
Phase Stability Principle : Stable and Unstable Phases

52

RF phase of synchronous particle is 
selected to be when the field is 
increasing in time. Earlier particle 
receive smaller energy kick than the 
synchronous one and will be slowing 
down with respect to synchronous 
particle. Particles, which arrive later to 
accelerating gap, receive larger 
energy gain, and will run down the 
synchronous particle. When non-
equilibrium particles exchange their 
positions, this process is repeated for 
new particles setup, which results in 
stable longitudinal oscillations around 
synchronous particle. While 
synchronous particle monotonically 
increases it’s energy, other particle 
perform oscillation around 
synchronous particle, and also 
increase their energy. Such principle 
is called resonance principle of 
particle acceleration.

Y. Batygin - USPAS 2024



Discovery of Phase Stability Principle (Autophasing)

53

Vladimir Veksler (1944) at the Lebedev Institute of Physics and 
later Edwin McMillan (1945) at the University of California, 
Berkeley, independently discover the principle of phase stability, a 
cornerstone of modern accelerators.
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Beam Bunching: Analogy with Traffic

Continuous traffic  Bunched car traffic created by a traffic light
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Standing Wave as a Combination of Traveling Waves

E cos(kzz)cos(ωt) =
E
2
[cos(ωt − kzz) +  cos(ωt + kzz)]
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Accelerating Wave

56

ΔW = q Eg (z, r)  cos(ωt)dz
−L /2

L /2

∫Increment of energy of arbitrary particle in RF gap 

cos(2πmz
L

)cos(ωt)
m=1

∞

∑ = 1
2

cos(ωt − 2πmz
L

)
m=1

∞

∑ + 1
2

cos(ωt + 2πmz
L

)
m=1

∞

∑

Standing wave can be represented as combination of traveling waves:

ωt(z) = ϕ + kzzThe RF phase at the time  of arrival of 
arbitrary particle in point with coordinate z 

cos(2π z
L

− 2πmz
L

+ϕ )dz =
−L /2

L /2

∫
L cosϕ, m = 1
0, m ≠ 1

⎧
⎨
⎩

cos(2π z
L

+ 2πmz
L

+ϕ )dz =
−L /2

L /2

∫ 0

traveling waves                traveling waves in 
 in z – direction                 opposite direction  

Only m = 1 harmonic of traveling 
waves propagating in z-direction 
contributes to energy gain of 
particle. In general case  m = n 
(where L = nβλ). 
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Increment of energy of arbitrary particle in RF gap ΔW = qEoLT Io (
2πr
βγλ

) cosϕ

Taking into account  equation for increment of 
particle energy dW/ dz = qEz(z,r,t) , the 
equivalent accelerating traveling wave is

Ez = EoT Io (
kzr
γ
) cosϕ

E = Eo TAmplitude of equivalent traveling wave 

Ez = E Io (
kzr
γ
) cosϕ

Er = −γ E I1(
kzr
γ
) sinϕ

Bθ = − βγ
c
E I1(

kzr
γ
) sinϕ

Electromagnetic field of accelerating wave 

Accelerating Wave (cont.) 
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Longitudinal Dynamics in Accelerating Wave 
Accelerating  wave propagates with velocity 

Synchronous particle is the one, which velocity instantaneously 
coincides with that of the accelerating wave

Integration of equation 

gives the phase of particle with respect to accelerating wave

where wave number is

Longitudinal equations of motion of arbitrary particle 

dϕ =ωdt − kzdz = 0

dϕ
dz

= 2π
λ
( 1
β
− 1
β ph(z)

)

dW
dz

= qEcosϕ

kz (z) =
2π

β ph(z)λ
= 2π
βsλ

58

ϕ =ω t − kz dz
o

z

∫

dϕ
dz

=ω dt
dz

− kz

t = ϕ
ω

+ dz
β phc0

z

∫

Phase velocity of accelerating wave (velocity of synchronous 
particle)  is  determined by condition φ = const:

For arbitrary particle:
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β phc =
dz
dt

βs = β ph

β ph = βs =
ω
ckz



Longitudinal Dynamics in Accelerating Wave 
dϕ
dz

= 2π
λ
( 1
β
− 1
β ph(z)

)

dW
dz

= qEcosϕ

Dependence βph(z) is determined by geometry of 
accelerating structure.  For synchronous particle β = 
βph(z). Synchronous phase has negative value with 
respect to peak of the field.

cosϕs =
1
qE
dWs

dz

59

dWs

dz
= mc 2βphγ ph

3 dβph
dz

Phase of particle with β > βph becomes more negative, and such particle is slowing 
down with respect to synchronous particle. Correspondingly, particle with β < βph is 
accelerating with respect to synchronous particle. Therefore, particles perform 
oscillations around synchronous particle. Synchronous phase is established 
inevitably in a channel with certain dependence βph(z) and certain value of 
accelerating field E (autophasing principle):            

With variation of field E, synchronous phase is changing, and particles start 
oscillate around new synchronous phase. Therefore, synchronous phase is entirely
                    determined by the accelerating channel.

where change of energy of synchronous particle
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dz
dt

=
pz
mγ

dpz
dt

= qE cosϕEquations of longitudinal motion in 
traveling wave near axis Io (

kzr
γ
) ≈1

pζ = pz − ps
Longitudinal momentum deviation from 
synchronous particle

Deviation from synchronous particle

dpζ
dt

= qE[cos(ϕ s − kzζ )− cosϕ s ]

dζ
dt

=
pζ
mγ 3

Equations of particle motion 
around synchronous particle

ϕ =ωt − kz (zs +ζ ) = ϕ s − kzζPhase of particle in traveling wave:

ζ = z − zs

Oscillations Around Synchronous Particle

( ) ( )sdzd dz c d c
dt dt dt
z b b= - = D ®

dβ = 1
γ 3

dp
mc
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H =
pζ
2

2mγ 3 +
qE
kz
[sin(ϕ s − kzζ )+ kzζ cosϕ s ]

Equations of motion around synchronous 
particle can be derived from Hamiltonian  

Hamiltonian of Longitudinal Oscillations

dpζ
dt

= − ∂H
∂ζ

dζ
dt

= ∂H
∂pζ

Hamiltonian equations of motion:

Hamiltonian describes particle oscillations around synchronous particle, 
where parameters γ, E, kz depend on longitudinal position. Let us assume 
that parameters γ, E, kz, are changing slowly during particle oscillations. 
Hamiltonian with constant values of γ, E, kz, is a constant of motion. Actually, 
in this case:

dH
dt

= ∂H
∂t

+ ∂H
∂ζ

dζ
dt

+ ∂H
∂pζ

dpζ
dt

= ∂H
∂ζ

∂H
∂pζ

− ∂H
∂pζ

∂H
∂ζ

= 0

Time-independent Hamiltonian coincides with particle energy (kinetic + 
potential). Equation dH /dt =0 expresees conservation of energy in isolated 
system (conservative approximation). In this case, we get equation for 
phase space trajectory                     as equation

H (ζ , pζ ) = const

pζ = pζ (ζ )
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Hamiltonian of Longitudinal Oscillations in (ΔW, ψ)

Another pair of canonical variables:  ψ = φ – φs , ΔW = Ws – W

Phase deviation from synchronous particle ψ = −kzζ

ΔW = −βcpζInverse energy deviation from synchronous particle:

Hamiltonian of energy-phase oscillations around synchronous particle:

H = (ΔW )2

2mγ s
3βs

2c2
ω + qEβc[sin(ϕ s +ψ )−ψ cosϕ s ]

dΔW
dt

= qEβc[cosϕ s − cos(ϕ s +ψ )]

dψ
dt

= ΔW
mγ s

3βs
2c2

ω

Equations of motions:
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Accelerating Field, Potential Function, and Separatrix

V (ψ ) = qE
kz
[sin(ϕ s +ψ )−ψ cosϕ s ]

Potential function:

63

Separatrix of longitudinal phase space 
oscillations including acceleration.  
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dV
dψ

= qE
kz
[cos(ϕ s +ψ )− cosϕ s ] = 0

Derivative of potential function determines two 
extremum points:  stable point   ψ = 0 
     unstable point ψ = -2φs. 

To be stable, potential function must have 
minimum in extremum point ψ = 0 , or the 
second derivative hast to be positive 

d 2V (0)
dψ 2 = − qE

kz
sinϕ s > 0

Stability condition sin φs < 0 ϕ s < 0

Hamiltonian, corresponding to separatrix
Hsep = H (pζ

= 0,ψ = −2ϕ s )
Hsep =

qE
kz
[−sinϕ s + 2ϕ s cosϕ s ]

Equation for separatrix p
ζ

2

2mγ 3 +
qE
kz
[sin(ϕ s+ψ )-ψ cosϕ s+sinϕ s -2ϕ s cosϕ s ] = 0

Equation of Separatrix 
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sin(ϕ s+ψ )−ψ cosϕ s + sinϕ s − 2ϕ s cosϕ s = 0
Phase length of separatrix Φs
is determined from separatrix 
equation assuming pζ=0 

Equation has two roots ψ1 = -2φs, and ψ2.  Width of separatrix is Φs = ψ2 + 2 /φs /  
Substitution ψ2 = Φs - 2 /φs /  into upper equation gives expression for determination 
of phase width of separatrix: 

tg ϕ s =
Φs − sinΦs

1− cosΦs

		
Φs ≈3ϕ s

Phase width of separatrix as a 
function of synchronous phase.

Phase Width of Separatrix 

For small values of synchronous 
phase, tgϕ s ≈ϕ s sinΦs ≈ Φs −Φs

3 / 6
cosΦs ≈1−Φs

2 / 2 phase width of separatrix 

ψ 2 ≈ϕ sTherefore,
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Equation for longitudinal oscillations 
around synchronous particle

Longitudinal Oscillations Around Synchronous 
Particle

66

Longitudinal oscillations 
in RF field with φs =- 90o 
(Courtesy of Larry 
Rybarcyk).

At the separatrix kz ζ= 2φs, 
frequency is zero:

cos(ϕ s − kzζ )− cosϕ s = 0
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Acceleration and Oscillations Around 
Synchronous Particle
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Equation for longitudinal oscillations 

For small amplitude oscillations 

Frequency of small amplitude linear oscillations  

Ω =
qEkz sinϕ s

mγ 3

cos(ϕ s − kzζ ) ≈ cosϕ s + kzζ sinϕ s

At the separatrix kzζ=2φs, frequency is zero:

Frequency of Linear Small Amplitude Oscillations

cos(ϕ s − kzζ )− cosϕ s = 0

Ω
ω

= qEλ
mc2

sinϕ s

2πβγ 3
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From Hamiltonian of longitudinal oscillations

Hamiltonian of Linear Small Amplitude Oscillations

H =
pζ
2

2mγ 3 + mγ
3Ω2 ζ 2

2

H =
pζ
2

2mγ 3 +
qE
kz
[sin(ϕ s − kzζ )+ kzζ cosϕ s ]

sin(ϕ s − kzζ ) ≈ sinϕ s − kzζ cosϕ s −
(kzζ )

2

2
sinϕ s

expanding trigonometric function 

Hamiltonian of small linear oscillations:
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d 2ζ
dt 2

+Ω2ζ = 0Equation of linear longitudinal oscillations

d 2ζ
dz2

+ (Ω
βc
)2ζ = 0

Change variable z = βct

ζ = ζο cos(
Ω
βc

z +ψ o )Solution of equation of longitudinal 
oscillations

Let S to be a period of focusing structure.
Phase advance of  longitudinal oscillations  
per focusing period

µoz =
Ω
βc

S = 2π (qEλ
mc2

)
sinϕ s

βγ 3  (
S
βλ
)

Phase advance of  longitudinal 
oscillations  per accelerating period µoa =

Ω
βc
La = 2π (qEλ

mc2 )
sinϕs
βγ 3  (

La
βλ

)

Phase Advance of  Longitudinal Oscillations 

For Alvarez structure La = βλ , for π – mode structures La = βλ/2 
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7171

Phase Advance Including Drift Space  

La

L

β1 β2 β3

l

Synchronous phase

Phase advance of longitudinal oscillations
In single tank 

Effective accelerating gradient

Effective phase advance of longitudinal oscillations
per accelerating period L

  
µoa = 2π (qEλ

mc2 )
sinϕs

βγ 3  (
La

βλ
)

 ϕs ≈ϕref

  
!E = E

La

La + l

   
!µoa ≈ 2π (qEλ

mc2 )(
La

La + l
)

sinϕs

βγ 3  (
La + l
βλ

) = µoa 1+ l
La

Y. Batygin - USPAS 2024



The half - width of 
separatrix in momentum 
is determined from 
separatrix equation 
assuming ψ = 0:

Longitudinal Acceptance

  

p
ζ sep

mc
= 2βγ 3 Ω

ω
1-

ϕs

tgϕs

Hamiltonian  
                                           
is constant along elliptical trajectory. 

H =
pζ
2

2mγ 3 + mγ
3Ω2 ζ 2

2

Maximal value of ζ at ellipse is                                         or mγ 3Ω2 ζ sep
2

2
=

pζsep
2

2mγ 3 ζ sep = 2
βc
ω

1− ϕ s

tgϕ s

Longitudinal acceptance is a phase space area of stable oscillations available for 
the beam (area of separatrix). Let us determine longitudinal acceptance using 
elliptical approximation to separatrix.

Elliptical approximation of 
separatrix

Effective length 
of separatrix Φseff = 2π

(2ζ sep )
βλ

= 4 1− ϕ s

tgϕ s

≈
4 ϕ s

3
1− ϕ s

tgϕ s

≈ ϕ s

3

Taking approximation tgϕ s ≈ϕ s +ϕ s
3 / 3
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Longitudinal Acceptance (cont.)
Area of separatrix ellipse is π ζsep (psep / mc). Phase space area of acceptance  is 
determined as a product of ellipse semi-axis:

Using approximation                         , normalized longitudinal acceptance
 

εacc =
2
3π

β 2γ 3(Ω
ω
)ϕ s

2 λ

1− ϕ s

tgϕ s

≈ ϕ s
2

3

Often longitudinal acceptance and beam emittance are determined in phase plane   
(φ - φs,  W-Ws ) in units (π keV deg). 

The value of π is not included in the value of acceptance, but is included in units of 
acceptance  (π m radian), or, more often (π  cm mrad).

Relationship between phase and longitudinal coordinate
and between energy and momentum

Δϕ = 360o ζ
βλ

ΔW = mc2β(Δp
mc
)

2360 [ deg]  [ ]   [ ]
[ ]

o

acc acckeV m rad mc keV
m

e p e p
l

× × = × ×

Transformation of longitudinal phase space area in 
different units:

εacc = ζ sep

psep
mc

= 2
π
λ β 2γ 3(Ω

ω
)(1− ϕ s

tgϕ s

)
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Longitudinal Acceptance: Example

Accelerating gradient E=EoT         1.6 MV/m
Synchronous phase φs                          -26o
Wavelength, λ    1.49 m
Energy                750 keV

Velocity, β 0.04
Longitudinal frequency:    
 

DTL Longitudinal acceptance:

LANL DTL Acceptance (red)
Ω
ω

= qEλ
mc2

sinϕ s

2πβγ 3 = 0.0665

εacc =
2
π
λ β 2γ 3(Ω

ω
)(1− ϕ s

tgϕ s

) = 7.17 ⋅10−6π mrad = 1.62 π MeV deg
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d 2ζ
dz2

+ (Ω
βc
)2ζ = 0

ζ = ζmax cos(
Ω
βc

z +ψ o )

dζ
dz

= −ζmax
Ω
βc
sin(Ω

βc
z +ψ o )

Unnormalized Longitudinal Matched Beam 
Emittance

∍z= ζ max

2 Ω
βc

Unnormalized longitudinal emittance of matched beam:

Longitudinal oscillations:
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Normalized Longitudinal Matched Beam 
Emittance

( ) ( )d c d c
dt
z b b= D ®

dζ
dz

= d(βc)
βc

= 1
βγ 3

dp
mc

dβ = 1
γ 3

dp
mc

ε z = βγ 3 ∍z= ζ max

2 γ 3 Ω
c

= 2π (ζmax
2

λ
)(Ω
ω
)γ 3

Normalized longitudinal emittance of matched beam:

pζ max
mc

= ζmaxγ
3 Ω
c
= 2π (ζmax

λ
)(Ω
ω
)γ 3
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Adiabatic Damping of Longitudinal Oscillations 

Previous analysis was performed in conservative approximation assuming 
accelerator parameters are constant along the machine. Consider now effect of 
acceleration on longitudinal oscillations.

H =
pζ
2

2mγ 3 + mγ
3Ω2 ζ 2

2

pζ
2

pζ  max
2 + ζ 2

ζmax
2 = 1

Hamiltonian of linear oscillations 

Along phase space trajectory H = const. Let us 
divide expression for Hamiltonian by H. Phase 
space trajectory is an ellipse

pζ  max = 2Hmγ 3 ζmax =
1
Ω

2H
mγ 3Semi-axis of ellipse

The value of Hamiltonian, H, is the energy of particle oscillation around synchronous 
particle. Product of semi-axis of ellipse, gives the value of phase space area 
comprised by a particle performing linear longitudinal oscillations. Largest phase 
space trajectory comprises longitudinal beam emittance:

ε z =
pζ  max
mc

ζmax =
2H
mcΩ
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Adiabatic Damping of Longitudinal Oscillations (cont.) 

If parameters of accelerator are changing adiabatically along the channel, the 
value of beam ellipse in phase space is conserved according to theorem of 
adiabatic invariant. In this case, energy of particle oscillation around synchronous 
particle, H , is proportional to frequency of longitudinal oscillation, Ω:

                                                  H ~ Ω

Adiabatic change of parameters means that parameters are changing slowly 
during one oscillation period of 2π/Ω . 

Τhe semi-axes of beam ellipse are changing as 

ζmax =
ε zc
γ 3Ω

~ 1
γ 3/2Ω1/2

pζ  max
mc

=
γ 3ε zΩ
c

~ γ 3/2Ω1/2
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Adiabatic Damping of Longitudinal Oscillations (cont.) 

Many accelerators are designed keeping the constant values of equivalent 
traveling wave, E, and synchronous phase φs. In this case, longitudinal oscillation 
frequency drops as 

 
Ω ∼ 1

β1/2γ 3/2

Semi-axes of beam ellipse at phase plane are changing as

Phase length of the bunch and relative momentum spread  drop as

79

1/4

max 3/4

bz
g
!

3/4

 max 1/4pz
g
b
!

3/4
1

( )
y

bg
D !

5/4 1/4
1

s

p
p b g
D
!
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DW = Constant x (bg )3/4

Df = Constant
(bg )3/4

Adiabatic Phase Damping

DWDf = ConstantLongitudinal Beam Phase Space

Beam Energy Spread

Beam Phase Width
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Acceleration in Sections with Constant β

LANSCE high-energy linear accelerator.
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Sequence of accelerating structures with constant geometrical velocities  β3 > β2 >β1 .



82

Acceleration in Sections with Constant β (cont.)

dϕ
dz

= 2π
λ
( 1
β
− 1
βg
)

dγ
dz

= qE
mc2

cosϕ

The Hamiltonian of particle motion in the field of 
equidistance cells is 

Since βg = const, Δβ/β <<1, and E = EoT(β) ~ 
const,  the Hamiltonian is a constant of motion.

Energy-phase equations in a traveling 
wave with constant phase velocity βg

H = 2π
λ
(βγ − γ

βg

)− qE
mc2

sinϕ

γ 2 −1 − γ
βg

= γ o
2 −1 − γ o

βg

+ qEλ
2πmc2

(sinϕ − sinϕo )

From Hamiltonian, the beam energy in the structure, γ, as a function of the RF 
phase of particle, φ, is given by  

Since in cavities dβg / dz =0, the synchronous phase in every cavity is φs = - 90ο. 
Acceleration is achieved as a rotation in phase space around  synchronous phase 
φs = - 90ο at the finite length of cavity.

dγ / dz = −∂H / ∂ϕ

dϕ / dz = ∂H / ∂γ
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Acceleration in Sections with Constant β (cont.)
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γ f = γ g ±
qEλ(βgγ g )

3

πmc2
⋅

sinϕo − sinϕ f +
π

(βgγ g )
3
mc2

qEλ
(γ g − γ o )

2

Δ(ωt ) ≈
2π βgγ g

3mc 2

qEλ sinϕm

⋅{arcsin[1+ (ϕm −ϕ f ) tanϕm ]

− arcsin[1+ (ϕm −ϕo ) tanϕm ]}

Final energy γf (φf) versus initial energy γo and 
initial phase φο :

Dimensionless time of particle acceleration in the 
cavity, (Δωt), versus phase slippage from φο  to φf

(Up) phase space trajectory of a particle in 
an RF structure with equidistant cells, 
(bottom) equivalent traveling wave. Reference: Y.B., NIM-A, 1040, (2022) 167192.

Number of accelerating cells: Ν cell =
Δωt
π
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Acceleration in Sections with Constant β (cont.)
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Accelerating structure of independently phased cavities.

In an array of accelerating cavities with constant βg the acceleration is achieved 
with the shifts of RF phases between cavities.

βn =
2πdn

λ (ϕn −ϕn+1)The velocity of the reference particle after cavity (n):

cosϕs (z ) =
mc 2

qE
βnγ n

3 dβn
dz

The synchronous phase of accelerating wave along 
linac

E = Eo_nTn (βs_n )
Ln
Leff

Amplitude of accelerating wave 

βs_n =
βn−1 + βn

2
Velocity of the reference particle within cavity (n) 
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Acceleration in LANSCE High-Energy Linac

Dynamics in RF field of multiple Dynamics around
sections with constant β                               synchronous particle
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Dynamics in Sections with βg = 1
In accelerating sections with βg = 1 there is no synchronous particle. 
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dϕ
dz

= 2π
λ
( 1
β
−1)

dγ
dz

= qE
mc2

cosϕ

Energy-phase equations in a traveling 
wave with geometrical velocity βg = 1 

H = 2π
λ
(βγ − γ )− qE

mc2
sinϕ

Hamiltonian of particle motion in a section 
with geometrical velocity βg = 1 

C = γ − γ 2 −1 + qEλ
2πmc2

sinϕFrom Hamiltonian, the constant of 
motion is 

From the constant of motion, the energy of the particle γ (φ) as a function of initial 
energy and phase is

γ (ϕ ) = 1
2
[γ o − γ o

2 −1 + ( qEλ
2πmc2

)(sinϕo − sinϕ )+
1

γ o − γ o
2 −1 + ( qEλ

2πmc2
)(sinϕo − sinϕ )

]
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Dynamics in Sections with βs = 1 (cont.)
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Longitudinal particle 
trajectories in the field 
with βg = 1.  

For particles with  β --> 1 the value of constant C = qEλ
2πmc2

sinϕ∞

For particles captured in acceleration, the value of the C is limited C ≤ qEλ
2πmc2

The energy of injected particles to be captured into continuous unlimited 
acceleration has to be γ o ≥ γ sep γ sep =

1
2
[ qEλ
2πmc2

(1− sinϕo )+
1

( qEλ
2πmc2

)(1− sinϕo )
]
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Minimal Energy of Particles Accelerated in Wave with βg = 1

Only particles whose initial energy  γο(φ) > γsep (φ) can be captured into 
continuous unlimited acceleration 

The equation                              determines phase φ =-π/2 where the initial 
energy has the minimal possible value:  

∂γ sep / ∂ϕ = 0

γ min =
1+ ( qEλ

πmc2
)2

2 qEλ
πmc2

For proton in linac with E = 5 MeV/m, λ = 1m, the value of  γmin = 294.76, or 
Wmin= 275 GeV.

However, ion beams can be accelerated in finite-length sections with βg = 1 
within phase area   -π/2 < φ < π/2.



RF Cavities Tuning: Threshold Field
The increment of energy that the equilibrium particle receives during each 
acceleration period is determined by the increase in the period length and, 
therefore, is determined by the design od accelerator:

 The threshold field at which the equilibrium phase is still real (cos φs = 1) is 

ΔWs = eEoTL cosϕ s = const

Eth =
ΔWs

eTL

Accelerating field must be Eo ≥ Eth

Synchronous phase is                        . 

The threshold field is determined through measurement of width of energy capture 
region as a function of field in resonator. This is done by measurement of dependence 
of accelerated beam current versus injection energy. The threshold field is determined 
by extrapolating of the energy width of capture region to zero value.

cosϕ s =
Eth

Eo
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Phase Scans to Set the Phase and Amplitude of RF Linac

Schematic of the phase scan measurement setup. At LANL linac 
there are 4 absorber/collectors at 40, 70, 100, and 121 MeV.

Result of phase scan
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Phase Scans to Set the Phase and Amplitude of RF Linac

Longitudinal acceptance of RF linac for 5 
different average axial field amplitudes.

Accelerated beam as a function 
of beam phase

ΔWs = eEL cosϕ s = constEnergy gain of synchronous 
particle per gap is constant

Decrease of accelerating 
field results in decrease of 
phase width of separatirx 
(and vise versa)

E ↑→cosϕ s ↓→ϕ s ↑→Φsep ≈ 3ϕ s ↑

E ↓→cosϕ s ↑→ϕ s ↓→Φsep ≈ 3ϕ s ↓

Sequence of RF buckets
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Determination of Bunch Length Using Phase Scan

LANL Phase Scan at the energy of 121 MeV.
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Delta-t Tuning Procedure

  
ΔtB = −

DAB

mc3(βγ )A
3 ΔWA −

ΔϕB − Δϕ A

ω
−

D1

mc3 [
ΔWA

(βγ )A
3 −

ΔWB

(βγ )B
3 ]

		
ΔtC = ΔtB −

D2 −D1
mc3

[ ΔWA

(βγ )A3
−

ΔWB

(βγ )B3
]

Change in tAB,  tAC values when accelerating module is switched from off to on are 
Time-of-flight of the beam centroid from location A to B and from A to C: tAB, tAC

		tB = tAB ,off −tAB ,on   tC = tAC ,off − tAC ,on

Deviation of values tB,  tC from design values:

Delta-t tranduser
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Delta-t Tune

Output of delta-t program displaying search of amplitude (ASP) and 
phase (PSP) while minimizing values of  (DTB) and  (DTC).
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Delta-t Tuning Issues
Delta-t tuning procedure works well 
only when particles perform significant 
longitudinal oscillations within RF 
tanks. If longitudinal oscillations are 
“frozen”, then combination of ΔtB, Δtc 
can be obtained with infinitely large 
number of combinations of (E, φs).
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Phase (deg)

βγ

W=100 MeV

Phase Oscillations
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1.095

1.100

1.105

1.110

Phase (deg)

βγ

W=382  MeV

In linac  phase advance of 
longitudinal oscillation per 
module drops as
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Phase Scans

Phase scan: measurement of time of arrival of the beam to 
downstream pickup loop versus RF phase of the accelerating 
module. 
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Measurement of Beam Energy by Difference in 
BPM RF Phases

Module N BPM 1 BPM 2

RF Phase Module N Phase 1 Phase 2

Reference RF Line

L

		

β = L

λ(N +
ϕloop2 −ϕloop1 +Δϕcorr

2π )

Beam velocity

Beam RF phases measured at delta-t loops. 
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Time-Of-Flight Measurement of Absolute Beam Energy

		
β = L

c[t −(τ cable2 −τ cable1)]Beam velocity

		
W =mc2( 1

1−β 2
−1)Beam energy

98Y. Batygin - USPAS 2024



Longitudinal Beam Emittance Measurement 
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Magnetic energy analyzer

Measurement of Beam Energy Spread

High-dispersive part of 800 MeV beamline

Beam energy- spread-dependent wire scan

Faraday cup

100

σ tot = σ + (ηdisp

σ p

p
)2

Beam size in point 
with high dispersion:
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Bunch Shape Monitor

101Y. Batygin - USPAS 2024


