _ 1 2025 376.7[0hm] 1
? P 2R \ ¢ a R a
V& 44 S s
L) ( L)

For ideal copper surface o = 5.8:107 Sm/m, so that R, = 2.6:10* Vf(MHz) Q. At 201.25 MHz,
R, = 3.7 mQ, and Q, = 66500 for a/L = 1. In practice, typically 10%-20% less.

<



Surface conductivity in superconducting RF cavities

For RF cavities the power loss depends on the surface resistance: for normal-conducting

1
_ |H® scales with RF frequency as \/7
00 20

In superconducting (SC) RF cavities the surface resistance is much lower; e.g., for Nb
2
GHz T
R (©)=9-10" Lexp(—a —Cj +R_,
T(°K) T ’
where R, is the residual resistance (~1-10 nQ), a = 1.83, and T, = 9.2 K is the critical
temperature.
SC R, is ~10-° of that in copper, and so are the cavity surface losses!

R =



RF cavity design

Cavity design goals depend on many factors including the cavity type and its application:
maximize accelerating gradient, minimize losses (NC), minimize max surface fields, etc.

Frequency dependence of cavity parameters: a ~ 1/f,

b {fl/z’ NC} Q B {fuz’ NC} ZT2 . {fl/z, NC}
7, SC 72, SC 77, sC

Frequency choice also depends on available RF sources and beam parameters.

Changing cavity shape is the common way of achieving the design goals. Examples:

ﬁ m m m% 7 (structure) mode
T~ o L
= UM

[\ ‘AN

1
— 1

Nose-cone cavity \/ \/

4-cell elliptical cavity (SC)

<



RF cavity design codes

« Calculation of EM fields in the cavity: frequencies, modes, secondary
parameters (losses, Q, shunt impedance, surface fields, ...)
« Calculation methods:
- Analytical (simple cavity shapes) + perturbation theory
- 2D codes (axisymmetric or flat structures): Superfish, URMEL, ...
- 3D codes: CST, HFSS, Analyst, ACE-3P (Omega-3P), etc.



Los Alamos Accelerator Code Group (LAACG)

Available at laacg.lanl.gov/
laacg/services/services.phtml

P0|sson / Superfish
collection of programs for calculating
static magnetic and electric fields and
radio-frequency electromagnetic fields in
either 2-D Cartesian coordinates or
axially symmetric cylindrical coordinates.

» triangular mesh

» includes plotting and post-processing

* Poisson / Pandira
- static electric and magnetic fields

* Superfish
- radio-frequency electromagnetic fields

Windows PC — C:\LANL contains
programs & utilities; \Docs; \Examples; etc.

<

[_“_) LANL Home - LANL Directory - Search LANL Web
* Los Alamos
| A ACG [ LANL [ LANSCE | LANL Accelerators | Home |
| About Us | LAACG Codes | Accelerator Physics | Mews |
Les Alames | Beam Physics | General Resources | Software/Methads | Site Index |
A lerater Code Group
[LAAIEE - LAACG - Codes/Databases
Codes/Databases
=LAACG Codes [ToplTopics|Bottam]
-=Poisson
Superfish LAACG - Codes/Databases
>Parmela o LAACG - Codes/Databases-=All
-=Parmila .
[ToplTopics|Bottam]
-=Parmteq

LAACG Design Codes
-=Trace-20/3D
s LAACG - Codes/Databases->LAACG Design Codes-=All
-=Announcements
* LAACG - Codes/Databases->LAACG Design Codes-*Poisson Superfish
>Access * LAACG - Codes/Databases->LAACG Design Codes->Parmila
* LAACG - Codes/Databases->LAACG Design Codes->Trace-2D/3D

-=>LAACG Databases * LAACG - Codes/Databases->LAACG Design Codes->Parmela
» Software * LAACG - Codes/Databases->LAACG Design Codes->Parmteq

»Accelerat s LAACG - Codes/Databases->LAACG Design Codes-=»Announcements
-ZAccelerators * LAACG - Codes/Databases->LAACG Design Codes->How to get the Software
* LAACG - Codes/Databases->LAACG Design Codes->=Iailing Lists

[ToplTopics|Bottam]

LAACG Databases -DISCONTINUED

* LAACG - Codes/Databases-=>LAACG Databases-=All

* LAACG - Codes/Databases->LAACG Databases->Online Software
Compendium

* LAACG - Codes/Databases->LAACG Databases->Accelerators and Related
Laboratories
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Superfish (SF)

Steps for running SF (from command window or with right click):

« create geo file (test.am); x — z, y — r (cm); define BC and materials
* run Automesh on test.am > test. T35 with geo and mesh

* run Fish on test. T35 > test. T35 with fields

« double-click test.T35 to see field lines

* run post-processing of test. T35 > test.sfo to get cavity parameters
Alternative: run Autofish on test.am

File HardCopy Display View Zoom Help

test - pillbox with short pipes F = 1148.274 MHz
1 1 I

pb_test.am =

kest - pillbox with short pipes s |

&reg kprob=1, = L.
dx=0.,2,dy=0.2,

¥xdri=0,.,yvdri=0.5, freq=1500.00,d=slope=-1,
npoint=7 &

tpo x= 0.0, = 0.0 & 5 —| s
tpo x= 0.0, = 10.0 &
fpo %= 5.0, y= 10.0 & 7 *“
gpo Xx= 5.0, yv= 1.0 & . L,
Epo x= 8.0, = 1.0 &
&po x= 2.0, = 0.0 & — -
&po x= 0.0, = 0.0 &
ol | : ‘ | | . —
a ‘ : ¢ oo | BC.MN 3 e \EB\ M 712 7:16:

Zoom level 1 of 1
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Superfish input file

SF input (*.am or *.af):

« First line is the problem title (< 80 char) followed by 3 namelists: REG, PO, MT
(actually parsing). Delimiters: & or $; comment: ; or !

« $reg: kprob - problem type (1 — SF, 0 — Poisson) — in the 15t $reg, symmetry:
e.g., icylin=1 — cylindrical; BCs; approximate frequency (MHz); mat #.

« $po: defines geometry; separate $po list for each material. Note $po ... $.

« $mt: mt=2, 3, ... - material table defines mat properties (epsilon, mu).

File HardCopy Display View Zoom Help

test - pillbox with short pipes F = 1148.274 MHz
1 1 I

pb_test.am b4

kest - pillhox with short pipes s | Ls

greg kprob=1, * 7 ®°
de=0.2,dy=0.2,

®¥dri=0.,ydri=0.5, freg=1500.00,dslope=-1,
npoint=7 & e L.

Epo x= 0.0, v= 0.0 & 5 2
Epo ®x= 0.0, v= 10.0 &

ftpo %= 5.0, y= 10.0 & 7 I
gpo x= 5.0, yv= 1.0 & . L.
&po %= 8.0, yvV=/ 1.0 &

gpo %= 8.0, yvV= 0.0 & = —
Epo x= 0.0, = 0.0 &

T T T T T T T
1) 2 4 [ g 1 1z
oy Y " \ BB\, _
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Superfish problem 1. Pillbox cavity.

Design TM,, cavity for frequency 201.25 MHz

« Estimate radius R, choose length L (default units — cm); define BCs or use
default BCs (SF: left — symmetry: Dirichlet BC).

« Create cavity geometry file, e.g., pb.am

* run Automesh on pb.am > pb.T35 with geo and mesh

* run Fish on pb.T35 > pb.T35 with fields

» double-click pb.T35 to see field lines

* run SFO post-processing of pb.T35 > pb.sfo

For TM_ . modes in a cylindrical cavity of radius R and length L, the frequency

e jnm2 Q2
ﬂ“p_zﬂ\/(Rj+(Lj’

where j,,, are the roots of J_(j ) =0. The value of j,, = 2.4048.

nmp




SF problems 1a & 1b. Pillbox cavity with beam pipe.

SF 1a: Design TM,,, cavity for frequency 201.25 MHz with beam pipe.

« Add beam pipe to the pillbox cavity you already designed. Use pipe radius a
<< R, choose pipe length p > 2a.

« Will the cavity frequency increase or decrease when you add the pipe?

SF 1b: TM,,, cavity with rounded edge of cavity-pipe connection: blend the sharp
edge by introducing an arc:
Use $po nt=2, x0=11.0, y0=3.5, r=1, theta=270 $ to make an arc.

Slater perturbation theorem relates the cavity frequency change with energy
changes due to small deformations of cavity walls:

A AW, —AW,
fo 2,

Sometimes it is useful to use L-C circuit analogy for the cavity frequency:
1

f:272\/i.




SF problem 2. Pillbox cavity with drift tube

Design TM,4, cavity for frequency 201.25 MHz with a drift tube.

« Recommended g/L=0.3, DT outer radius 10 cm. How large is the
frequency shift from 201.25 MHz when DT is inserted?
« Adjust cavity radius to get back to 201.25 MHz.

DTL 201.25 MHz, Beam energy
L | 1

o R s e S L
h‘_\*—\—i
j—|




DTL design using DTLfish

Tuning code DTLfish can design and tune a sequence of cells with some
required parameters, e.g. frequency, in a given velocity range, e.g. B = 0.1-0.3.

DTL201.dtl x DTLfish_seq.txt x
mlll|I||||1|D||||I\||\2|D|\||I||||3|D||||I|||\4|D|\||\||||5|D|| m,,|||||||1,D|||||||||2.D|||||||||3.D|||||||||4.D||||I||||5.D|
; DTLfish control file .

; Copyright 1998, by the University of California. START -2
TITLE .
DTL 201.25 MHz, Beam energy = 8.5 MeV ; Start codes for DTLfish:
ENDTITLE ; 1 No tuning
; 2 Adjust tank diameter

PARTICLE H+ ; 3 Adjust drift tube diameter (not recommended)
FILEname_prefix DTL ; 4 Adjust gap
SEQuence_number 1 ; 5 Adjust face angle
FREQuency 201.25
;BETA 9.135 SEQuence_number 2 ; Problem 2
G_OVER_Beta_lambda 0.3
LENGTH 20 BETA 6.1
DIAM ) LENGTH 7.853940188235

eter 90.
DRIFT_TUBE_Diameter  20.0 DIAMeter PREVIOUS
;GAP_Length 5 G_OVER_Beta_lambda  ©.2042467589655
Ee_Normalization %] GAP_Length 1.440744421384
CORNER_radius START -4
OUTER_nose_radius
INNER_nose_radius 5 SEQuence_number 3 ; Problem 3
BORE_radius 5 BETA 8.15
frAl-eneth DIAMeter PREVIOUS

—olameter START -4

STEM_Count
PHASE_length
DELTA_frequency
MESH_size
INCrement

START

[v]
o0 ®

NNOORRROROR KRR
w0
" ® ®
w 1%2)

ENDFILE

<



SF problem 3. DTL design using DTLfish.
Design DTL cells for frequency 201.25 MHz for 3 = 0.135.

« Recommended g/L=0.3, DT outer radius 10 cm. Note: *.dtl
« DTLfish can tune the cavity parameters, e.g. cavity radius or gap, to get
the required frequency, 201.25 MHz.

DTL 201.25 MHz, Beam energy = 8.5 MeV F = 201.24992 MHz
DTL20Ldtl X I I I I I I

T T T Y- (ST 40 001000500
; DTLfish control file
; Copyright 1998, by the University of California.

40 —

TITLE

DTL 201.25 MHz, Beam energy = 8.5 MeV

ENDTITLE 15 |

PARTICLE H+

FILEname_prefix DTL

SEQuence_number 1 30 —

FREQuency 201.25

;BETA ©.135

G_OVER_Beta_lambda 8.3 o |

LENGTH 20.

DIAMeter 90.

DRIFT_TUBE_Diameter 20.9 i e R
;GAP_Length 5. 20 —

E@_Normalization ] D

CORNER_radius
OUTER_nose_radius
INNER_nose_radius
BORE_radius
FLAT_length
STEM_Diameter
STEM_Count
PHASE_length
DELTA_frequency
MESH_size
INCrement

START

15 —

10 —

“ . 00

[

v ®
v

NNOORRPRORORRER
[Xe] U u;
®
w

ENDFILE 0 —

<

T T T T
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