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Energy, Velocity, Momentum

 

!
β =
!v
c

Particle velocity relative to 
speed of light
Mechanical (kinetic) particle 
momentum

γ =
Epart

mc2
= 1+ W

mc2
= 1

1− β 2

Relativistic particle 
energy

Total energy

		mc2Rest energy

W = p2c2 +m2c4 −mc2 = mc2 (γ −1)Kinetic energy

β =
γ 2 −1
γ

p
mc

= βγ = γ 2 −1

Particle velocity versus relativistic 
energy
Mechanical momentum versus 
velocity and relativistic energy

 
!p = mγ !v = mc

!
βγ

Epart = (pc)2 + (mc2 )2 = mc2 +W
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Energy, Velocity, Momentum (cont.)
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(P. Lapostolle and M. Weiss, CERN-PS-2000-001 DR) 
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Vector Operations in Cartesian Coordinates
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Vector Operations in Cylindrical Coordinates
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Maxwell's equations

 
rot
!
E = − ∂

!
B
∂t

 
rot
!
H = ∂

!
D
∂t

+
!
j

 div
!
D = ρ

 div
!
B = 0

 
!
D = εo

!
E

εo = 8.85 ⋅10
−12F/m

µo = 4π ⋅10−7H/m

 
!
EElectric field

Electric displacement field

Magnetic field

Magnetic field strength 
 

 
!
H

Permittivity  of free space

Permeability of free space 

6

 
!
B = µo

!
H
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Units
1 eV = 1.6 ⋅10−19[C] x 1 [V ] = 1.6 ⋅10−19 JouleW = eU [eV ],  [electronVolt]

melectron = 9.1⋅10
−31kg

c = 3 ⋅108m / sec
e = 1.6 ⋅10−19Culomb
melectronc

2

e
= 0.51092 ⋅106Volt

mproton = 1.672 ⋅10
−27 kg = 1836 melectron

mprotonc
2

e
= 938.27 ⋅106Volt

mprotonc
2 = 938.27MeV

melectronc
2 = 0.51092 ⋅106 eV = 0.51092MeV

1 Joule = 1 Coulomb ⋅1 Volt = kg ⋅m2

s2

Electron energy

Proton energy
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Units (cont.)

Ion Energy

Ea = 931.481MeV

Atomic mass unit (1/12 the mass of 
one atom of carbon-12):

1u= 1.660540 x 10-27 kg

Proton mass:  1.007276 u

Electron mass: 0.00054858 u

		Eion = 931.481⋅A−0.511⋅Z [MeV ]
A-atomic mass number

Z-number of removed electrons (ionization 
state) 

Binding energy of removed electrons is 
neglected

Negative Ion of Hydrogen

  EH − = Eproton +2x Eelectron = 939.28 MeV

H- ion mass:   1.00837361135 u
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Units (cont.)

p
mc

= βγ = γ 2 −1 p = mc2

c
γ 2 −1 [GeV

c
]

Example: proton beam with kinetic energy W = 3 GeV: 

β =
γ 2 −1
γ

= 0.971Epart = mc
2 +W = 3.938GeV γ = mc2 +W

mc2
= 4.2

p
mc

= βγ = γ 2 −1 = 4.079 p = mc2

c
γ 2 −1= 3.82 GeV

c

Particle momentum

Bρ = p
q
[T ⋅m]Particle rigidity

p
e
= Bρ = 12.7 T ⋅m
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Equations of Motion in Cartesian Coordinates

d!x
dt

= !v d!p
dt

= q(
!
E + !v x 

!
B)
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Equations of Motion in Cylindrical Coordinates
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z-axis is directed to the reader.
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Alvarez accelerating structure

Resonance Principle of Particle Acceleration

Acceleration in linear resonance accelerator is based on 
synchronism between accelerating field and particles. 

Field distribution in RF structure:

t flight = TRF period =
1
f

Time of flight between RF gaps                                    [sec]

Distance between RF gaps                                         [m]

fRF Frequency                                      [Hz], [1/sec]

RF Wavelength                                          [m]λ = c
f

Ez (z,r,t) = Eg (z, r)cos(ωt)

Circular RF Frequency                               [radians/sec]ω = 2π f

L = nβcTRF period = nβλ
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Acceleration in π - Structure 

Time of flight between RF gaps of π- structure t flight =
TRF period
2

Distance between RF gaps of π- structure L =
βcTRF period

2
= βλ
2

Accelerating structure with π - type standing wave.
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Acceleration in π- structure (Courtesy of Sergey Kurennoy).

Acceleration in π- Structure 
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Acceleration in Independently Phased Cavities 
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Sequence of RF cavities connected to individual RF sources.

ϕ i+1 =ϕ i − 2π
d
βλ

While particle travel from one cavity to another one, separated by distance d, 
the  phase of RF field is changed buy the value Δφ = ωt, where t = d / βc.
To maintain synchronism, the RF field in the adjacent RF cavities must be 
shifted by the value Δφ = 2πd / βλ:
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G. Ising Proposal on Linear Acceleration (1924) 
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In 1924 G. Ising proposes time-varying fields across drift tubes. This is “resonant 
acceleration”, which can achieve energies above the given highest voltage in the 
system. G. Ising published an accelerator concept with voltage waves 
propagating from a spark discharge to an array of drift tubes.

Gustav Ising (1883-1960)
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First Demonstration of RF Linear Acceleration by R. Wideroe 
(1928)
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In 1928 R. Wideroe demonstrates Ising’s principle with 1 MHz, 25 kV oscillator to 
make 50 keV potassium ions. Wideroe simplified Ising’s concept by replacing the 
spark gap with an ac oscillator.

Rolf Wideroe (1902-1996)
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First Proton Linac by L. Alvarez (1947) 
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In 1947 Luis Alvarez at Berkeley designed a proton drift-tube linac 12-m long, 1-m 
diameter, 4 MeV to 32 MeV, initially using surplus 200-MHz vacuum tubes. 
Alvarez introduced a copper resonant cavity for better efficiency, loaded with an 
array of drift tubes.

Luis Alvarez (1911-1988) 

Y. Batygin - USPAS 2024



Circular Resonance Acceleration:
Classical Cyclotron

To provide synchronism the 
frequency of electric field ωο must be 
equal to frequency of particle rotation 
in magnetic field.  In classical (non-
relativistic cyclotron):

Kinetic energy is increasing 
proportionally to number of turns 

 
ω o =ω = qB

mγ

  W ≈ 2qUn

R ≈ 2
B
nUm
q

cos ωοt

Radius of particle orbit

The acceleration of a particle in a 
circular orbit is determined by Lorentz 
force

Rewrite this equation as

  
mγ v2

R
= qvB

 
BR = p

q
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Circular Resonance Acceleration: Microtron
Cyclotron cannot be used for acceleration of electrons, because 
electrons become relativistic after energy gain of a few 100 keV.
In Microtron,  particles arrive to  RF gap after multiple integer number of 
RF periods

Layout of microtron: 1 – magnet, 2- accelerating cavity

ω = qB
mγ

=
ω RF

k

Condition for particle 
acceleration in 
microtron: frequency of 
particle rotation in 
magnetic field must be 
equal to RF frequency 
divided by integer 
number:   
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Circular Resonance Acceleration: Synchrotron

ω RF (t) = kω (t) = k
qB(t)c2

Es

Resonance condition between RF 
field and revolution frequency in 
magnetic field (k-integer):

R = p(t)
B(t)q

= const
For acceleration at R = const, RF frequency 
must be strongly related to magnetic field at 
the orbit.

Es = (mc2 )2 +( pc)2 = (mc2 )2 +[qB(t)Rc]2Total energy of equilibrium 
particle

Acceleration 
with constant 
orbit radius:

ω = v
R

= qvB
p

= qB
mγ

= qBc
2

Es

Revolution frequency in magnetic field:

U cos(ωRFt)

B(t)
Central Orbit

R
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Induction Acceleration

22

	 
rot
!
E = − ∂

!
B
∂t

  dW = q
!
Ed!r

  

!
E d!r

ABCA
"∫ = − ∂

!
B
∂tS

∫ d
!
S = − ∂Φ

∂t

  
Φ =

!
B d
!
S

S
∫

Maxwell’s equation for time-dependent 
electric field

Stock’s Theorem: 

Magnetic flux through shaded area S

Let us integrate  equation for increment 
of particle energy  between points A and 
B (there is no electric field along B-C-A)

Increment of particle energy:  

 
ΔW = −q ∂Φ

∂t
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Linear Induction Acceleration

1 – Ferrite inductors, 2 – Coils
Beam propagates between A and B. Induction accelerator is  in 
fact a transformer, where secondary coil is a beam itself.
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Linear Induction Accelerator

24Y. Batygin - USPAS 2024



Azimuthal 
accelerating 
electric field

Magnetic field at the 
orbit

Average Magnetic 
Field

Circular Induction Accelerator: Betatron 
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High – Voltage Acceleration

1- High-voltage electrode
2- Particle source
3- Vacuum chamber,
4 – Exit window 

  dW = q
!
Ed!r

   
d!p
dt

= q
!
E + q[!v

!
B]

  
!v d!p = dW   

!v dt = d!r

  
!
E = −gradU

 W + qU = const

 ΔW = qΔU

Equation of motion:

Let us multiply equation of 
motion by       :

Increment of energy:

If electric field is electrostatic, 
(expressed as gradient of 
potential)

Conservation law:

Increment of particle energy is 
determined by electrostatic 
potential difference

  
!v
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High Voltage Accelerator with Charge Exchange 

1- source of negatively charged particles, 2- accelerating tube, 3- 
mounting of high-voltage electrodes, 4-  - high-voltage electrode, 5 – 
stripper ,  6- target

Maximal potential difference 
Maximal energy gain due to charge 
exchange:

  ΔU ≈15kV

  ΔW ≈ 30kV
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Electromagnetic Wave Equations

 
rot
!
E = − ∂

!
B
∂t  div

!
E = 0

 div
!
B = 0

 
rot rot

!
E = − ∂

∂t
(rot
!
B) = − 1

c2
∂2
!
E

∂t 2

 
rot rot

!
B = 1

c2
∂
∂t
(rot
!
E) = − 1

c2
∂2
!
B

∂t 2

In the absence of charges,                     , Maxvell’s equations are

 
rot
!
B = 1

c2
∂
!
E
∂t

 
!
j = 0, ρ = 0

c = 1
εoµo

= 2.99792458 ⋅108m / sec

 rot  rot
!
A = grad div

!
A− Δ

!
A

Taking the rot of the rot equations gives:

By using the vector identity

 div
!
E = 0Taking into account that                 ,                 we receive wave equations:  div

!
B = 0

 
Δ
!
E − 1

c2
∂2
!
E

∂t 2
= 0

 
Δ
!
B − 1

c2
∂2
!
B

∂t 2
= 0

speed of light in free space:
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Components of Electromagnetic Field
Most	of	RF	cavities	are	excited	at	a	 fundamental	mode	containing	 three	
components	 Ez ,	 Er ,	 Bθ .	 They	 are	 connected	 through	 Maxwell’s	
equations,	 therefore	 it	 is	 sufficient	 to	 find	 solution	 for	 one	 component	
only.	Taking	into	account	condition	for	axial-symmetric	field	(∂/ ∂θ = 0 ),	
wave	equation	for	Ez 	component	is	

∂2Ez

∂z2
+ 1
r
∂
∂r
(r ∂Ez

∂r
)− 1

c2
∂2Ez

∂t 2
= 0 	

	

Radial	component	 Ez 	can	be	determined	from	 div
!
E = 0 	as	

	

 
div
!
E = 1

r
∂
∂r
(rEr )+

∂Ez

∂z
= 0 	 	 	 	 	 	 	

	

which	gives										 Er (r) = − 1
r o

r

∫
∂Ez

∂z
r 'dr ' 		

	
Azimuthal	 component	 of	 magnetic	 field	 is	 determined	 from			

 
rot
!
B = 1

c2
∂
!
E
∂t

											which	gives										 Bθ =
1
c2r

∂Ez

∂to

r

∫ r 'dr ' 	
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Ez (z,r,t) = Eg (z, r)cos(ωt)Field in RF Gap:

∂2Eg

∂z2
+ 1
r
∂
∂r
(r
∂Eg

∂r
)+ (ω

c
)2Eg = 0

Wave Equation for Field Distribution in RF Gap:

Eg (r, z) = Ao (r)+ Am (r)cos(
2πmz
L

)
m=1

∞

∑
Fourier Expansion of Field Distribution in RF Gap:
  

Electric field lines 
between the ends of 
drift tubes.

Expansion of RF Field in Alvarez Structure 

Periodic distribution of RF field.
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1
r
∂Ao (r)
∂r

+ ∂2Ao (r)
∂r2

+ (ω
c
)2Ao (r) = 0, m = 0

1
r
∂Am (r)
∂r

+ ∂2Am (r)
∂r2

− km
2Am (r) = 0, m > 0

km = (2πm
L
) 1− ( L

mλ
)2

Expansion of RF Field (cont.)

Transverse wave number: 

Equations for Fourier 
coefficients of RF gap 
expansion:

Ao (r) = AoJo (
rω
c
), m = 0

Am (r) = AmIo (kmr), m > 0

Solutions are Bessel 
functions:

Eg (r, z) = AoJo (2π
r
λ
)+ AmIo (kmr)cos(

2πmz
L

)
m=1

∞

∑
Finally, expressions for spatial 
z-component Eg (z,r) 
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d 2y
dz2

+ 1
z
dy
dz

+ (1− n
2

z2
)y = 0

Jn (z) =
1
n!
( z
2
)n − 1

1!(n +1)!
( z
2
)n+2 + 1

2!(n + 2)!
( z
2
)n+4 − ...= ( z

2
)n (−1)k

k!Γ(n + k +1)k=0

∞

∑ ( z
2
)2k

Bessel functions of the order n are solutions 
y = Jn(z) of differential Bessel equation:

Power representation of Bessel function: 

Special cases for n = 0, 1:

Zeros νnm of Bessel function Jn(z) = 0 .

Bessel Functions

Jn (z) =
1
π

cos(nθ − zsinθ )
0

π

∫  dθIntegral representation of Bessel functions: 

J1(z) = −Jo
' (z) = z

2
− z3

16
+ ....Jo (z) = 1−

z2

4
+ z4

64
− .....
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Modified Bessel Functions

Modified Bessel functions of the n-th order 
In(z) = i-n Jn(iz) are solutions of modified 
Bessel differential equation:

d 2y
dz2

+ 1
z
dy
dz

− (1+ n
2

z2
)y = 0

In (z) =
1

k!Γ(n + k +1)k=0

∞

∑ ( z
2
)n+2kPower representation of modified Bessel functions:  

I1(z) = Io
' (z) = z

2
+ z3

16
+ z5

384
+ ...

Io (z) = 1+
z2

4
+ z4

64
+ z6

2304
+ ...

Special cases for n = 0, 1:

Modified Bessel functions of 1st kind, In(x).
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Integrals and Derivatives of Bessel Functions

dZn (x)
dx

= − n
x
Zn (x)+ Zn−1(x) =

n
x
Zn (x)− Zn+1(x)

xn+1Zn (x)dx = x
n+1Zn+1(x)∫

Let Zn(x)  to be an arbitrary Bessel function:

Zo
' (x) = −Z1(x)

Z1
' (x) = Zo (x)−

Z1(x)
x

Particularly 
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Expansion of RF Field (cont.)

To get an approximate expression for 
coefficients Am , let us assume the 
step-function distribution of  component 
inside RF gap of width  at bore radius
 r = a

Eg (a, z) = Ea[
g
L
+ 2
π

1
mm=1

∞

∑ sin(πm g
L
)cos(2πm z

L
)]Expansion of periodic step-function

Ao =
Ea

Jo (2π
a
λ
)

g
L Am = 2Ea

Io (kma)
g
L

sin(πm g
L
)

πm g
L

Eg (r, z) = AoJo (2π
r
λ
)+ AmIo (kmr)cos(

2πmz
L

)
m=1

∞

∑

Coefficients in field expansion:

Field expansion in RF gap

Ea

L z

g

Ea
g
L

35

Eg (z,a) =
Ea 0 ≤ z ≤ g

2

0 z > g
2

⎧

⎨
⎪⎪

⎩
⎪
⎪
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dpz
dt

= qEz (z, r, t)

Energy Gain of Synchronous Particle in RF Gap 

Equation for change of longitudinal particle 
momentum 

From relativistic equations pz = mc γ 2 −1

dpz = mc
2dγ / (βc) dW = mc2dγ

the equation for change of particle energy 

dW
dz

= qEz (z, r, t)

ΔWs = q Eg (z)  cosωts (z) dz
−L /2

L /2

∫Increment of energy of synchronous 
particle per RF gap

When synchronous particle arrive in the center 
of the gap, z = 0, the RF phase is equal to φs . 
The time of arrival of synchronous particle in 
point with coordinate z is 

( ) s
s

zt z
c

j
w b

= +

where  wave number 

or

36

ω ts (z) =ϕs + kzz

kz =
2π
βλ

Particle velocity is βc = dz/dt. Integration 
gives: t(z) = to +

dz
β(z)c0

z

∫
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Energy Gain of Synchronous Particle in RF Gap (cont.) 

Using equity 
the increment of synchronous particle energy per RF gap: 

Let us multiply and divide this expression by 
EoL , where we introduce average field Eo of 
the accelerating gap across accelerating 
period (note that Eo=Ao):  

Eo =
1
L

Eg (z)dz
−L/2

L/2

∫ = Ea

Jo(2π
a
λ
)

g
L
≈ Ea

g
L

Effective voltage applied to RF gap: U = EoL

37

cosω ts = cosϕs  cosksz − sinϕs  sin ksz

ΔWs = qcosϕs [ Eg (z)  cos(kzz)dz
−L/2

L/2

∫ − tgϕs Eg (z)  sin(kzz)dz
−L/2

L/2

∫ ]
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Transit Time Factor

38

T =
Eg (z)  cos(

2πnz
L
)dz

−L/2

L/2

∫

Eg (z)dz
−L/2

L/2

∫

ΔWs = qEoTL cosϕ s

The increment of synchronous particle energy 
gain per RF gap can be written as

where transit time factor is T = 1
EoL

[ Eg (z)  cos(kzz)dz
−L /2

L /2

∫ − tgϕ s Eg (z)  sin(kzz)dz
−L /2

L /2

∫ ]

First approximation to transit time factor 
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Transit Time Factor (cont.)

Transit time factor                   , where An is the amplitude of n-th harmonics of Fourier 
field expansion 

T = An
2Eo

In most accelerators, synchronism is provided for n = 1, therefore: 

T =
Jo (2π

a
λ
)

Io (
2πa
βγλ

)
 
sin(πg

βλ
)

πg
βλ

In accelerators usually aperture of the channel is 
substantially smaller than wavelength, a << λ , 
then                           , and transit time factor is Jo (2πa / λ) ≈1

T = 1

Io(
2πa
βγλ

)
 
sin(πg

βλ
)

πg
βλ

Transit time factor indicates effectiveness of transformation of RF field into particle 
energy. It mostly depends on field distribution within the gap, which is determined by 
RF gap geometry. 
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T = 1

Io(
2πa
βλ

)
 
sin(πg

βλ
)

πg
βλ

sin πL
2βλ

Transit Time Factor for Two-Gap Cavity

Two gap cavity

Field expansion in two-
gap cavity

Transit time 
factor for two-
gap cavity
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Expansion of RF Field in π - Structure

Eg (r, z) = AmIo(kmr)cos(
2πmz
L

)
m=1

∞

∑

Like in analysis of Alvarez structure, let us 
assume the step-function distribution of Ez 
component inside RF gap at bore radius  r = a g

L = βλ

Ez (z,a)

z

Ea

Eg (z,a) =

Ea , − g
2
≤ z ≤ g

2
, βλ − g

2
≤ z ≤ βλ

0, g
2
< z < βλ − g

2
, βλ + g

2
< z < βλ − g

2

−Ea ,
βλ − g
2

≤ z ≤ βλ + g
2

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

Expansion of periodic 
step-function

Eg (z,a) =
4Ea

π
(−1)m−1

2m −1m=1

∞

∑ sin[π (2m −1) g
L
] cos[2π (2m −1) z

L
]

Field expansion in RF gaps

Coefficients in field expansion:
Am = 4Ea

π
(−1)m−1

(2m −1)
1

Io (kma)
sin[π (2m −1) g

L
]
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Energy Gain of Synchronous Particle in RF Gap 
and Transit Time Factor of π - Structure 

Increment of energy of synchronous 
particle per RF gap

After integration, increment of energy is

Increment of energy can be written as

Effective voltage applied to RF gap:

Transit time factor

42

ΔWs = q cosϕs
−L /4

L /4

∫ Eg (z )  cos(ksz )dz

ΔWs = q (Ea g ) cosϕs  [
1

Io (
2πa
βγλ

)
  
sin(πg

βλ
)

πg
βλ

]

ΔWs = qU T cosϕs

U = Eag

T = 1

Io(
2πa
βγλ

)
 
sin(πg

βλ
)

πg
βλ

Eo =
2U
βλ

Αverage field within the gap 
of π - type structure 
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Design of Accelerator Structure 

dWs

dzs
= qEoT cosϕ s

Specify dependence of transit time factor on velocity: T = T(β).

From equation for energy gain one can express dzs

                                                                             à

Second equation:

Using equation dWs = mc2 βγ3 dβ we can rewrite them as

                                                           

dts =
dzs
βsc

dzs =
dWs

qEoT cosϕ s

dzs = (
mc2

qEo cosϕ s

) βdβ
T(β)(1−β 2)3/2

dts = (
mc

qEo cosϕ s

) dβ
T(β)(1−β 2)3/2
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Design of Accelerator Structure (cont.) 
Integration gives:

Calculation the lengths of 
accelerating periods.

zs = (
mc2

qEo cosϕs
)
βo

β

∫
βdβ

(1− β 2 )3/2T (β )

ts = (
mc

qEo cosϕs
)
βo

β

∫
dβ

(1− β 2 )3/2T (β )

Using β as independent variable, one can get 
parametric dependence zs(ts). Increment in 
time Δts = k(2π/ω) corresponds to distance 
between centers of adjacent gaps Δzs . Gap 
and drift tube length are determined by 
adjustment of the value of transit time factor 
T=T (β, λ, a, g).  
For Alvarez structure   k = 1 
For π – structure         k = 1/2

ts
ω
2π k

zs
L

0        1         2        3

44

Δzs 
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Simplified Method of Design of Accelerator Structure

		ΔWs = qEoTLcosϕ s

dW = mc2dγ

		dγ = βγ 3dβ

		
βn ≈ βn−1 +k

qEoT(βs )λ
mc2γ s

3 cosϕ s

Increment of energy of synchronous 
particle per RF gap

Increment of energy through increment 
of relativistic factor

Increment of velocity of synchronous particle per RF gap:

Average velocity at RF gap:

Cell length: Δzs = k βs λ (k = 1 for 0 mode; k = 1/2 for π - mode) 
 

Drift tube length  l = Δzs - g              

βs =
βn + βn−1

2
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π – Structures with Constant Cell Length 

Superconducting 1.3 GHz 9-cell cavity (B. Aune et al, PRSTAB, Vol. 3,  
092001 (2000)). 
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Eg (z ) = Emax cos2π
z
L

U =
−L /4

L /4

∫ Eg (z )dz =
EmaxL
π

ΔWs ≈ q cosϕs
−L /4

L /4

∫ Eg (z )  cos(ksz )dz =
1
4
qEmaxL cosϕs = qUT cosϕs

T = π
4

Transit Time Factor in Large – Bore Radius π - Structure 

Field distribution at the axis

Effective voltage applied to the RF gap

Increment of energy per RF gap:

Transit time factor

Axial field distribution in 
π – structure with equal 
cells
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Transit Time Factor of  π – Structure with Identical Cells 

Tπ =
∫

−Ls /2

Ls /2

Eg (z )cos(
2πz
βλ

)dz

∫
−Ls /2

Ls /2

Eg (z )dz
= [

∫
−Ls /2

Ls /2

Eg (z )cos(
2πz
βgλ

)dz

∫
−Ls /2

Ls /2

Eg (z )dz
] [

∫
−Ls /2

Ls /2

Eg (z )cos(
2πz
βλ

)dz

∫
−Ls /2

Ls /2

Eg (z )  cos(
2πz
βgλ

)dz
]

Let us multiply and divide Transit Time Factor by 

βgλ / 2

β

Accelerating structure with constant cell length. 

∫
−Ls /2

Ls /2

Eg (z )cos(
2πz
βgλ

)dz
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Transit Time Factor of  π – Structure with Identical Cells 

Tπ = T ⋅Ts(N ,β / βg )Transit Time Factor in π – structure with 
identical cells can be represented as a 
product of two terms:

Transit time factor for structure with β = βg

Normalized factor, which represents 
reduction of transit time factor because of 
difference in design and actual particle 
velocities 

T =
∫

−Ls /2

Ls /2

Eg (z )cos(
2πz
βgλ

)dz

∫
−Ls /2

Ls /2

Eg (z )dz

Ts (N ,β / βg ) =
∫

−Ls /2

Ls /2

Eg (z )cos(
2πz
βλ

)dz

∫
−Ls /2

Ls /2

Eg (z )  cos(
2πz
βgλ

)dz
β ≠ βg
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Normalized Transit Time Factor in π – Structure with Identical Cells

Assuming particle velocity β is constant along structure, the calculation of normalized 
factor in a structure with arbitrary number of cells gives [J.-F.Ostiguy, “Transit Time 
Factor of a Multi-Cell Standing Wave Cavity”, Fermilab Report, 2017]:

Ts (N ,β / βg ) =
sinπN

2
(
βg
β

−1)

πN
2
(
βg
β

−1)
− (−1)N

sinπN
2
(
βg
β

+1)

πN
2
(
βg
β

+1)

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

β / βg

T s
 (N

, β
 / 
β g

) 

2

3

4
5

7

9

Normalized transit time 
factor Ts  for π – 
structure with constant 
geometrical phase 
velocity βg for different 
values of  of cells N. 
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Transit Time Factor in π – Structure with Identical Cells (cont.) 

βopt
βg

≈1+ 6
π 2N 2

Introducing small variable x = β / βg -1, and taking into account that x  << 1, the 
normalized transit time factor Ts can be approximated as 

The optimal value βopt  where normalized transit time factor reaches maximum, is 
given by  

2 2 2 3 2 2

( ) 1 (1 ) ( 1)
2 4 6 8 6s
x x N x NT x p p

= - + - + -
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