Phase Stability Principle : Stable and Unstable Phases

RF phase of synchronous particle is
selected to be when the field is
increasing in time. Earlier particle
receive smaller energy kick than the
synchronous one and will be slowing
down with respect to synchronous
particle. Particles, which arrive later to
accelerating gap, receive larger
energy gain, and will run down the
synchronous particle. When non-
equilibrium particles exchange their
positions, this process is repeated for
new particles setup, which results in
stable longitudinal oscillations around
synchronous particle. While
synchronous particle monotonically
increases it's energy, other particle
perform oscillation around
synchronous particle, and also
increase their energy. Such principle
is called resonance principle of
particle acceleration.

~
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Discovery of Phase Stability Principle (Autophasing)

Edwin McMillan

Vladimir losifovich Veksler

Vladimir Veksler (1944) at the Lebedev Institute of Physics and
later Edwin McMillan (1945) at the University of California,
Berkeley, independently discover the principle of phase stability, a

g cornerstone of modern accelerators.
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Beam Bunching: Analogy with Traffic

Continuous traffic Bunched car traffic created by a traffic light
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Standing Wave as a Combination of Traveling Waves

E
E cos(k_z)cos(wt) = ) [cos(wt -k z) + cos(wt+k.z)]
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Accelerating Wave

L/2

Increment of energy of arbitrary particle in RF gap AW =g J E (z,r) cos(wt)dz

-L/2

The RF phase at the time of arrival of

wt(Z)=Q+k
arbitrary particle in point with coordinate z (2)=p+kz

Standing wave can be represented as combination of traveling waves:

[ee)

21 I ¢ 27 I 21
zcos( mZ)cos((ut) = —Zcos((ut — mz) + —ZCOS(COZ + mz)
m=1 L 2 m=1 2 m=1
traveling waves traveling waves in
in z — direction opposite direction
Only m = 1 harmonic of traveling
waves propagating in z-direction L2 Lcos m=1
contributes to energy gain of J cos(zﬂZ — 2remz +@)dz :{ ¢
particle. In general case m =n i L L 0, m#1
(where L = nfA). L
21wz 2mmg
J cos( + +@)dz=0
-L/2 L L

~
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Accelerating Wave (cont.)

2TTr
Increment of energy of arbitrary particle in RF gap AW =qE, LTI, (W) cos o
Taking into account equation for increment of
particle energy dW/ dz = qE,(z,rt) , the E=ETI (kz”) COS @
equivalent accelerating traveling wave is ¢ 0y

Amplitude of equivalent traveling wave E=ET

Electromagnetic field of accelerating wave

k. r
E =EI (—)cos@
Y
E =—yEL,(L)sing
Y
B, :—&Ell(kzr)singo
C Y
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Longitudinal Dynamics in Accelerating Wave

dz
Accelerating wave propagates with velocity ,Bphc - E

Synchronous particle is the one, which velocity instantaneously ﬁs = ﬁph
coincides with that of the accelerating wave

o [ dz
Integration of equation [=—+4+ | ——
o 5 :Bphc

Z
gives the phase of particle with respect to accelerating wave O =Wt — J k dz
Z

_ 2n° _ 27
B, (A BA

Phase velocity of accelerating wave (velocity of synchronous dp=wdt—k.dz=0

where wave number is k. (z)

particle) is determined by condition ¢ = const: a)
ﬁph — ﬁs -
ck,
For arbitrary particle: dp _ wﬁ— I
dz dz °
dp 2 1 1 )
Longitudinal equations of motion of arbitrary particle dz A B ﬂph(z)

~ adw
‘:Q Los Alamos d— = qE COS(
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Longitudinal Dynamics in Accelerating Wave

Dependence L,(z) is determined by geometry of dp 2r 1 1
accelerating structure. For synchronous particle § = dz A E_ﬁ (z))
Bon(z). Synchronous phase has negative value with P
respect to peak of the field. aw -

E—q Cos@

Phase of particle with f > /3, becomes more negative, and such particle is slowing
down with respect to synchronous particle. Correspondingly, particle with g < £, is
accelerating with respect to synchronous particle. Therefore, particles perform
oscillations around synchronous particle. Synchronous phase is established
inevitably in a channel with certain dependence f,(z) and certain value of
accelerating field E (autophasing principle): L aw

COsSQp =——=
v qE dz

dp
where change of energy of synchronous particle d—zs = mczﬁphy;h deh

With variation of field E, synchronous phase is changing, and particles start

oscillate around new synchronous phase. Therefore, synchronous phase is entirely
determined by the accelerating channel.

% Los Alamos
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Oscillations Around Synchronous Particle

dp, o
Equations of longitudinal motion in L
traveling wave near axis k.r
L= dz_ p,
dt  my
Longitudinal momentum deviation from
synchronous particle Pr=D,— P,
Deviation from synchronous particle {=2z-z,
Phase of particle in traveling wave: p=wt—k (z,+0)=¢,—k_
Equations of particle motion .
around synchronous particle 4Py _ GElcos(@, —k.L)—cosg. ]
di dz dz
4 =A(fc) = d(fc)
dg _ P
1 d 3
dﬂ — _3_[? dt nmy
Y~ mc
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Hamiltonian of Longitudinal Oscillations

2

Equations of motion around synchronous P: .
particle can be derived from Hamiltonian H = 2my’ T A [sin(p, —k.0)+k Scose,]
d{ OoH dp, _ 0H

Hamiltonian equations of motion: — —= =
: dt  dp, dt — of

Hamiltonian describes particle oscillations around synchronous particle,
where parameters y, E, k, depend on longitudinal position. Let us assume

that parameters y, E, k,, are changing slowly during particle oscillations.
Hamiltonian with constant values of v, E, k,, is a constant of motion. Actually,
in this case:

dH aH ,OHdf OH dp; _O0H 0H 0H JH

=0
di o o di op, di o ap, 9p, o

Time-independent Hamiltonian coincides with particle energy (kinetic +
potential). Equation dH /dt =0 expresees conservation of energy in 1solated
system (conservative approximation). In this case, we get equation for

phase space trajectory p, = p,;({) as equation
H(C,p,)= const
.'Q Los Alamos
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Hamiltonian of Longitudinal Oscillations in (4W, y)

Another pair of canonical variables: w=¢—¢@,, AW=W,— W
Phase deviation from synchronous particle Yy =-kG
Inverse energy deviation from synchronous particle: AW = —ﬂCpg

Hamiltonian of energy-phase oscillations around synchronous particle:

AW )’ .
B 2;;;/3/3)262 ® + qEPclsin(@, +y)—y cosg,]
Equations of motions:
—dflfv = gEBc[cos@, —cos(¢, +y)]
dy AW

= )
dt  my’Bc’
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Accelerating Field, Potential Function, and Separatrix

E cos ¢

~Pg \/‘P Potential function:

E .
V(y)= qk—[sm((ps +y)—ycoso,]

]
|
|

b

\;\ I:V(\If) { z
AT

| .
|
|

&\./ Y= Q@ - Qg ) . .

_,./ Separatrix of longitudinal phase space

l 5 oscillations including acceleration.
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Equation of Separatrix

Derivative of potential function determines two A% qE
extremum points: stable point @ =0 7 [cos(, +y)—cosp ]=0
: _ v
unstable point @ = -2¢.. k.
To be stable, potential function must have d2V(O) _gE
minimum in extremum point @ =0 , or the e ——sing, >0
second derivative hast to be positive v z
Stability condition sin ¢ <0 ¢, <0
Hamiltonian, corresponding to separatrix H q . N
=—/[—sin@_+ COS
Hsep — H(pg — O, l// — _2¢S) sep kz [ ¢s gos qos]
Equation for separatrix pz
[sm(go +Y)-ycos@ +sin@ -2¢ cosp =0
2m}/ k,

.'Q Los Alamos
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Phase Width of Separatrix

Phase length of separatrix @

is determined from separatrix sin(@,+y)—wycos@, +sin®, —2¢ cosp, =0

equation assuming p:=0

Equation has two roots @, = -2¢,, and w,. Width of separatrix is @5 = w,+ 2 /s /
Substitution @, = ;- 2 /@ / into upper equation gives expression for determination
of phase width of separatrix:

. 360: T I L T I L T ll :
1l O —sind, 2

8P| = : /1]

l1—cos®, S onl :

3 210 yd .

~ 180} | / : =

o 150 | - .

For small values of synchronous 120 | .

phase, tgp =@, sin® ~d —D’/6 e S 13

30 F .

cos® =1-d?/2 phase width of separatrix SR 1

0 30 40 50 60 70 80 90
¢,| (deg)

Phase width of separatrix as a
function of synchronous phase.

O-I
0 10 2

D zB‘(ps‘

Therefore, ¥, = @,
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Longitudinal Oscillations Around Synchronous

Particle
. . . . . 2
Equation for longitudinal oscillations d{ _ qgE RO -
around synchronous particle &2 B my3 [cos (s - k:C) - cosg]
At the separatrix k., (= 2¢;,,
frequency is zero:
cos(p, —k.{)—cosp, =0 /_/,/”“""f_“ \\\
e | TP,
¥ ol
<// N
Longitudinal oscillations \\\ lg#*
in RF field with @5 =- 90° N g
(Courtesy of Larry \ //
Rybarcyk). B R
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Acceleration and Oscillations Around
Synchronous Particle

>

Particle Momentum

Linear Accelerator

‘@ Los Alamos Y. Batygin - USPAS 2024
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Frequency of Linear Small Amplitude Oscillations

7.

Equation for longitudinal oscillations d f = qE3 [cos (s - k;C) - cos ;]
dt my

For small amplitude oscillations cos(¢p, —k.C)=cose, + k. sing,

& é’ (qu ‘smgog‘
dt* my”>

)¢=0

Frequency of small amplitude linear oscillations

my”’ W

0o \/quZ|sing0S

Q qE/I|sinq)s
A\ me? 27By°

At the separatrix k,(=2¢,, frequency is zero:  COS(®, — k.C)—cosp =0

Q'Q Los Alamos Y. Batygin - USPAS 2024 68
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Hamiltonian of Linear Small Amplitude Oscillations

From Hamiltonian of longitudinal oscillations

2

P;
2my

H = 5T qu [sin(p, —k &)+ kCcoso,]

Z

expanding trigonometric function

sinQ,

2
sin(p, —k.§)=sing, —k.{cosep, — (kf)

Hamiltonian of small linear oscillations:

2 2
H = pC 3 +m}/3Q2C—
2my 2
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Phase Advance of Longitudinal Oscillations

Equation of linear longitudinal oscillations fl g +g22§ 0
t°
Change variable z = Sct d’¢ N (Q Pr=0
dz PBc
: : g Q
Solution of equation of longitudinal {=C cos(—z+Vy,)
oscillations Be ’
Let S to be a period of focusing structure. 0
Phase advance of longitudinal oscillations u =—=S= 27r( ) ( )
oz 3 l
per focusing period Pc py B
Phase advance of longitudinal
oscillations per accelerating period = E L =27 qu ‘ L,
U ( ) s (o)
o Pe /37 pA

For Alvarez structure L, = A, for m— mode structures L, = f1/2

.'Q Los Alamos
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Phase Advance Including Drift Space

B1 B2 B3
FAVAVAVAVAY, FAAVAVAVAVAY. e Va Ve Ve VeV
La [
P >
L
P>

Synchronous phase ¢ =¢

Phase advance of longitudinal oscillations U = 2n(qE/l)‘Sln(PS (La )
In single tank o mc”” By’ PBA
Effective accelerating gradient E=F—=«

L +1

Effective phase advance of longitudinal oscillations

per accelerating period L
) gEA. L [|sing| L +1 l
= |21 4 5 = I+ —
i, \/ Co T gy Cha ) =M\t
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Longitudinal Acceptance

Longitudinal acceptance is a phase space area of stable oscillations available for
the beam (area of separatrix). Let us determine longitudinal acceptance using
elliptical approximation to separatrix.

The half - width of

Pesep
separatrix in momentum p 9 0 :
is determined from nic = 2ﬁ735w/1't y i
separatrix equation g% “P¢ sepf
assuming y = 0: '

A

|

1

|

I
P | L 1 L | L |
—Qsep CSEP

2 2
_ P 32 C
Hamiltonian H = 2m)/3 +my L 7 Elliptical approximation of
separatrix

is constant along elliptical trajectory.

2 2
Maximal value of C at ellipse is my’Q’ S = Pgsep3 or |¢ :2& 19D
2 Z2my N 180,
Taking approximation tgg =@ +@ /3

/ s o ¢s Effective Iength (’ZC ) l
1_ . sep ¢S ¢S
V g of separatrix (Dseﬁf =2n————=4 [1—- ~
9. \/g P ﬂﬂ’ 180, \/§
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Longitudinal Acceptance (cont.)

Area of separatrix ellipse is 7 ,,, (p,.,/ mc) Phase space area of acceptance is
determined as a product of ellipse semi-axis:

2 Q
= ZABY (-2
c T Q) 18Q.
The value of zis not included in the value of acceptance, but is included in units of
acceptance (m m radian), or, more often (;r cm mrad).

2
Using approximation ;_ _?s _ %5 |, normalized longitudinal acceptance

1gp, 3

Often longitudinal acceptance and beam emittance are determined in phase plane
(@ - @s, W-Ws ) in units ( keV deg).

Relationship between phase and longitudinal coordinate Ap = 360" %
and between energy and momentum p
AW _ 2 Ap
Transformation of longitudinal phase space area in - me ﬁ(%
different units: 360°
E,. |m-keV -degl=¢,., [ﬂ-m-md]/l[ ] mc’[keV ]
m
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Longitudinal Acceptance: Example

0.95 Accelerating gradient E=E,T 1.6 MV/m

020 gt ~ Synchronous phase @, -26°
s | Wavelength, A 1.49m
2% Energy 750 keV
EOJS 1
g 0.70 _
| Veloqlty, .B 0.04

ih Longitudinal frequency:

0.55 T x

-206.00 -116.00 -26.00 64.00 154.00 Q A | -
ase [de EA |SIn
phase e =2 L BRP o665
LANL DTL Acceptance (red) 0 mc” 2Py

DTL Longitudinal acceptance:

2 Q
e =2 ABY()(1-)=717-10 wmrad =1.62 & MeV deg
T Q)] tg(Ds
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Unnormalized Longitudinal Matched Beam

Emittance

dc Longitudinal oscillations:
dz 9)
gl’n'dx =N
K § =
G
é/mux g —
dz

Unnormalized longitudinal emittance of matched beam:

Q@ Los Alamos Y. Batygin - USPAS 2024
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g QL.
Q
Cmax COS(E Z+ l//0)

Q . QO
_Cmax N Sln(_ Z + l/jo)

Bc  PBc
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Normalized Longitudinal Matched Beam
Emittance

dp _ % Aoy~ d(po
Q t
Gy —

po

C 3
Y~ mc
_““\\\\\\ : df _d(Bc) _ 1 dp

| = @

p max Q max Q
e 1%
mc C AW
Normalized longitudinal emittance of matched beam:
Q °Q
e=By’>=0 v —>= Zﬂ(—(’vm” ()Y’
C Ao
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Adiabatic Damping of Longitudinal Oscillations

Previous analysis was performed in conservative approximation assuming
accelerator parameters are constant along the machine. Consider now effect of

acceleration on longitudinal oscillations.

2 2
Hamiltonian of linear oscillations =" ~+my°Q’ &
2my 2
Along phase space trajectory H = const. Let us ,
divide expression for Hamiltonian by H. Phase P¢ N 5 —1
space trajectory is an ellipse P§ A -
1 |2H
. . . . 3 —_
Semi-axis of ellipse Pt max =\ 2HmY G imax Q\ my’®

The value of Hamiltonian, H, is the energy of particle oscillation around synchronous
particle. Product of semi-axis of ellipse, gives the value of phase space area
comprised by a particle performing linear longitudinal oscillations. Largest phase

space trajectory comprises longitudinal beam emittance: Y H

. P ¢ max
EZ - Cmax -
mc mc 2
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Adiabatic Damping of Longitudinal Oscillations (cont.)

If parameters of accelerator are changing adiabatically along the channel, the
value of beam ellipse in phase space is conserved according to theorem of
adiabatic invariant. In this case, energy of particle oscillation around synchronous
particle, H , is proportional to frequency of longitudinal oscillation, £:

H~Q

Adiabatic change of parameters means that parameters are changing slowly
during one oscillation period of 2w/ .

The semi-axes of beam ellipse are changing as
EZC 1 38 Q
Crnax = \/ }’3 ~ )/3/2 L p’i;zax = 4 CZ ~ )/3/2Q1/2
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Adiabatic Damping of Longitudinal Oscillations (cont.)

Many accelerators are designed keeping the constant values of equivalent
traveling wave, E, and synchronous phase ¢;. In this case, longitudinal oscillation
frequency drops as

1

- ﬂnz )’3/2

Semi-axes of beam ellipse at phase plane are changing as

Q

3/4

,31/4 N 7/_
gmax - 7/3/4 p§ e ,81/4
Phase length of the bunch and relative momentum spread drop as
1 u‘)\
T \

Ap 1 , \

D. ,35/4 }/1/4 \/ \/ :
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NATIONAL LABORATORY



Adiabatic Phase Damping

Longitudinal Beam Phase Space AW A¢ = Constant

Beam Energy Spread AW = Constant x (By)”"

Beam Phase Width Ad = COHSt?;lt
(br)

AW AW
B2

P

10

(@) (b)

Figure 6.8 Phase damping of a longitudinal beam ellipse caused
by acceleration. The phase width of the beam decreases and the
energy width increasescwhilgphe sopal area remains constant.
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Acceleration in Sections with Constant 3

LANSCE high-energy linear accelerator.

B1 B2 B3
\VAVAVAVAWA AUAWAWAWAWA AWAWAWAWAWA

Sequence of accelerating structures with constant geometrical velocities 83 > 8, >;.
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Acceleration in Sections with Constant 8 (cont.)

Since in cavities dB, / dz =0, the synchronous phase in every cavity is ¢s = - 90°.
Acceleration is achieved as a rotation in phase space around synchronous phase
@s = - 90° at the finite length of cavity.

dp 2r 1 1 _
Energy-phase equations in a traveling 7 = 1 (E—ﬁ—) de/dz=0H /dy
wave with constant phase velocity 34 g
E
dy: qzcosgo dy /dz=—0H /@
dz  mc

The Hamiltonian of particle motion in the field of
equidistance cells is 21

Since B, = const, AB/B <<1, and E = E, T(B) ~ A B,
const, the Hamiltonian is a constant of motion.

From Hamiltonian, the beam energy in the structure, y, as a function of the RF
phase of particle, ¢, is given by

I EA
2 _1 . l — 2 _1 . }/0 + q . o
,}/ ﬁg 7/0 ﬁg 2nmc2 (Sln(D S (00)
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Acceleration in Sections with Constant 3 (cont.)

Final energy y,(¢,) versus initial energy y, and
initial phase o, :

qEA(B,Y,)
Yf = ’}/g i\/ ﬂmZZ - |
sing —sing, + r__me v.-7.)
@ (deg) 0 ! (ﬁgyg)3 qE/l ’ ’

Dimensionless time of particle acceleration in the
cavity, (dwt), versus phase slippage from ¢, to ¢,

2 3 2
Aoty = | TPV il (0 — 0, ) tang ]
qE|sing,|

—arcsin[1+ (¢, — ¢ )tano, |}

-270 -225 -180 -135 -90 -45 0 45 90

@ (deg) _ _ Awr
(Up) phase space trajectory of a particle in Number of accelerating cells: |N,,, = T
an RF structure with equidistant cells,
(bottom) equivalent traveling wave. Reference: Y.B., NIM-A, 1040, (2022) 167192.
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Acceleration in Sections with Constant 3 (cont.)

Upy1 cos(wt+@p 1)

Up-1 cos(wt+@p_1) Up cos(wt+pp,)

dn"1 I dn
< >
' Bn-1 :
| —p [ —>

>I

Bn+1

C)._Q.O_Q_OH

, By(n-1) 1 1 By (n) | i
: I o L : !
! Lp-1 : ! ' L > [
< > L ! !

¢ eft >

Accelerating structure of independently phased cavities.

In an array of accelerating cavities with constant B, the acceleration is achieved

with the shifts of RF phases between cavities.

The velocity of the reference particle after cavity (n):
The synchronous phase of accelerating wave along
linac

Amplitude of accelerating wave

Velocity of the reference particle within cavity (n)
.'Q Los Alamos
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2nd

n

B, =

ﬂ“ ((Pn o ¢n+1 )

cosQ (z)=

0

B .=

mc’
qE

n I’l

B+ B,

sS_n

2

I]/}/H

eﬁ”

P,

dZ
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Particle Momentum, p/mc

Acceleration in LANSCE High-Energy Linac

Dynamics in RF field of multiple Dynamics around
sections with constant 8 synchronous particle
0.57 T T T T T T T T
31078
056 L —_—. ) 2
= SOOI )))»))
0.55} ot : 2.4 0—3
0.54
11073
Q
0s3f =
P \\\\ ' ‘\
0.51 _1.10—3 -\\\ \ .\‘
0.50
_2.10—3
049
0.48} -3107°
0.47 -60 -50 -40 -30 =20 -10 O 10 20 30 40
-60

Phase in RF Field, ¢ (deg) Ps-@ (deg)
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Dynamics in Sections with B, =1

In accelerating sections with B, = 1 there is no synchronous particle.

Energy-phase equations in a traveling dp 2rm (l_ h
wave with geometrical velocity B, = 1 dz A B
dy qE
= COS
dz mc’ i
Hamiltonian of particle motion in a section 2r qE .
with geometrical velocity 8, = 1 H = T(ﬁy —Y)- —sing
From Hamiltonian, the constant of [, gEA
motion is C=y=—r -1+ 2 Tmc? Sing

From the constant of motion, the energy of the particle y () as a function of initial
energy and phase is

qEA 1 |

1
)(sIn@, —sin@) +
Yo=Yo =1+ (zfjiz )(sing, —sing)

= — — 1+
}/((D) 2 [7/0 7/0 (zn_mCZ
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Dynamics in Sections with . =1 (cont.)

For particles with 8 --> 1 the value of constant = qEﬂ'z sin@
Tme
For particles captured in acceleration, the value of the C is limited C < qEA
2rmc’
The energy of injected particles to be captured into continuous unlimited
acceleration has to be Vo2V _ 1 qEA - 1
Vser 2 [27rmc2 (=sing,)+ qEA
Separatrices ( ;)1 —sing,)
/\ 27wmc

1&'

Longitudinal particle
trajectories in the field
with B, = 1.

Ymin |- -

-450 -360 -270 -180 -90 0 90 180 270

¢, deg
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Minimal Energy of Particles Accelerated in Wave with 8, = 1

Only particles whose initial energy y,(®) > 7., (¢) can be captured into
continuous unlimited acceleration

The equation a?’sep /09p=0| determines phase ¢ =-n/2 where the initial
energy has the minimal possible value:

gEA ,

1+( >
rmc

ymin — qE l
2 2
mwmc

For proton in linac with E =5 MeV/m, 4 = 1m, the value of y,,;, = 294.76, or
Winin= 275 GeV.

However, ion beams can be accelerated in finite-length sections with B, = 1
within phase area -n/2 <¢ < /2.
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RF Cavities Tuning: Threshold Field

The increment of energy that the equilibrium particle receives during each
acceleration period is determined by the increase in the period length and,
therefore, is determined by the design od accelerator:

AW =eE TLcos@, = const

The threshold field at which the equilibrium phase is still real (cos s =1) is

AW,
" eTL
Accelerating field must be L,z2E,
. _Ey
Synchronous phase is COSQ, = £

o

The threshold field is determined through measurement of width of energy capture
region as a function of field in resonator. This is done by measurement of dependence
of accelerated beam current versus injection energy. The threshold field is determined
by extrapolating of the energy width of capture region to zero value.

~
1% Los Alamos



Phase Scans to Set the Phase and Amplitude of RF Linac

Beam Module N-1 Module N Absorber Collector
0 1 C )
L J L é

Phase adjuster

Schematic of the phase scan measurement setup. At LANL linac
there are 4 absorber/collectors at 40, 70, 100, and 121 MeV.

Set amplitude

Set phase

-80.0 -60.0 -40.0 -200 0.0 20,0 400 600 800

Result of phase scan
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Phase Scans to Set the Phase and Amplitude of RF Linac

z

Energy gain of synchronous AWS — eEL cos @, = const N
particle per gap is constant

Decrease of accelerating |E d—cos P, T — @, - D, =30, ¥

field results in decrease of
phase width of separatirx |E T—cosp, | ¢ T — D, =30, T
(and vise versa)

AB\C D

S

B~

0850 ) r . I o
- ) . Accelerated
L — ~—__ | = /E" ::5: Beam \
- /é‘/——th;—;% 'gg‘:::;‘g : (percent) 50k —_—
/ & /’//"fc-"-"’ / CLE+
> 0750 A
5 . . // Accelerated beam as a function
& \\\\\/7/ of beam phase
S
. N\ :/// AW
0.650

-i00 -80 -60 -40 =20 [+] 20 40 60 80 100
PHASE (degrees) .

Longitudinal acceptance of RF linac for 5
different average axial field amplitudes.

separatrix (rf ‘buckets’)
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Determination of Bunch Length Using Phase Scan

120

110

Relative Transmission (%)

10

-10,

Los Alamos
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-H*‘i\,ﬂ_/

rrrrrr

Relative Phase (deg)

=32

4 “16

*h% P5121 Th¥
LB 810 usec
07-Aug-2013 17:36:22
Rel. Zero Phase=

232.1 deg
05CM001I02=  -0.84uA
Percent  Phase

Trans  Spread
50 87
60 7.0
70 9.6
80 12.1
90 18.2
95 21.3

LANL Phase Scan at the energy of 121 MeV.
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Delta-t Tuning Procedure

(A) 5 BPM1 (B) BPM2 (C)
AB | L |

% \
Accelerating Module é ™ o e
F
RF Phase Phase 1 Phase 2 _ ®
Reference RF Line

D1

- Delta-t tranduser 7'.,@ :

Time-of-flight of the beam centroid from location A to B and from A to C: {45, tac

Change in tag tac values when accelerating module is switched from off to on are

L, = tAB,oﬁ _tAB,on le = tAC,Oﬁ’ B tAC,on

Deviation of values tz f; from design values:
D, W_AgDB—AgoA_D1 AW, AW

AZB — T 3 3 A 4 3[ 3 B3 ]
mc”(By), ® mc” (By), (By),
D,-D, AW AW
At = At ——% B]
(ﬁy) (ﬂv)

Q'Q Los Alamos Y. Batygin - USPAS 2024 93

NATIONAL LABORATORY



Delta-t Tune

wWdo 666 2, H 23-MAY~18 )
0.40
ASP PSP DTB DT
1456 704 ). 02
0.3( 1456 651 0.000 0.022
1456 641 ~0.003 0.003
1453 642 -0.004 -0.001
1453 64 0.002 0¢
0.20 214653 64 0.005%
1452 646 -0.007 0.000
1452 646 -0.008 -0.004
1452 647 -0.007 -0.002
0.a0 1457 646 -0.003 0.008
— 1457 643 0.005 0.003
8 1457 643 -0.005% - 0.005
w
2 0.0
&
Q
=
(=) 0.009 ns/Me
.10
0.20
0.30
0.40
-0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40

DTB (NSEC)

Output of delta-t program displaying search of amplitude (ASP) and
phase (PSP) while minimizing values of (DTB) and (DTC).
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By

Delta-t Tuning Issues

Delta-t tuning procedure works well In linac phase advance of
only when particles perform significant longitudinal oscillation per
longitudinal oscillations within RF module drops as
tanks. If longitudinal oscillations are
“frozen”, then combination of Atg, At, E‘Singo ‘
can be obtained with infinitely large T 35
number of combinations of (E, @,). (By)
Phase Oscillations

| \\> | \\\
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Phase Scans
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Phase scan: measurement of time of arrival of the beam to
downstream pickup loop versus RF phase of the accelerating
module.

0@ Los Alamos Y. Batygin - USPAS 2024 96

NATIONAL LABORATORY



Measurement of Beam Energy by Difference in
BPM RF Phases

Module N BPM 1 BPM 2 .
o T Beam velocity
.
g w ﬁ ~ L
RF Phase Module N Phase 1 Phase 2 4 A(N 4 (ploop2 - ngoopl T Agocorr )
Reference RF Line 2T

o

P1.365¢+08
- 1.36e+08
o 1.355e+08

= 1.35e+08
3
ol 1.345e+08

£

500 1000 1500 X[

Beam RF phases measured at delta-t loops.
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Time-Of-Flight Measurement of Absolute Beam Energy

BPMH1 BPM2
L

¢
—»
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Tcablet Tcable2

- 11

-
Scope

Beam velocity p= cft—(z_, ,—7 . )]

1
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0@ Los Alamos Y. Batygin - USPAS 2024 93

NATIONAL LABORATORY

Beam energy |W =mc’( 1)




Longitudinal Beam Emittance Measurement

Deflecting magnet
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Magnetic field strength moves window over bunches

From another bunch

Laser strobe pulses move over bunch
From another bunch ”
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Measurement of Beam Energy Spread

High-dispersive part of 800 MeV beamling

Faraday cup

'u
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Magnetic energy analyzer
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Beam size in point
with high dispersion:

tot

o
O = 4|0+ My, —2)°
P

Beam energy- spread-dependent wire scan
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Figure 1: General configuration of Bunch Shape Monitor
(1 —wire target, 2-mput collimator, 3-deflector, 4-output
collimator, 5-electron collector).
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Figure 7: Bunch boundaries transformed to the entrance
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Figure 14: Behaviour of bunch shape in time, beam
cross-section and longitudinally-transversal distribution
measured at the exit of CERN Linac-2 with the 3D-BSM.
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