# Proton and Ion Linear Accelerators

#### 2. Introduction to Accelerating Structures

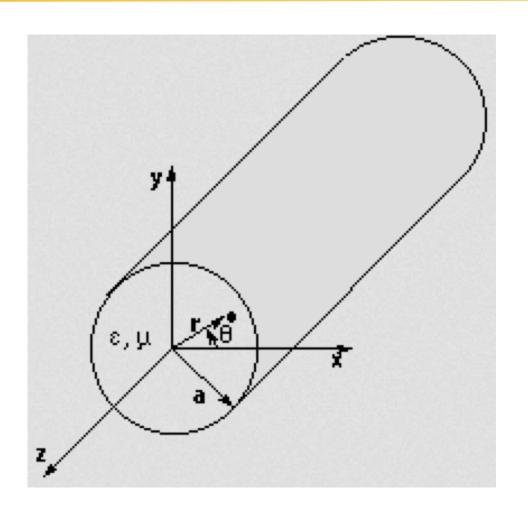
Yuri Batygin
Los Alamos National Laboratory

U.S. Particle Accelerator School

July 15 - July 26, 2024



#### **Waves in Uniform Circular Waveguide**



Wave equations

$$\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

$$\Delta \vec{B} - \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2} = 0$$

Circular waveguide.



#### Waves in Uniform Circular Waveguide (cont.)

Wave equation for electrical field

$$\left| \Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \right|$$

Wave equation for  $E_z$  component in cylindrical coordinates

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial E_z}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 E_z}{\partial \theta^2} + \frac{\partial^2 E_z}{\partial z^2} - \frac{1}{c^2}\frac{\partial^2 E_z}{\partial t^2} = 0$$

The solution is for TM wave:

$$E_r = R(r)\Theta(\theta)Z(z)T(t)$$

$$T(t) = T_o e^{-i\omega t}$$
  $\Theta(\theta) = \Theta_o e^{-in\theta}$   $Z(z) = Z_o e^{ik_z z}$ 

$$\frac{d^2R}{dr^2} + \frac{1}{r}\frac{dR}{dr} + (\frac{\omega^2}{c^2} - k_z^2 - \frac{n^2}{r^2})R = 0$$

Transverse wave number

$$k_r^2 = \frac{\omega^2}{c^2} - k_z^2$$

Wave equation can be rewritten

$$\frac{d^2R}{d(k_r r)^2} + \frac{1}{(k_r r)} \frac{dR}{d(k_r r)} + (1 - \frac{n^2}{(k_r r)^2})R = 0$$

Solution: Bessel function

$$R = AJ_n(k_r r)$$



#### Waves in Uniform Circular Waveguide (cont.)

Longitudinal component vanishes at the boundary of cavity

Transverse wave number is determined as

 $v_{nm}$  is the root of equation  $J_{nm}(x)=0$ 

Traveling wave in uniform waveguide

Wave number 
$$k_z = \frac{2\pi}{\lambda}$$
 and wavelength

Cut-off frequency  $k_z$ = 0:

Phase of the wave

Phase velocity:  $d\varphi/dt=0$ 

$$E_z(a) = 0 J_n(k_r a) = 0$$

$$k_r a = v_{nm}$$

$$k_r = \frac{v_{nm}}{a}$$

$$E_z = E_o J_n (v_{nm} \frac{r}{a}) \cos n\theta e^{-(\omega t - k_z z)}$$

$$k_z^2 = \frac{\omega^2}{c^2} - \frac{v_{nm}^2}{a^2} \qquad \lambda = \frac{2\pi}{k_z}$$

$$\omega_c = c \frac{v_{nm}}{a}$$

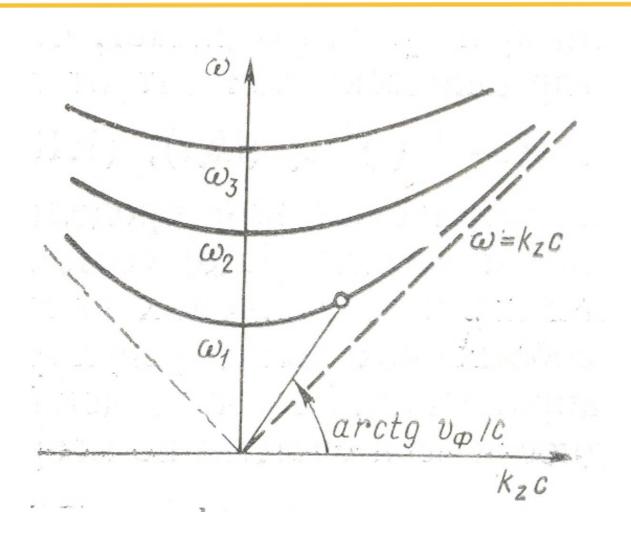
$$\varphi = \omega t - k_z z$$

$$v_{ph} = \frac{\omega}{k_z} = \frac{c}{\sqrt{1 - (\frac{\omega_c}{\omega})^2}} > c$$

In uniform waveguide phase velocity is always larger than velocity of light



#### **Dispersion Diagram of Uniform Waveguide**

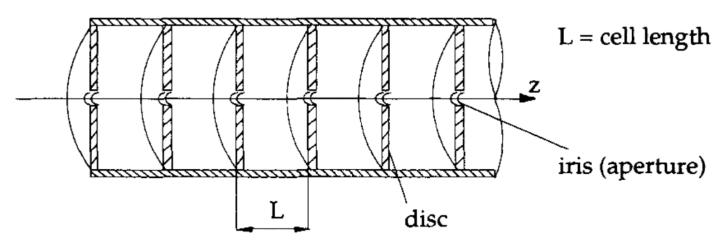


$$\omega^{2} = c^{2} (k_{z}^{2} + \frac{v_{nm}^{2}}{a^{2}})$$

Dispersion (Brilouin) diagram



#### **Traveling Wave Accelerating Structures**



Longitudinal electric field with periodic conditions

$$E_z(r,z,t) = F(r,z)e^{j(\omega t - k_0 z)} \qquad F(r,z+L) = F(r,z)$$

**Expansion in Fourier series** 

$$F(r,z) = \sum_{n=0}^{n} a_n(r) e^{-j(2\pi n/L)z}$$

Substitution into wave Equation

$$e^{j\omega t} \sum_{n=0}^{\infty} e^{-j(k_0+2\pi n/L)z} \left[ \frac{d^2 a_n(r)}{dr^2} + \frac{1}{r} \frac{d a_n(r)}{dr} + K_r^2 a_n(r) \right] = 0$$

Transverse wave number

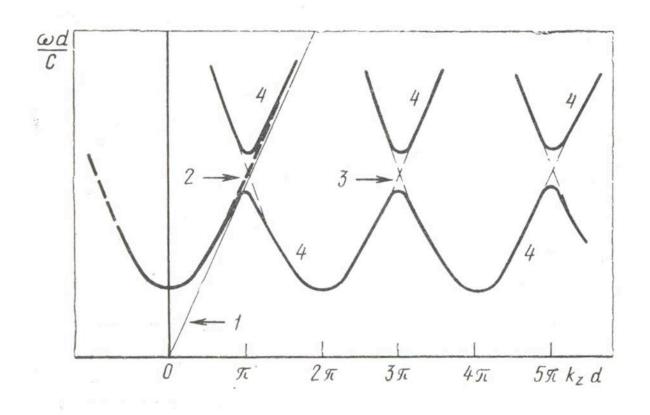
$$K_{\rm r}^2 = \left(\frac{\omega}{c}\right)^2 - \left[k_0 + \frac{2\pi n}{L}\right]^2$$

Phase velocity

$$v_{ph} = \frac{\omega}{k_0 + 2\pi n/L} = \frac{\omega}{k_p}$$



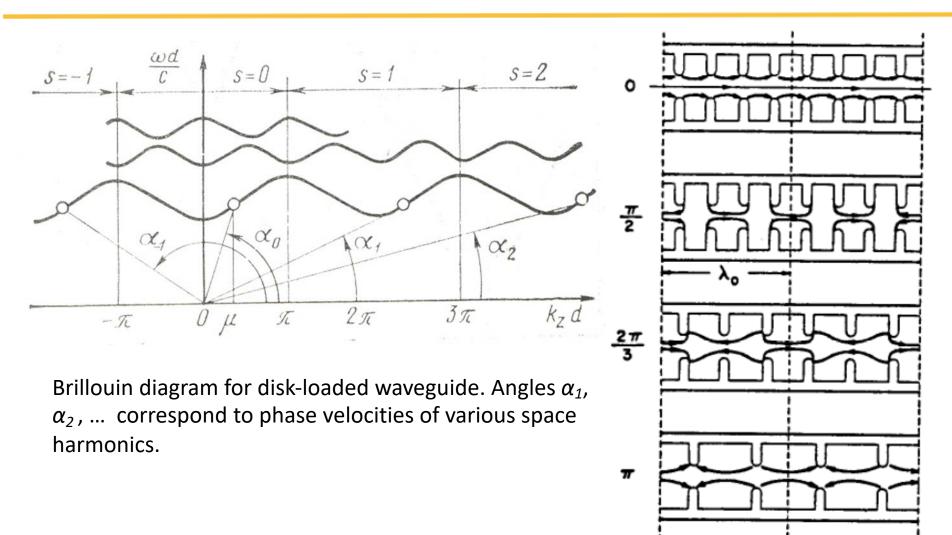
#### **Dispersion Diagram of Periodic Wavequide**



Dispersion diagram of periodic structure is a combination of diagrams for uniform waveguide periodically repeated after one period of the structure.



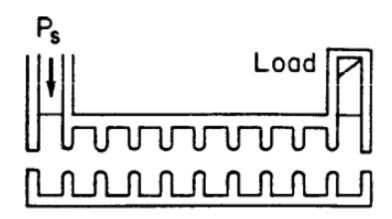
#### **Traveling Wave Accelerating Structures**



Snapshots of electric field configurations for disk-loaded structures with various phase shifts per period.

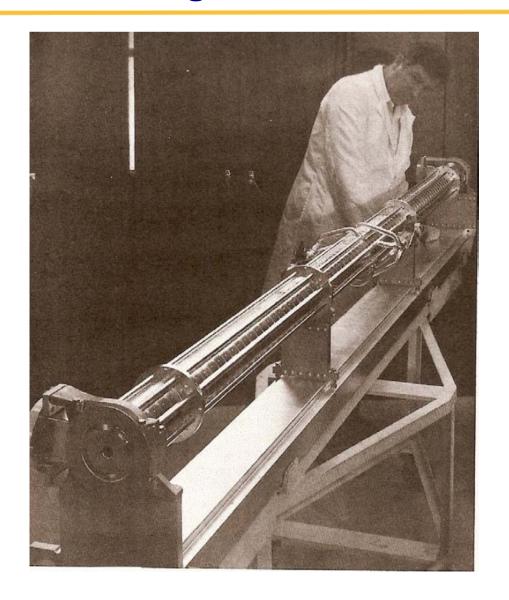


#### **Traveling Wave Accelerating Structures**



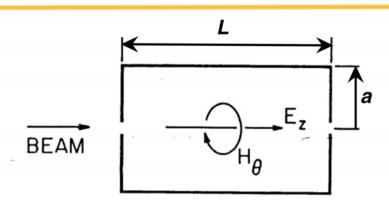
Linac with traveling wave. Primarily used for electrons.

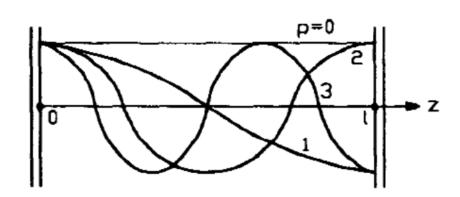
SLAC accelerating structure: 10-foot disk-loaded, 2856 MHz, 86 cells per structure, 960 structures make up the SLAC 3-km linac.





#### **Cylindrical Resonator**





Longitudinally integer number of half-variations can be excited

Transverse boundary condition:

Frequency of oscillation mode is

Longitudinal component

$$k_z = \frac{\pi p}{L}$$

$$E_z(a) = 0 \qquad J_n(k_r a) = 0 \quad k_r = \frac{v_{nm}}{a}$$

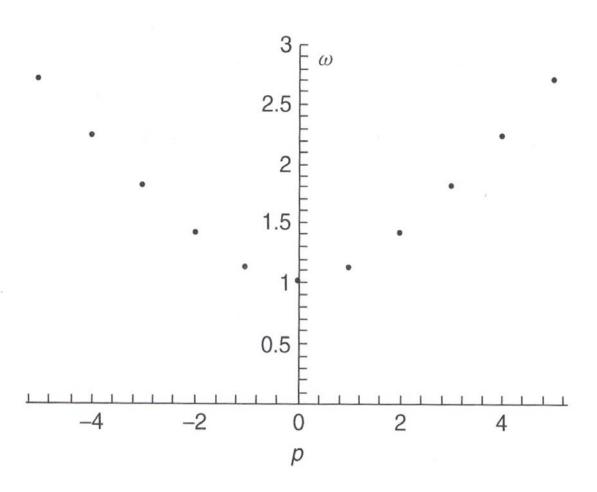
$$\frac{\omega_o^2}{c^2} - k_z^2 = \frac{v_{nm}^2}{a^2}$$

$$\omega_o = c\sqrt{\frac{v_{nm}^2}{a^2} + (\frac{\pi p}{L})^2}$$

$$E_z = E_o J_n (v_{nm} \frac{r}{a}) \cos n\theta \cos \frac{\pi pz}{L}$$



#### **Dispersion Diagram for Cylindrical Cavity**



Dispersion curve for the TM01p family of modes of a cylindrical circular cavity.



## **TM<sub>nmp</sub> Modes in Cylindrical Cavity**

Field components of TM<sub>nmp</sub> modes in cylindrical cavity

$$\begin{split} E_z &= E_o J_n(\chi r) \cos n\theta \cos \chi_z z \\ E_r &= -E_o \frac{\chi_z}{\chi} J_n'(\chi r) \cos n\theta \sin \chi_z z \\ E_\theta &= E_o \frac{n\chi_z}{\chi^2 r} J_n(\chi r) \sin n\theta \sin \chi_z z \\ H_r &= -iE_o \frac{n\omega_o \mathcal{E}_o}{\chi^2 r} J_n(\chi r) \sin n\theta \cos \chi_z z \\ H_\theta &= -iE_o \frac{\omega_o \mathcal{E}_o}{\chi} J_n'(\chi r) \cos n\theta \cos \chi_z z \\ H_z &= 0 \\ \text{n-number of variation in azimuthal angle} \\ \text{m-number of variation in radius} \end{split}$$

P – number of variation in longitudinal direction

$$\chi = \frac{v_{nm}}{a} \quad \chi_z = \frac{\pi p}{L}$$



Ζ

#### **Example: TM<sub>010</sub> Mode in Cylindrical Cavity**

Field components

$$E_z = E_o J_o(v_{01} \frac{r}{a}) \cos \omega_o t$$

$$B_\theta = -\frac{E_o}{c} J_1(v_{01} \frac{r}{a}) \sin \omega_o t$$

Boundary condition

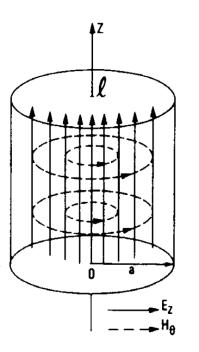
$$E_z(a) = 0$$
  
 $v_{01} = 2.405$ 

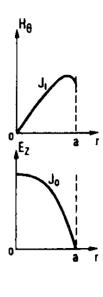
Frequency of resonator

$$k_z = 0$$

$$\omega_o = 2\pi f = \frac{c v_{01}}{a}$$

$$f = \frac{2.405 c}{2}$$





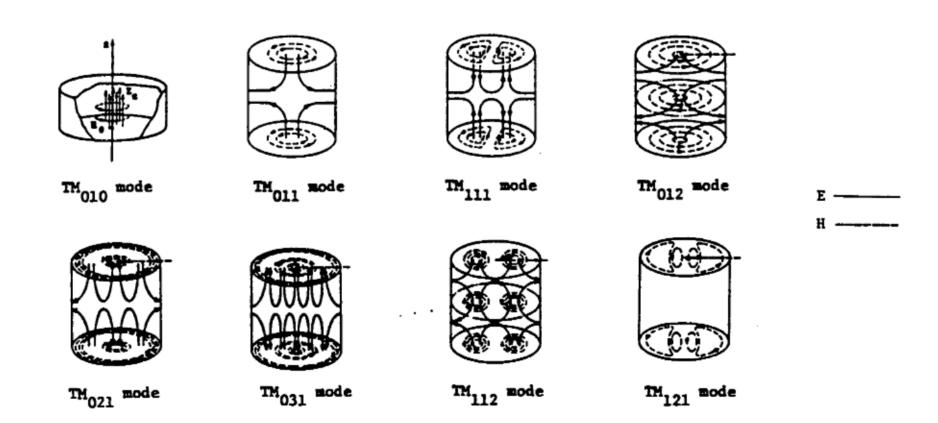
Example: radius of resonator for f = 201.25 MHz:

$$a = \frac{2.405 \, c}{2\pi f} = 0.57 m$$

TM010 mode in a pill-box cavity.



#### TM-Modes in Cylindrical Resonator



TM-mode field patterns in cylindrical resonator (T.Wangler, LA-UR-93-805).



## **TE<sub>nmp</sub> Modes in Cylindrical Cavity**

Field components of TE<sub>nmp</sub> modes in cylindrical cavity

$$H_z = H_o J_n(\chi r) \cos n\theta \sin \chi_z z$$

$$H_r = H_o \frac{\chi_z}{\chi} J_n(\chi r) \cos n\theta \cos \chi_z z$$

$$H_{\theta} = -H_{o} \frac{n \chi_{z}}{\chi^{2} r} J_{n}(\chi r) \sin n\theta \cos \chi_{z} z$$

$$E_z = 0$$

$$E_r = iH_o \frac{n\omega_o \mu_o}{\chi^2 r} J_n(\chi r) \sin n\theta \sin \chi_z z$$

$$E_{\theta} = iH_{o} \frac{\omega_{o} \mu_{o}}{\chi} J_{n}(\chi r) \cos n\theta \sin \chi_{z} z$$

$$\chi_{z} = \frac{\pi p}{L}$$

$$I^{'}(\gamma r)$$

Boundary condition:

$$E_{\theta}(a) = 0$$

$$J_n(\chi a) = 0$$
  $\chi = \frac{v_{nm}}{a}$ 

 $v_{nm}$  is the root of equation  $J_n(x) = 0$ 

Frequency of TE<sub>nmp</sub> oscillations

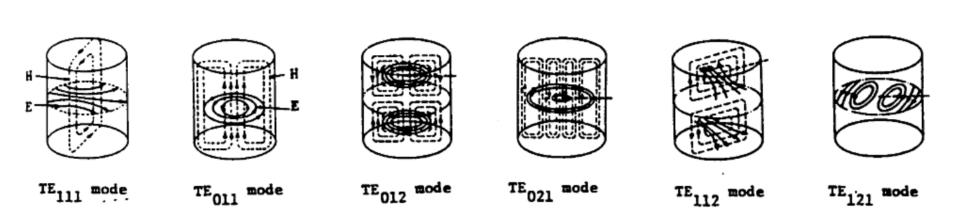
$$\omega_o = c\sqrt{\frac{v_{nm}^{'2}}{a^2} + (\frac{\pi p}{L})^2}$$

Zeros  $v_{nm}$  of equation  $J_n(x) = 0$ 

| _ |       |       |       |        |        |
|---|-------|-------|-------|--------|--------|
|   |       | m=1   | m=2   | m=3    | m = 4  |
|   | n = 0 | 3.832 | 7.016 | 10.173 | 13.324 |
|   | n = 1 | 1.841 | 5.331 | 8.536  | 11.706 |
|   | n=2   | 3.054 | 6.706 | 9.969  | 13.170 |
|   | n=3   | 4.201 | 8.015 | 11.346 |        |



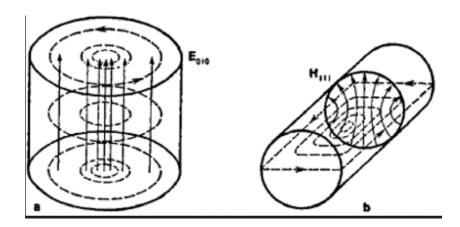
#### **TE-Modes in Cylindrical Resonator**



TE-mode field patterns in cylindrical resonator (T.Wangler, LA-UR-93-805).



#### **Fundamental Modes of Cylindrical Resonator**



Oscillations TE<sub>111</sub> and TM<sub>010</sub> are fundamental modes which frequencies coincide if

$$\frac{v_{01}^2}{a^2} = \frac{v_{11}^{'2}}{a^2} + \left(\frac{\pi}{L}\right)^2$$

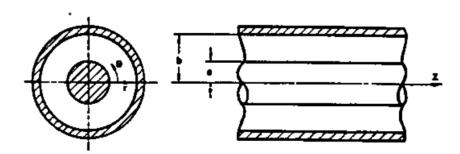
In this case of ratio of length of resonator to radius L/a is

$$\frac{L}{a} = \frac{\pi}{\sqrt{v_{01}^2 - v_{11}^{'2}}} = 2.03$$

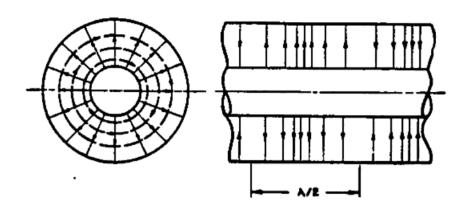
For long cylinder L/a > 2.03 the fundamental mode is  $TE_{111}$  while for "flat" resonator L/a < 2.03 the fundamental mode is  $TM_{010}$ .



#### **Coaxial Line**



A section of coaxial transmission line



Field distribution for the principal mode in coaxial line

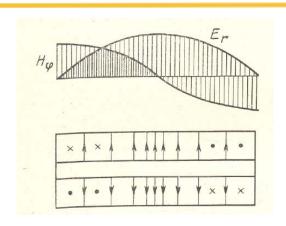
Field components of TEM wave propagating in coaxial transmission line

$$B_{\theta} = \frac{\mu_o I}{2\pi r} \exp[i(\omega t - k_z z)]$$

$$E_r = \sqrt{\frac{\mu_o}{\varepsilon_o}} \frac{I}{2\pi r} \exp[i(\omega t - k_z z)]$$



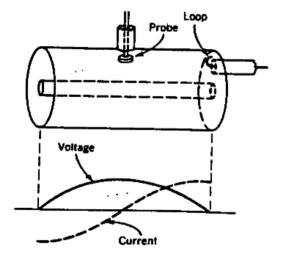
#### **Half and Quarter Wave Resonators**



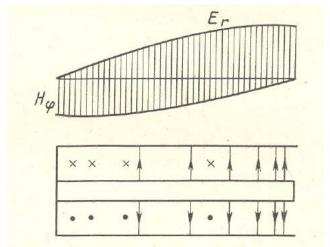
Resonance condition: 
$$L = \frac{p\lambda}{2}$$

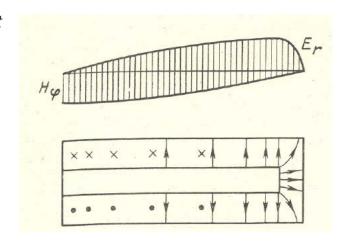
Component of RF field

$$B_{\theta} = \frac{\mu_{o}I}{2\pi r} \cos(\frac{\pi pz}{L}) \cos \omega t$$

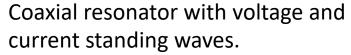


$$E_r = \sqrt{\frac{\mu_o}{\varepsilon_o}} \frac{I}{2\pi r} \sin(\frac{\pi pz}{L}) \sin \omega t$$





Quarter wave resonator





# Conservation of Energy of Electromagnetic Field (Poynting's Theorem)

From Maxwell's equations:

 $\vec{H} rot\vec{E} = -\vec{H} \frac{\partial B}{\partial t} \qquad \vec{E} rot\vec{H} = \vec{E} \frac{\partial D}{\partial t} + \vec{j}\vec{E}$   $\vec{H} rot\vec{E} - \vec{E} rot\vec{H} = -\vec{H} \frac{\partial \vec{B}}{\partial t} - \vec{E} \frac{\partial \vec{D}}{\partial t} - \vec{j}\vec{E}$ 

 $\vec{H} rot\vec{E} - \vec{E} rot\vec{H} = div[\vec{E}, \vec{H}]$ 

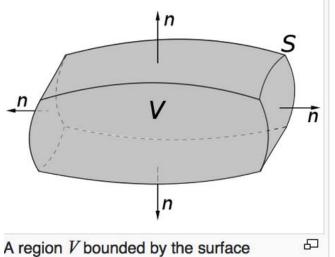
$$div[\vec{E}, \vec{H}] = -\vec{H} \frac{\partial \vec{B}}{\partial t} - \vec{E} \frac{\partial \vec{D}}{\partial t} - \vec{j}\vec{E}$$

Gauss Theorem:

$$\iiint_V \left( 
abla \cdot \mathbf{F} 
ight) \, dV = \oiint_S \left( \mathbf{F} \cdot \mathbf{n} 
ight) dS.$$

From vector analysis equity:

Therefore



A region V bounded by the surface  $S = \partial V$  with the surface normal n

# Conservation of Energy of Electromagnetic Field (Poynting's Theorem) (cont.)

Application of Gauss Theorem gives:

$$\oint_{S} [\vec{E}, \vec{H}] d\vec{S} = -\int_{V} (\vec{H} \frac{\partial \vec{B}}{\partial t} + \vec{E} \frac{\partial \vec{D}}{\partial t}) dV - \int_{V} \vec{j} \vec{E} dV$$

Calculating terms

$$\vec{H}\frac{\partial \vec{B}}{\partial t} = \mu_o \vec{H}\frac{\partial \vec{H}}{\partial t} = \frac{\partial}{\partial t}(\frac{\mu_o H^2}{2})$$

$$\vec{E}\frac{\partial \vec{D}}{\partial t} = \varepsilon_o \vec{E}\frac{\partial \vec{E}}{\partial t} = \frac{\partial}{\partial t}(\frac{\varepsilon_o E^2}{2})$$

Change of energy of electromagnetic field in volume V:

$$\int_{V} (\vec{H} \frac{\partial \vec{B}}{\partial t} + \vec{E} \frac{\partial \vec{D}}{\partial t}) dV = \frac{1}{2} \frac{d}{dt} \left[ \int_{V} (\mu_{o} H^{2} + \varepsilon_{o} E^{2}) \right]$$

Electromagnetic energy:

$$W = \frac{1}{2} \int_{V} (\mu_o H^2 + \varepsilon_o E^2)$$

The rate of energy transfer from a region of space equals the rate of work done on a charge distribution plus the energy flux leaving that region.

$$\oint_{S} [\vec{E}, \vec{H}] d\vec{S} = -\frac{d}{dt} \int_{V} (\frac{\mu_{o} H^{2}}{2} + \frac{\varepsilon_{o} E^{2}}{2}) dV - \int_{V} \vec{j} \vec{E} dV$$



#### **Energy Dissipation in Resonator and Quality Factor**

Dissipated power is a combination of power losses inside cavity and outside cavity

Energy stored in cavity

Quality factor

Q-factor is a combination of unloaded quality factor of cavity and external quality (loaded Q factor)

External quality factor

Losses in metal with surface resistance  $R_s$  [Ohm]

Unloaded quality factor

$$Q_o = \frac{\omega_o W_o}{P_o}$$

$$P = P_o + P_{ext}$$

$$W_{o} = \frac{1}{2} \int_{V_{o}} \mu H_{m}^{2} dV = \frac{1}{2} \int_{V_{o}} \varepsilon E_{m}^{2} dV$$

$$Q = \frac{\omega_o W_o}{P}$$

$$\frac{1}{Q} = \frac{1}{Q_o} + \frac{1}{Q_{ext}}$$

$$Q_{ext} = \frac{\omega_o W_o}{P_{ext}}$$

$$P_o = \frac{R_s}{2} \int_{S} H_m^2 dS$$

$$Q_o = \frac{\omega_o W_o}{P_o} \qquad Q_o = \frac{\omega_o \mu_o \int_V H_m^2 dV}{R_s \int_S H_m^2 dS}$$



#### Unloaded Quality Factor of TM<sub>010</sub> Cavity

Magnetic field

$$H_{m\theta} = -E_o \sqrt{\frac{\varepsilon_o}{\mu_o}} J_1(\upsilon_{01} \frac{r}{a})$$

Energy stored in cavity

$$W_o = \frac{1}{2} \int_{V} \mu_o H_{m\theta}^2 dV = \frac{\pi \varepsilon_o E_o^2 L a^2 J_1^2(v_{01})}{2} = 0.135 \pi \varepsilon_o L a^2 E_o^2$$

Loss power in cavity

$$P_{o} = \frac{R_{s}}{2} \int_{S} H_{m\theta}^{2} dS = \pi a R_{s} E_{o}^{2} \frac{\mathcal{E}_{o}}{\mu_{o}} J_{1}^{2} (v_{01}) (L + a)$$

Unloaded quality factor

$$Q_o = \frac{\omega_o W_o}{P} = \frac{v_{01}}{2R_s} \sqrt{\frac{\mu_o}{\varepsilon_o}} \frac{1}{(1 + \frac{a}{L})} = 1.2025 \frac{376.7[Ohm]}{R_s} \frac{1}{(1 + \frac{a}{L})}$$



#### **Unloaded Quality Factor of Coaxial Resonator**

Azimuthal magnetic field

$$H_{m\theta} = \frac{I_m}{2\pi r} \cos \frac{p\pi z}{L}$$

Integral over volume

$$\int_{V_o} H_m^2 dV = \pi L (\frac{I}{2\pi})^2 \ln \frac{R_2}{R_1}$$

Integral over surface

$$\int_{V} H_{m}^{2} dS = \pi \left(\frac{I}{2\pi}\right)^{2} \left[4 \ln \frac{R_{2}}{R_{1}} + L\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right)\right]$$

Quality factor

$$Q_o = \frac{p\pi}{R_s} \sqrt{\frac{\mu_o}{\varepsilon_o}} \frac{\ln \frac{R_2}{R_1}}{4 \ln \frac{R_2}{R_1} + L(\frac{1}{R_1} + \frac{1}{R_2})}$$



#### **Filing Time of Resonator**

Power losses is a rate of decrease of stored energy

$$P = -\frac{dW_o}{dt}$$

Substitution into equation 
$$Q = \frac{\omega_o W_o}{P}$$
 gives equation for decrease of stored energy

$$\frac{dW_o}{dt} = -\frac{\omega_o W_o}{Q}$$

Solution

$$W_o = W_o(0)e^{-\frac{\omega_o}{Q}t}$$

Electrical field changes with two times smaller rate:

$$\alpha = \frac{\omega_o}{2Q}$$

Electric field

$$E = E_m e^{i\omega_o t} e^{-\frac{\omega_o}{2Q}t}$$

Filing time of the cavity

$$t_f = \frac{2Q}{\omega_o}$$

Complex frequency of cavity

$$\dot{\omega}_o = \omega_o (1 + i \frac{1}{2Q})$$



### Filing Time of Resonator (cont.)

When the power source is matched to the resonant structure through a coupling loop, such that no power is reflected toward the source, then the loaded Q

$$Q = \frac{Q_o}{1 + \beta}$$

where  $\beta$  is the coupling coefficient. For negligible beam current  $\beta = 1$ .

The filling time becomes

$$t_f = \frac{2Q}{\omega_o} = \frac{2Q_o}{\omega_o(1+\beta)}$$

During the filling time, the transient effect exists when reflected power cannot be avoided.

#### **Shunt Impedance**

Shunt impedance is a ratio of effective voltage in resonator to dissipated power. The higher shunt impedance, the larger accelerating field is generated per same power

$$R_{sh} = \frac{U^2}{P} [\Omega]$$

Effective shunt impedance

$$R = \frac{(UT)^2}{P} = R_{sh}T^2[\Omega]$$

Often shunt impedance per unit length is used:

$$Z = \frac{U^2}{PL} = \frac{E_o^2}{(P/L)} [\Omega/m]$$

Effective shunt impedance per unit length

$$ZT^{2} = \frac{R}{L} = \frac{(E_{o}T)^{2}}{(P/L)} [\Omega/m]$$

Ratio R over Q (depends on geometry only)

$$\frac{R}{Q} = \frac{(UT)^2}{\omega_o W_o}$$



#### **Shunt Impedance Versus Frequency**

RF power loss per unit length is proportional to the product of the square of the wall current and the wall resistance per unit length

$$\frac{dP}{dz} \sim I_w^2 R_w$$

Electric field is proportional to wall current divided by cavity radius

$$E_z \sim I_w / a$$

The wall resistance per unit length is equal to the resistivity of the wall material divided by the area of the surface through which the current is flowing

$$R_{w} = \frac{\rho_{w}}{2\pi a\delta}$$

Skin depth (  $\mu$  is the permeability of the walls)

$$\delta = \sqrt{\frac{2\rho_w}{\omega_o \mu}}$$

Taking into account that frequency is inversely proportional to frequency cavity radius,

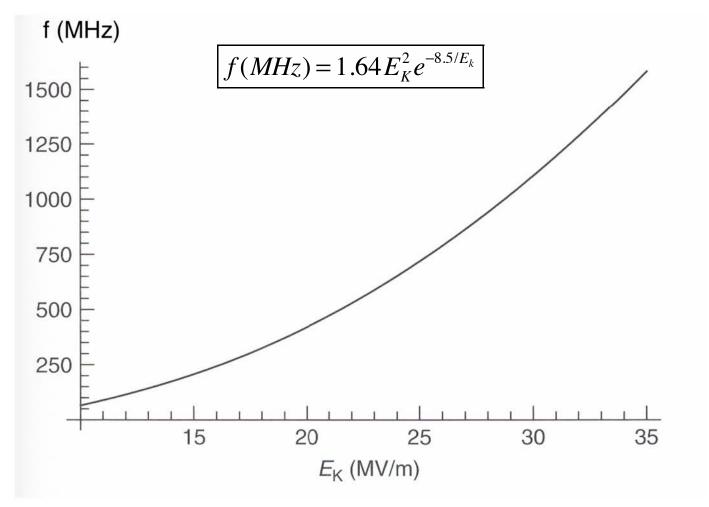
$$\omega_o \sim \frac{1}{a}$$

higher frequencies. However, aperture for the beam must be kept  $\frac{E_z^2}{(\frac{dP}{dz})} \sim \frac{1}{a^2 R_w} \sim \frac{\delta}{a} \sim \sqrt{\omega_o}$  large enough. the shunt impedance is proportional to square root of frequency.

$$\frac{E_z^2}{(\frac{dP}{dz})} \sim \frac{1}{a^2 R_w} \sim \frac{\delta}{a} \sim \sqrt{\omega_o}$$



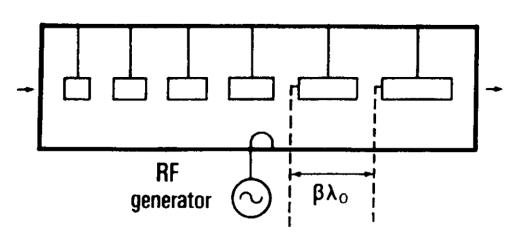
#### Kilpatrick Limited RF Field



Kilpatrick limited RF field  $E_k$  [MV/m]



#### **Alvarez Structure**



Alvaretz structure is a cavity excited with TM010 mode, loaded with drift tubes. Efficient for  $0.04 < \beta$  < 0.5.

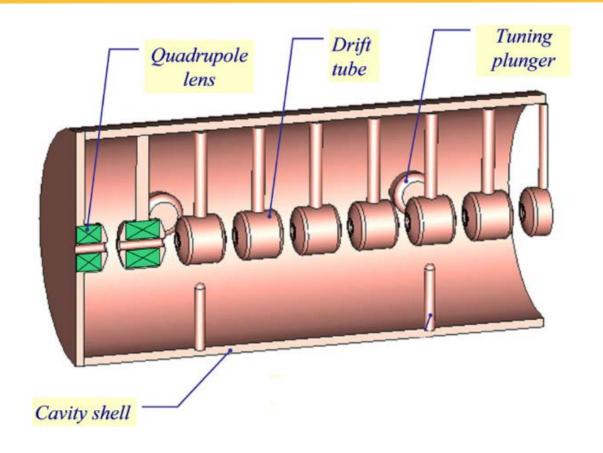
Field Distribution is sensitive towall deformations



Drift Tube Linac Prototype for CERN Linac4 (325 MHz). Quadrupoles are located inside drift tubes.



#### **Alvarez Structure (cont.)**



Tuning plungers are inserted for correct frequency under temperature variation. Post couplers are inserted to suppress unwanted modes.



#### **Parameters of LANL Alvarez Structures**

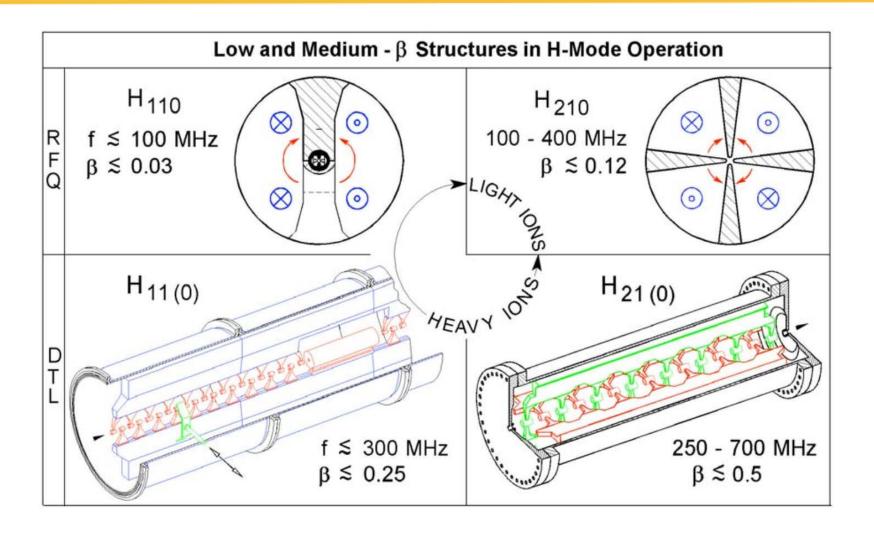
Table 4.1 Drift-Tube Linac Parameters for fhe LAMPF Proton Accelerator

|                                 | Tank 1    | Tank 2        |           | Tank 3    | Tank 4     |
|---------------------------------|-----------|---------------|-----------|-----------|------------|
| Cell No.                        | 1 to 31   | 32 to 59      | 60 to 97  | 98 to 135 | 136 to 165 |
| Energy in (MeV)                 | 0.75      | 5.39          |           | 41.33     | 72.72      |
| Energy out (MeV)                | 5.39      | 41.33         |           | 72.72     | 100.00     |
| Δ energy (MeV)                  | 4.64      | 35.94         |           | 31.39     | 27.28      |
| Tank length (cm)                | 326.0     | 1968.8        |           | 1875.0    | 1792.0     |
| Tank diameter (cm)              | 94.0      | 90.0          |           | 88.0      | 88.0       |
| D. T. diameter (cm)             | 18.0      | 16.0          |           | 16.0      | 16.0       |
| D. T. corner radius (cm)        | 2.0       | 4.0           |           | 4.0       | 4.0        |
| Bore radius (cm)                | 0.75      | 1.0           | 1.5       | 1.5       | 1.5        |
| Bore corner radius (cm)         | 0.5       | 1             | .0        | 1.0       | 1.0        |
| G/L                             | 0.21-0.27 | 0.16-0.32     |           | 0.30-0.37 | 0.37-0.41  |
| Number of cells                 | 31        | 66            |           | 38        | 30         |
| Number of quads                 | 32        | 29            | 38        | 20        | 16         |
| Quad gradient (KG/cm)           | 8.34-2.46 | 2.44-1.89     | 1.01-0.87 | 0.90-0.84 | 0.84-0.83  |
| Quad length (cm)                | 2.62-7.88 | 7.88          | 16.29     | 16.29     | 16.29      |
| E <sub>o</sub> (MV/m)           | 1.60-2.30 | 2.40          |           | 2.40      | 2.50       |
| φ <sub>s</sub> (deg)            | -26°      | -26°<br>2.697 |           | -26°      | -26°       |
|                                 | 0.305     |               |           | 2.745     | 2.674      |
| Power (MW) Intertank space (cm) | 15.90     |               | .62       | 110.95    |            |

Total length including intertank spaces = 6174.281 cm. (202 ft. 6.819 in.)



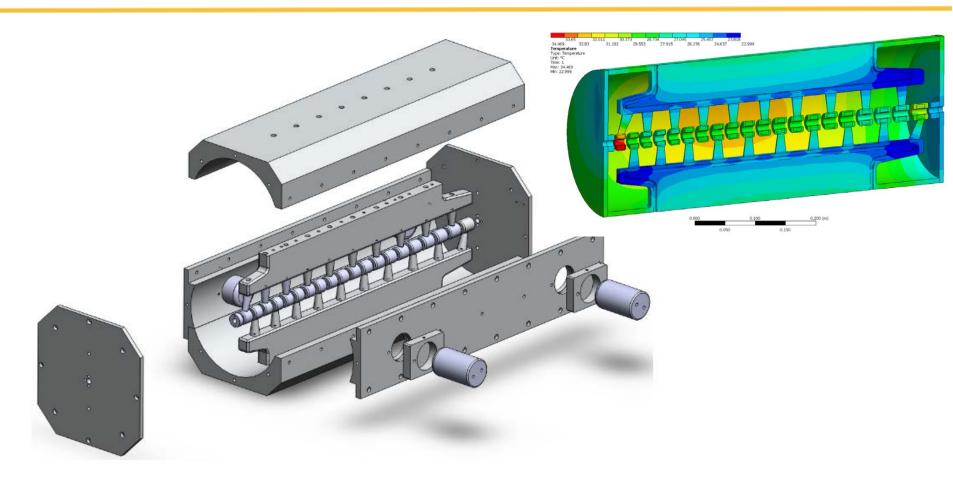
#### **H** - Resonators



H-type accelerating structures (U.Ratzinger, 2005).



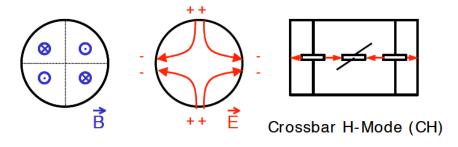
#### **Interdigital H-Mode Structure**



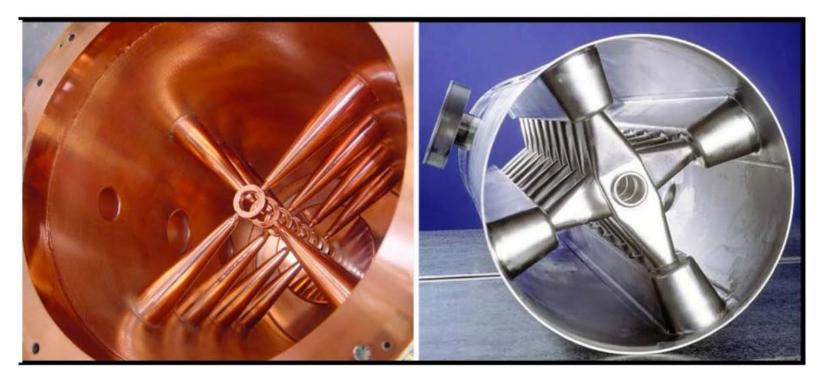
H-Mode Accelerating Structure with Permanent Magnet Quadrupole Beam Focusing (S.Kurennoy et al, 2011).



# **Cross-Bar (CH) Structures**



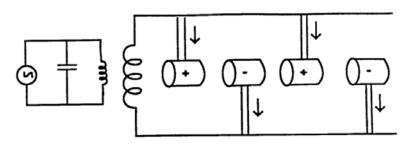
Field pattern in H<sub>211</sub> cavity (M. Vretenar, 2012)

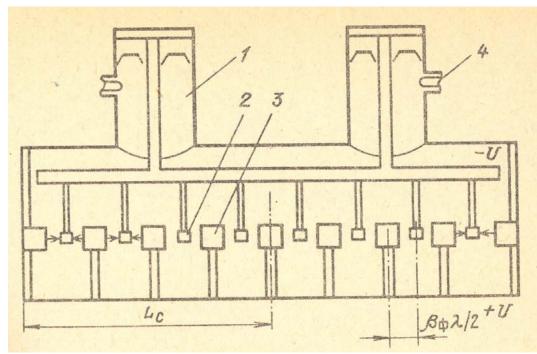


350 MHz room temperature CH-DTL and 350 MHz superconducting CH-DTL structure (H.Podlech et al, 2007).



#### Wideroe Structure



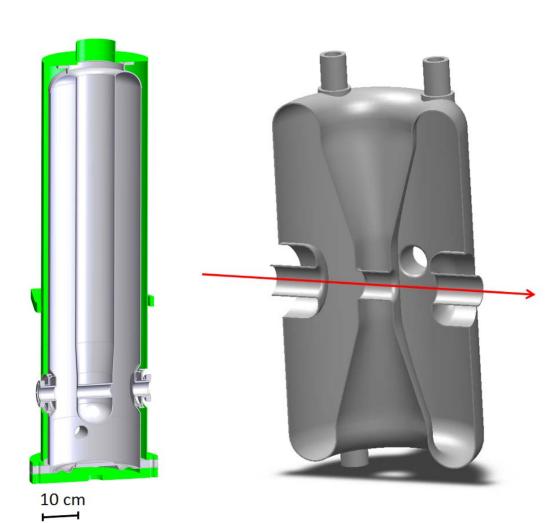


Original idea: the voltages are supplied to the electrodes by alternately connecting them to two conductors parallel to the beamline and driven by a high-frequency oscillator.

Wideroe structure made of coaxial line: external cylinder is used as one of the line, while internal conductor is used as a second line.



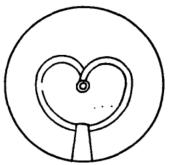
#### **Independently Phased Cavities**

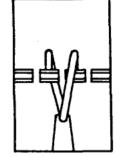




Half-wave resonator.



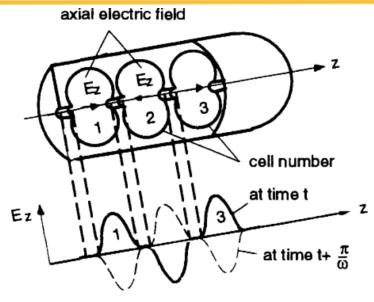




Superconducting spliting niobium resonator (ANL).



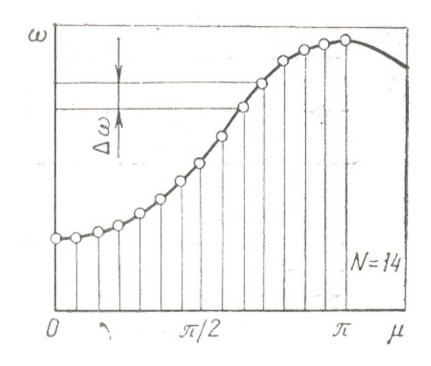
#### **Coupled Cells**



Standing wave accelerator operating in the  $\boldsymbol{\pi}$  -mode.

The whole structure can be considered as a one resonator working on  $\mu'=\pi p$  (p=0,1,2,...) mode. On the other hand, in a resonator with N cells  $\mu'=\mu N$  where  $\mu$  is the phase shift between cells. Therefore, phase shift between cells:

$$\mu = p \frac{\pi}{N}$$
  $p = 0,1,2...$ 



Dispersion curve of coupled cell structure: in a structure containing N elements there are N+1 modes of oscillations.



#### **Coupled Cells (cont.)**

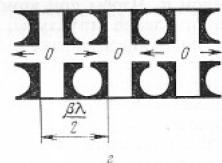
Disk-loaded waveguide working on  $\pi$ -mode: weak coupling,

sensitive to instability

 $\frac{\beta\lambda}{2}$ 

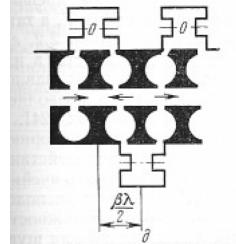
Disk-loaded π-mode waveguide with additional magnetic coupling

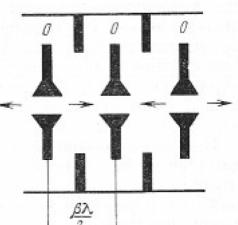
Better coupling



Bi-periodic structures

Side –coupled structure





Disk and washer \_ structure



39

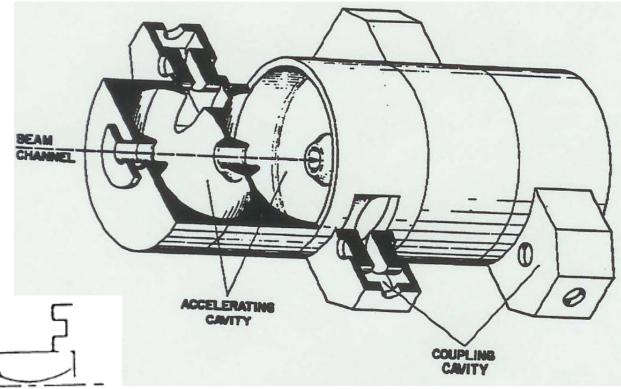
# **Side-Coupled Cavities**

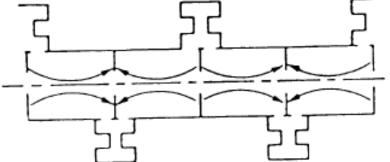
Energy range: 100-

800 MeV

High shunt

Impedance: 50 M $\Omega$ /m

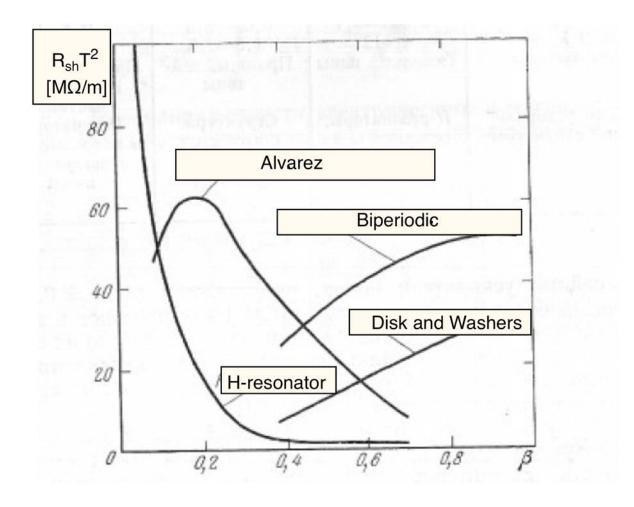




Los Alamos Side Coupled Structure.



#### **Shunt Impedance of Accelerating Structures**



Shunt impedance of accelerating structure versus velocity  $\beta$ .



#### **Elliptical Superconducting Multi-Cell Cavities**

High gradient: 10-20 MV/m Compact design Large aperture

Chain of cells electrically coupled (ZT<sup>2</sup> is not a concern)

Lower RF power requirement





