
3. Basics of Beam Focusing

Proton and Ion Linear 
Accelerators

LA-UR-16-29518

1

Yuri Batygin  

Los Alamos National Laboratory

U.S. Particle Accelerator School

July 15 - July 26, 2024
Y. Batygin - USPAS 2024



Electric field lines between the ends drift tubes. If 
accelerating, the field is focusing at input and defocusing at 
output. While field level is increasing while particles cross 
the gap to provide longitudinal beam bunching, the 
defocusing effect is larger.

RF Defocusing in Particle Accelerator

↓ ↑• •

t1 t2

E(t1) < E(t2 )
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RF Defocusing in Particle Accelerator (cont.)
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Equation for radial momentum

Radial electric field

Azimuthal magnetic field

Because

Equation of radial motion in RF field
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RF Defocusing in Particle Accelerator (cont.)

Longitudinal and radial electric field in 
RF gap.

Assume that particle radius in RF gap 
r = const. Change of slope of particle 
trajectory at the entrance to RF gap:  

Change of slope of particle trajectory at the 
exit of RF gap: 

Δ dr
dz

≈ qr
2mγ 3 (

Eout

vout
2 − Ein

vin
2 )

Δ(dr
dz
)in ≈ − q

2mγ 3v2
r

−∞

−g/2

∫
∂Ez

∂z
dz ≈ − qEin

2mγ 3vin
2 r

Δ(dr
dz
)out ≈

qEout

2mγ 3vout
2 r

Total change of slope of particle trajectory at 
RF gap: 
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RF Defocusing in Particle Accelerator (cont.)

ΔEz = Eout − Ein

Δv = vout − vin

Ein = Eg cos(ϕ s −
πg
βλ
)

Eout = Eg cos(ϕ s +
πg
βλ
)

  
Δ dr

dz
≈

qEinr
2mγ 3vin

2 (
ΔE
Ein

− 2 Δv
vin

)

ΔE
Ein

≈ 2 tgϕ s sin(
πg
βλ
)

Δv
vin

> ΔE
2Ein

sinϕ s

cos2ϕ s

< qEλ

mc2βγ 3 sin(πg
βλ
)

For proton beam in accelerator with E = 5 MV/m, λ = 1 m, 
β = 0.04, g/βλ = 0.25, synchronous phase should be too small: 
φs < 10o. RF defocusing is dominant effect, which requires additional 
focusing.

Difference in field

Difference in velocity

Total change of slope of particle trajectory:
defocusing by RF field, but “static” focusing
due to change in particle velocity   

Field at the entrance of RF gap

Field at the exit of RF gap

Relative change of RF field

In order to focus particles in RF gap                      or
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Earnshaw's theorem states that a collection 
of point charges cannot be maintained in a 
stable stationary equilibrium configuration 
solely by the electrostatic interaction of the 
charges (Samuel Earnshaw, 1842). 

Earnshaw's Theorem

Effective potential created 
by static field 

∂2U
∂x2

+ ∂2U
∂y2

+ ∂2U
∂z2

= 0

Laplace Equation:

All second derivatives of potential cannot be 
positive (at minimum) at the same time.
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Grid or Foil  Focusing of Charged Particles

RF Defocusing effect is suppressed by closing 
the the drift-tube hole  at the exit of the gap 
with a foil thin enough to be crossed by 
particles. First test: 1947, Alvarez linac

Foil or grid focusing—the defocusing 
effect is suppressed
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Focusing Elements

Focusing magnets used in accelerator facilities: dipole, 
quadrupole, sextupole.
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Magnetostatic and Electrostatic Fields

Equations describing magnetostatic field are obtained from Maxwell 
equations assuming ∂ / ∂t = 0 : 
 

 rot
!
H = 0   div

!
B = 0   

!
B = µ

!
H   

 

Because rot (grad Umagn ) = 0 , the magnetic field can be expressed through 

magnetic scalar potential, Umagn  as 
 

          
 
!
B = −grad Umagn   

 

On the other hand, because 
 
div(rot

!
Amagn ) = 0 , magnetic field can be 

equally determined using vector potential, 
 
!
Amagn : 

 

 
!
B = rot

!
Amagn  

 

Magnetic scalar potential is convenient to determine ideal pole contour, 
while vector potential is convenient to determine magnetic field shape. 
Electrostatic field is expressed through electrostatic potential: 
 

 
!
E = −grad Uel        
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Laplace Equation for Electrostatic and Magnetic Fields
Because div(gradU ) = ∇2U , both magnetic and electrostatic multipole fields are 
derived from Laplace equation with appropriate boundary conditions: 
 

                                                    ∇2U = 0  
 

where U stands for Umagn  or Uel . On the other hand, because of equity 
 

                       
 
rot (rot

!
Amagn ) = grad(div

!
Amagn )−∇

2 !Amagn  
 
and taking additional condition 

 
div
!
Amagn = 0 , magnetic field can be expressed through 

components of vector – potential: 
 

 
∇2 !Amagn = 0  

Transverse components of magnetic multipoles can be expressed through z - 
component of vector potential Az . Because  (∇

2 !A)z = ∇2Az , formally, both magnetic 
and electrostatic multipole fields are derived from Laplace equation 
 

1
r
∂Π
∂r

+
∂2Π
∂r2

+
1
r2

∂2Π
∂θ 2

+
∂2Π
∂z2

= 0  

where Π(r,θ,z)  stands for either z - component of vector-potential, Azmagn , or scalar 

potentials Umagn , Uel . 
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Π(r,θ, z) =
m=0

∞

∑
n=0

∞

∑ (−1)n m!
4n n!(m + n)!

rm+2n (Θm
(2n) cosmθ +Ψm

(2n) sinmθ )

= Θo −
1
4
r2Θo

'' + 1
64

r4Θo
(4 ) − .....

+(Θ1 −
1
8
r2Θ1

" )r cosθ + (Ψ1 −
1
8
r2Ψ1

" )r sinθ

+(Θ2 −
1
12
r2Θ2

" )r2 cos2θ + (Ψ2 −
1
12
r2Ψ2

" )r2 sin2θ + ...

General solution of 3-dimensional Laplace equation in cylindrical coordinates 

m = 0 for axial-symmetric filed
m = 1 for dipole
m = 2 for a quadrupole
m = 3 for sextupole,
m = 4 for octupole, 
m = 5 for decapole 
m = 6 for dodecapole, 

Solution of Laplace Equation 
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Number of poles to excite the multipole lens of the order m is Npoles = 2m

In most of cases, it is possible to substitute actual z-dependence of the field by 
“step” function. For such representation, solution of Laplace equation is

Π(r,θ ) =
m=0

∞

∑ rm (Θm cosmθ +Ψm sinmθ )

Solutions for magnetic field can be represented as a combination of multipoles 
with field:

Az = −Gm

m
rm cosmθ Umagn = −Gm

m
rm sinmθ

where Gm is the strength of the multipole of order m

and B(ro) is the absolute value of magnetic field at certain radius ro.

Multipole Fields

Brm = −
∂Umagn

∂r
= 1
r
∂Az
∂θ

= Gmr
m−1 sinmθ

Bθm = − 1
r
∂Umagn

∂θ
= −

∂Az
∂r

= Gmr
m−1 cosmθ

Field components:

Gm = B(ro )
ro
m−1 =

Brm
2 (ro )+ Bθm

2 (ro )
ro
m−1
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G
2
r2 cos2θ = G

2
(x2 − y2 )

G3

3
r3 cos3θ = G3

3
(x3 − 3xy2 )

G4

4
r4 cos4θ = G4

4
(x4 -6x2y2 + y4 )

G5

5
r5 cos5θ = G5

5
(x5 −10x3y2 + 5xy4 )

G6

6
r6 cos6θ = G6

6
(x6 − y6 −15x4y2 +15x2y4 )

Magnetic vector potential -Az and electrostatic potential Uel  of “normal” multipole 

m = 2  Quadrupole

m = 3  Sextupole 

m = 4  Octupole 

m = 5  Decapole 

m = 6  Dodecapole  

Potential of Multipoles
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Magnetostatic potential       of “normal” multipole 

m = 2  Quadrupole

m = 3  Sextupole 

m = 4  Octupole 

m = 5  Decapole 

m = 6  Dodecapole  

Potential of Multipoles (cont.)

14

22 2sin 2
2 2
G Gr xyq =

3 2 33 3sin3 (3 )
3 3
G Gr x y yq = -

4 3 34
4sin 4 ( )

4
G r G x y xyq = -

5 5 4 2 35 5sin5 ( 5 10 )
5 5
G Gr y x y x yq = + -

6 5 3 3 56 6sin 6 (6 20 6 )
6 6
G Gr x y x y x yq = - +

mU-
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Quadrupole Focusing
Lorentz Force

 
!v

Arrows indicate direction of Lorentz force acting on 
positively charge particle moving from the screen. 
Field is proportional to distance from axis, G- gradient 
of quadrupole field.

By = Gx Bx = Gy Ex = Gx Ey = −Gy

15

Equation for determination of pole shape: Gxy const=
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Quadrupole Magnets

Electromagnetic quadrupole magnet in 
Maier-Leibnitz Laboratory, Munich

Electrostatic quadrupole of 
High Voltage Engineering 
Europa B.V.
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LANL Drift Tube Linac Quadrupole Magnets

DTL quadrupole details: (a) yoke and pole pieces; (b) current coil; 
(c) coil assembled with iron; (d) quadrupole fully assembled.
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Quadrupole Focusing (cont.)

Focusing properties of combination of quadrupole lenses 
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Various Types of Focusing Periods 

FODO

FOD

FOF-DOD

Triplets
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Quadrupole Pole Shapes and Higher Order Harmonics

Pole contours are determined by lines of equal values of 
scalar potentials  
 

,       .   
 

Shape of “normal” quadrupole poles are described by 
infinite hyperbolas: 
 

   for electrostatic quadrupole 

  for magnetostatic quadruple 
 

Actual pole shapes are different from that determined 
above. Solution of Laplace equation for multipole is anti-
symmetric after angle  because of separation of 
neighbor poles with alternative polarity: 

 

 
 

 

Umagn (r,θ ) = const Uel (r,θ ) = const

x2 − y2 = ±a2

2xy = ±a2

π /m

		
Π(r ,θ )= −Π(r ,θ + π

m
)
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Quadrupole Pole Shapes and Higher Order Harmonics (cont.)

It determines the number of higher harmonics k with respect to 
fundamental harmonic m: 
 

   
cosk(θ + π

m
) = −coskθ ,              sink(θ + π

m
) = −sinkθ

 

which  are satisfied when          cos(k π
m
) = −1,     sin(k π

m
) = 0  

 
Both equations are valid for k = m(1+ 2l) , l = 0,  1, 2, 3,.... . For 
example, the field of a quadrupole lens contains the following 
multipole harmonics: 
 

                

Az (r,θ ) = − (G
2
r2 cos2θ + G6

6
r6 cos6θ + G10

10
r10 cos10θ + ...)
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m = 1  Dipole           k = 1, 3, 5, 7….

m = 2  Quadrupole    k = 2, 6, 10, 14,..

m = 3  Sextupole      k  = 3, 9, 15, 21, 27,….

m = 4 Octupole         k = 4, 12, 20, 28, 36,…..

m = 5  Dodecapole    k =5, 15, 25, 35, 45,…..

m = 6  Duodecapole   k = 6, 18, 30, 42, 56, …. 

Multipole harmonics of magnetic field presented in focusing lenses

Multipole Harmonics of Magnetic Field 
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Electromagnetic Quadrupole Lens

P = 6.1 ρl
So f

G2a4
P  - dissipated power, W
ρ  -  coil resistance, Ohm cm
l   - average length of one turn, cm
So - area of coils
f   - ratio of coil area to window area
G  - field gradient, Gauss/cm
a - radius of aperture, cm

NI = 0.44Ga2Number of Ampere-Turns per pole
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Permanent Magnet Quadrupoles (PMQ)

24

Gradient of PMQ

G = 2Br (
1
rin

− 1
rout
)KPMQ

KPMQ = cos2 π
M
sin(2π /M )
(2π /M )

rin – internal radius rout - outer radius
Br - remnant field, M –number of magnet 
segments
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Focal Length of Quadrupole Lens

Equation of motion:

Effect of a thin lens (focal length f) on a 
particle trajectory initially parallel to the 
axis (from Humphries, 1999).

d 2x
dz2

= qGx
mcβγ

Integration of equation of motion along lens  assuming constant x 
dx
dz

= (dx
dz
)o − x

−∞

∞

∫
qG
mcβγ

dz

In the analogy with light optics, we can introduce the focal length of the lens: 1
f
= qGD
mγβc
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Effective Length of the Lens
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Single Particle Dynamics in a Quadrupole Focusing Channel

Equation of motion in x- and y- 
directions (Mathieu-Hill Equations):

d 2x
dz2

+ k(z)x = 0

d 2y
dz2

− k(z)y = 0

k(z) = qG(z)
mcβγ

where focusing function

Equivalent gradient of 
electrostatic lens  Gel = βcG

27Y. Batygin - USPAS 2024



d 2x
dτ 2

+π 2 (a − 2qsin2πτ )x = 0

General Form of Mathieu Equation
Mathieu equation

Unstable solutions are around a = n2, or when average frequency of oscillator is 
close to half-integer value of that of driving force.

Shaded are stable regions of 
solutions of Mathie-Hill equation. 

First&region&of&parametric&instability&is&!!b1 <a<a1 ,&
&

where:&&&&&&&&&&b1 =1− q −
1
8
q2 + 1

64
q3 − ... &

& & &&&&&a1 =1+ q −
1
8
q2 − 1

64
q3 − ... &

The&second&region&of&parametric&instability&is&!!b2 <a<a2 ,&
&

where:& &&&&b2 = 4 −
1
12
q2 + 5

13824
q4 − ... &

& & &&&a2 = 4 +
5
12
q2 − 763

13824
q4 + ... &

ao

a1

a2

b1

b2

q

a
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Differential equations with periodic coefficients are called Mathieu - Hill equations. 
We will be looking for a stable solution in the form: 
 

 x(z) = эxσ x (z) cos(Φ x (z)+Φo )  
 
where ∍x is a constant, σx(z) is the z - dependent amplitude, and Φx(z) is the z - 
dependent phase of the solution. Substitution of the expected solution gives: 
 

[σ x
'' - σ x (Φ

'
x
' )2 +kσ x ]cos(Φx +Φo ) -(σ xΦx

'' + 2σ x
'Φ'

x
' )sin(Φx +Φo )= 0  

 
To solve this equation, we can put independently to zero both 'cosine' and 'sine' 
parts: 

σx
'' - σx Φx

' 2 + kσx = 0  
 

σxΦx
'' + 2σx

'Φx
' = 0 

Amplitude and Phase of Solution
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Multiplying the second equation by σx, it can be written as  
 

                                          (Φx
'σx
2)' = 0 

 
which gives  
 
                                         Φx

'σx2 = const.  
 
 
Selecting arbitrary value of constant as 1, finally get for second equation: 

 
Φx
' = 1

σx
2
 

 
With that condition, 'cosine' part of equation is written as 

 

σ x
'' − 1

σ x
3 + k(z)σ x = 0

   
  

Amplitude and Phase of Solution (cont.)
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Courant-Snyder Invariant
 
Let us determine the  physical meaning of the constant ∍x. Differentiation of 
x(z) = ∍x  σx(z) cosΦx(z)  gives: 

 
x ' = ∍x  (σx

' cosΦx - σx Φx
' sinΦx) = ∍x  (σx

' cosΦx - sinΦx
σx

) .               (2.46) 

 
On the other hand, from the original equation it follows, that: 
 

cosΦx = x
∍x  σx

 .                                (2.47) 

 
Substitution gives:                                         x ' = σx

' x
σx

 - ∍x  sinΦx
σx

 .                    (2.48) 

 
Rearranging of the equation (2.48) results in:          ∍x  sin2Φx  = (x'  σx  - σx

'  x)
2
.       (2.49) 

 
Taking into account Eq. (2.47), let us express the left side of the equation (2.49), 
∍x sin2Φx = ∍ x (1- cos2Φx), as 

∍x sin2Φx = ∍ x - x2

σx
2  

.                                      (2.50) 
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Finally, the following equation is valid:                  (x 'σx - σx
'  x)2 + x 2

σx
2
 = ∍x .           (2.51) 

 
Equation describes ellipe with constant area, which is called Courant-Snyder invariant. 

Area of  Ellipse = π

x ' = dx
dz

 
x = dx

dt

Courant-Snyder Invariant and Beam Emittance

If particle belongs to certain ellipse at the initial moment of time, it will remain on ellipse 
boundary always. Because It is true for all particles belonging to partial ellipses within 
largest ellipse comprising al the beam, all particles within largest ellipse remain there. 
The largest ellipse occupied by particles is associated with beam emittance.
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Beam Emittance

Results of beam emitance measurements in GSI UNILAC accelerator (W. Bayer et 
al., Proceedings of PAC07, Albuquerque, New Mexico, p. 1413 (2007) ).

 
∍= 1

π -∞

∞

∫
-∞

∞

∫ dxdx '
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Liouville’s Theorem

Illustration of conservation of phase space volume 

Phase space volume occupied by 
particles is constant.

df
dt

 = ∂f
∂t

 + ∂f
∂x

 dx
dt

 + ∂f

∂P
 dP
dt

 = 0
 

Liouville’s theorem: if the motion of a system of mechanical particles obeys Hamilton’s 
equations, then phase space density remains constant along phase space trajectories and 
phase space volume occupied by the particles is invariant (Liouville's Equation):
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Hamiltonian Dynamics

x, y, z   position in real space 
Px, Py, Pz   components of canonical momentum 
Ax, Ay, Az       components of the vector – potential 
U(x,y,z)         scalar potential of the electromagnetic field 

Hamiltonian of charged particle with charge q and mass m  
 

H = c m2c 2 + (Px - qAx)
2 + (Py - qAy)

2 + (Pz - qAz)
2  + q U 

35

In quadrupoles                , while in solenoid      
!p =
!
P Px = px  - qB 

y
2

Py = py  + qB x
2
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Liouville’s Theorem (Proof)

36

Consider phase space element  dQdP. 
Number of particles dN inside element is dN = f (Q,P,t)dQdP

Change of particle density inside element is equal to 
divergence of the flux density (Continuity Equation)

 

∂ f
∂t

+ div( f !v) = 0

f dQ
dt On derivation of 

Liouville theorem.
f dP
dt

Flux density in Q-direction

Flux density in P-direction

 

∂ f
∂t

= − ∂
∂Q
( f !Q)− ∂

∂P
( f !P) = − ∂ f

∂Q
!Q − ∂ f

∂P
!P − f [∂

!Q
∂Q

+ ∂ !P
∂P
]Continuity Equation:

 
!Q = ∂H

∂P
But because of Hamiltonian equations                                      the term in square 

brackets is zero and total derivative of distribution function
                           is equal zero (Liouville theorem). 

 
!P = − ∂H

∂Q

 

∂ f
∂t

+ !Q ∂ f
∂Q

+ !P ∂ f
∂P

= df
dt

= 0
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Liouvillian and non-Liouvillian Processes

37

Liouville theorem is valid for Hamiltonian processes only (where equations of 
motion are determined by Hamiltonian equations). Liouville’s theorem does 
not allow to insert particles in phase space already occupied by the beam 
(there are no forces for that).

Liouvillian Processes: Dynamics in any electromagnetic fields without 
dissipation or scattering.

Non-Liouvillian processes: Scattering (foil, residual gas, Coulomb particle-
particle), synchrotron radiation.
Example: Two oppositely charged beams can be made to travel along the same 
trajectory. In the straight section, the beams are passed through a thin foil, which 
strips the electrons from the H- ions, leaving a single proton beam of higher 
density in phase space.
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Increase of Effective Phase Space Volume

38

There are processes which do not violate Liouville’s theorem, but result in 
increase of effective phase space volume of the beam. Example: filamentation 
in phase space. 

Two distributions with the same actual areas, but with different 
effective areas. Left distribution occupies 8 cells, while right 
distribution occupies 25 cells.
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Effect of Coupling on Beam Emittance

39

Liouville’s theorem is valid in 6-dimensional phase space. Beam 
emittance is a projection of 6D phase space volume on 2D phase 
plane. Like any projection, it can be larger or smaller while total 6D 
phase space volume is conserved. In accelerator technique, 
emittance exchangers are commonly used:   

Insertion of skew quadrupoles δ1, δ2, δ3 into regular FODO 
quadruplle structure to exchange emittances between phase 
planes (from P.J.Bryant, CERN 1994-001).
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Normalized and Un-Normalized Emitttance
Un-normalized (energy-dependent) 
emittance

Normalized (energy-independent) 
emittance,  

ε = βzγ ∍

 
∍∼ 1

βzγ
ε
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Twiss Parameters and Beam Emittance

Emittance units: π ⋅m ⋅ radian (π ⋅cm ⋅miliradian)

Example :  Emittance= π ∍ = π ⋅M ⋅N = 0.2π cmmrad
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Twiss Parameters and Area of Ellipse

Twiss parameters 
determine family of 
ellipses, while actual 
ellipse is determined 
also by the value of 
ellipse area. 

α1 = α2 = α 3

β1 = β2 = β3

∍1< ∍2  <∍3

Twiss parameters:

Area of ellipses:

2

1

3
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Ellipse Properties

γ = 1+α
2

β
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Twiss Parameters and Amplitude Function

α = −σ σ ' γ = 1
σ 2 +σ

'2

Comparison gives the following relationship between functions σ(z), σ’(z), and Twiss 
parameters: 

Compare two ellipses (x 'σ - xσ ' )2 + ( x
σ
)2 =∍γ x2 + 2αxx '+ βx '2 = ∍

β = σ 2

From equation                  the equation for amplitude function σ(z)

 can be rewritten as   

σ = β

1
2
βx
"βx −

(βx
' )2

4
+ k(z)βx

2 = 1

Twiss parameters are connected as 

σ x
'' − 1

σ x
3 + k(z)σ x = 0

α(z) = − β '(z)
2
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Envelope of the beam, Rx(z), corresponds to the maximum value of cos(Φ x (z)+Φo )  = 1 in 

equation  x(z) = эxσ x (z) cos(Φ x (z)+Φo )within the beam: 

Rx(z) = max {x(z)} = ∍x  σx(z).                         (2.52) 
 

Slope of the beam envelope is, therefore, given by 
 

Rx
' (z) = ∍x  σx

' (z).                                   (2.53) 
 
Taking into account previously introduced notations 

σ = β  
 

σ ' = - α
β
 

 

beam envelope and slope of beam envelope are given by 

Beam Envelope

Rx = ∍x βx

dRx

dz
= −α x

∍x
βx
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Substitution of expression for σx(z) 

σx(z) = Rx (z)
∍x

                                     (2.54) 

 
into Eq. (2.43) gives us the equation for beam envelope: 

Rx
''  - ∍x

2

Rx
3
 + k(z) Rx = 0.                            (2.55) 

Beam envelope equations without space charge forces are: 
 

{  

Rx
''  - ∍x

2

Rx
3
 + kx(z) Rx = 0

Ry
''  - ∍y

2

Ry
3
 + ky(z) Ry = 0                                (2.56) 

Beam Envelopes (cont.)
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Beam Spot Size and Beam Slope 
Beam	spot	 and	beam	envelope	 slope	 can	be	determined	 in	
other	way	as	well.	Let	us	rewrite	the	ellipse	equation	as		

F(x, x ') = γ x2 + 2α xx '+ βx '2 − ∍=	0	

We	 need	 to	 find	 a	 solution	 to	 the	 equations	
dx
dx'

 = 0.	
According	to	the	differentiation	rule	of	an	implicit	function,		

dx
dx '

=

dF
dx '
dF
dx

= − 2α x + 2βx '
2γ x + 2α x '

= 0 	

which	 has	 a	 solution	 x' = - x α / β.	 Substitution	 of	 the	
obtained	 value	 of	 x'	 into	 the	 ellipse	 equation	 gives	
xmax = ±  β ∍ .	 The	 value	 of	 R = xmax	 is	 associated	 with	 the	
envelope	size	of	the	beam	

R = β ∍ 	

Differentiation	of	this	equation	taking	into	account	that	α (z) = − β '(z)
2 ,	

gives			 	 	 	 	
dR
dz

= −α ∍
β 	
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Floquet Theorem
A second-order linear differential equation with periodic coefficients has a 
solution of the form  eλz σ(z) where λ is a constant and σ(z) a periodic function. 

Mathieu - Hill equation
   
Solution:

Equations for amplitude 
and phase:

 x(z) = эxσ x (z) cos(Φx (z)+Φo )

Periodic function σ (z+S) = σ(z)  is called module of Floquet function
Corresponding function  Φ(z)   is called phase of Floquet function

If function k(z) is a periodic function      k (z+S) = k(z)
there is an unique periodic solution      σ (z+S) = σ(z).
This solution can be found by adjusting σ(z), σ’(z) in the way that solution after one 
period σ (z+S), σ’(z+S) coinsides with σ(z), σ’(z).    

σ
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Floquet Ellipse

→

Focusing period

Input Output

Floquet ellipse is a unique beam ellipse which transforms into itself after one 
focusing period.

(x 'σ x - xσ x
' )2 + ( x

σ x

)2 =∍xBeam ellipse: If σ (z+S) = σ(z), σ’ (z+S) = σ’(z), 
beam ellipse is transformed into 
itself after one period.
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Beta-Function
FODO focusing structure

Beta-function of periodic structure

Single-particle trajectories in periodic 
structure

Matched beam in periodic structure

α (z) = − β '(z)
2

β(z)

Twiss parameters:

Periodic solution of Mathieu – Hill equation 
is called beta-function of the focusing channel:
β = σ2

1
2
β "β − (β

' )2

4
+ k(z)β 2 = 1
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Matched Beam in Periodic Focusing Structure

Transport of a matched beam in a quadrupole channel. Matched beam ellipses repeat 
into themselves after each focusing.period   
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Acceptance of Periodic Focusing Structure

A = a2

βmax

Focusing Quadrupole Defocusing Quadrupole

R(z) = ∍ β(z)

a = Aβmax

Beam radius

Maximal beam radius R = a

Acceptance of periodic focusing chanell A 
is the largest Floquet ellipse limited by the 
aperture of the structure a.
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Mismatched Beam in a Periodic Structure
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Matched Beam Focusing

Matched beam in RF linear accelerator (Courtesy of Sergey Kurennoy).
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ω r =
dΦ x

dt
Instantaneous frequency of transverse oscillations:

Combining                   with expression for beam emittance

                     one can express beam emittance with
instantaneous frequency of transverse oscillations:

Emittance is expressed through Twiss parameter 

Instantaneous frequency of transverse oscillation and Twiss 
parameter β are connected as:

Instantaneous frequency of transverse oscillations has a 
minimum value in focusing lens and maximum value in 
defocusing one.

∍x=
Rx
2ω r

βc

Φx
' = 1

σx
2

Instantaneous Frequency of Transverse 
Oscillations

∍x= Rx
2 /σ x

2

∍x= Rx
2 / βx

ω r =
vz
βx
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Matrix Method for Particle Trajectories 

x1
x1
' = M1

xo
x0
'

x2
x2
' = M 2

x1
x1
' = M 2M1

xo
xo
'

M = Mn ⋅Mn−1......M 2 ⋅M1

x1 = m11xo +m12xo
'

x1
' = m21xo +m22xo

'

Matrix of sequence of elements is a product of that of each element 

Let us divide focusing structure by elements, where 
equation of motion are individual linear differential 
equations with constant coefficients (drift space, 
quadruple lens). Solution at each element can be 
written as linear combination of initial conditions:

or in matrix form

Matrix of two subsequent elements:

xo
xo
'

⎛
⎝⎜

⎞
⎠⎟
= 1
(m11m22 −m12m21)

m22 −m12

−m21 m11

⎛

⎝
⎜

⎞

⎠
⎟
x1
x1
'

⎛
⎝⎜

⎞
⎠⎟

Inverse matrix:
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Matrix Method for Particle Trajectories (cont.) 
x

x'
⎛
⎝⎜

⎞
⎠⎟
=

m11 m12

m21 m22

⎛

⎝
⎜

⎞

⎠
⎟
xo
xo
'

⎛
⎝⎜

⎞
⎠⎟

Particle trajectory at arbitrary point can be 
expressed as a function of initial conditions 

m11 =
∂x
∂xo

m12 =
∂x
∂xo

' m21 =
∂x '
∂xo

m22 =
∂x '
∂xo

'

Matrix elements can be written as 

M =

∂x
∂xo

∂x
∂xo

'

∂x '
∂xo

∂x '
∂xo

'

Determinant of matrix coincides with Jacobian: 

 Because of Liouville’s theorem, phase space element is transformed as 
dx dx’ = dxo dx’o  , and, therefore, determinant of matrix M is equal to unity:
 
                                                det M = 1

dxdx ' = det

∂x
∂xo

∂x
∂xo

'

∂x '
∂xo

∂x '
∂xo

'

dxodxo
'

x = m11xo +m12xo
'

x ' = m21xo +m22xo
'

x = ∂x
∂xo

xo +
∂x
∂xo

' xo
'

x ' = ∂x '
∂xo

xo +
∂x '
∂xo

' xo
'
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Transformation of Beam Ellipse Through Arbitrary Channel

y
′y

⎛

⎝
⎜

⎞

⎠
⎟
S

= C S
′C ′S

⎛
⎝⎜

⎞
⎠⎟

y
′y

⎛

⎝
⎜

⎞

⎠
⎟
0

ENTRY EXIT

C S
C ' S '

⎡

⎣
⎢

⎤

⎦
⎥

Transfer line

Position and velocity 
of test ion satisfies
both ellipses

y’ y’

y y

α1, β1

α*1, β*1

α2, β2

α*2, β*2

By#inserting#the#inverse#trajectory#transformation#
y0
′y0

⎛

⎝
⎜

⎞

⎠
⎟ =

′S −S
− ′C C

⎛
⎝⎜

⎞
⎠⎟

y
y '

⎛

⎝
⎜

⎞

⎠
⎟ #

into#the#ellipse#equation,#we#have#at#point#s0 #

 

y0y0
2 + 2α 0y0 ′y0 + β0 ′y0

2

= y0 ′S y − S ′y( )2 + 2α 0 ′S y − S ′y( ) − ′C y +C ′y( ) + β0 − ′C y +C ′y( )2

= ′C 2β0 − 2 ′C ′S α 0 + ′S 2y0( )
γ

! "#### $####
y2 + 2 −C ′C β0 + ′S C + S ′C( )α 0 − S ′S y0( )

α
! "###### $######

y ′y + C 2β0 − 2CSα 0 + S
2y0( )

β
! "#### $####

′y 2

= γ y2 + 2α y ′y + β ′y 2

β
α
γ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

C 2 −2CS S2

−C ′C C ′S + S ′C −S ′S
′C 2 −2 ′C ′S ′S 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

β0
α 0

γ 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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Transformation of particle trajectory 
through arbitrary channel 

Initial conditions (z = 0):

Particle transformation through the channel

 

x(z) = эxσ x (z) cos(Φx (z)+Φo )

x ' (z) = эx [σ x
' (z)cos(Φx (z)+Φo )−

sin(Φx (z)+Φo )
σ x

]

 

xo = эxσ o  cosΦo

xo
'' = эx (σ o

' cosΦo −
sinΦo

σ o

)

x = xo(
σ x

σ o

cosΦx −σ xσ o
' sinΦx )+ xo

''σ xσ o sinΦx

x ' = xo[cosΦx (
σ x
'

σ o

− σ o
'

σ x

)− sinΦx (σ x
'σ o

' + 1
σ xσ o

)]+ xo
'' (σ o

σ x

cosΦx +σ x
'σ o sinΦx )

Transformation of Particle Trajectory Through Arbitrary Channel
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x
x '

⎛
⎝⎜

⎞
⎠⎟
=

βx (z)
βo

(cosΦx +αo sinΦx ) βoβx (z) sinΦx

- cosΦx (α x (z)-αo )+sinΦx (1+αoα x (z))
βoβx (z)

βo

βx (z)
(cosΦx -αo sinΦx )

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

xo
xo
'

⎛
⎝⎜

⎞
⎠⎟

In matrix form with                 ,                               :

Transformation of Particle Trajectory Through Arbitrary Channel

σ  = β σ ' = −α / β
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βx (S)= βo α x (S) =αoFor periodic solution in periodic channel:

Transformation of Particle Trajectory Through Periodic Channel

Transformation matrix trough 
periodic channel (Twiss matrix):

µo = Φx (S)
Phase advance of transverse 
oscillations per period of structure 

cosµo =
m11 + m22

2

The value of μο  can be found from 
transformation matrix as a half sum of 
diagonal elements 

m11 +m22 ≤ 2Stability criteria:

βx =
m12

sinµo
α x =

m11 −m22

2sinµo

Twiss parameters of matched 
beam:

−1≤ cosµo ≤1

61

M =
cosµo +α x sinµo βx sinµo

−1+α x
2

βx

sinµo cosµo - α x sinµo

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Y. Batygin - USPAS 2024



FODO Quadrupole Focusing Channel 

Period of FODO channel S=2D+2l
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In quadrupole lens, the Mathieu – Hill equation is transformed into 
equation with constant coefficients k: 
 

d 2x
dz2

+ kx = 0                    
d 2y
dz2

− ky = 0
           

k = qG
mγβc

 

 
Solution of equations of motion in quadrupole lense:   

x = xo cos(z k )+ xo
'

k
sin(z k )

              

x ' = −xo k sin(z k )+ xo
' cos(z k )  

y = yo cosh(z k )+ yo
'

k
sinh(z k )         

  y
' = yo k sinh(z k )+ yo

' cosh(z k )  

Single-Particle Matrix in a Quadrupole Focusing Channel 

cos(iϕ ) = cosh(ϕ )
sin(iϕ ) = i sinh(ϕ )
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Single-Particle Matrix in a Quadrupole Focusing Channel 

Transformation	 of	 particle	 coordinate	 and	 slope	 of	 particle	
trajectory	through	the	quadrupole	of	the	length	of	D,	can	be	written	
as	a	matrix:	
	

x

x'
⎛
⎝⎜

⎞
⎠⎟
= MF

xo
xo
'

⎛
⎝⎜

⎞
⎠⎟ 														

		

MF =
cos(D k ) 1

k
sin(D k )

- k sin(D k ) cos(D k )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
	

y

y'
⎛
⎝⎜

⎞
⎠⎟
= MD

yo
yo
'

⎛
⎝⎜

⎞
⎠⎟
														

		

MD =
cosh(D k ) 1

k
sinh(D k )

k sinh(D k ) cosh(D k )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
	

	

Between	lenses	particle	perform	drift	at	the	distance	l:															MO = 1 l
0 1

⎛
⎝⎜

⎞
⎠⎟ 	
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Matrix of FODO Cell

where quadrupole lens rigidity

m11 = cosh χ(cosχ − l k sin χ ) + sinh χ(l k cosχ − kl
2

2
sin χ )

m12 =cosh χ(
sin χ
k

+ 2l cos2 χ
2
)+ sinh χ( 1

k
+ l sin χ + l2 k cos2 χ

2
)

m21 = cosh χ(2lk sin
2 χ
2
− k sin χ )+ sinh χ( k + k 3/2l2 sin2 χ

2
− lk sin χ )

m22 = cosh χ(cosχ − l k sin χ ) + sinh χ(l k cosχ − kl
2

2
sin χ )

Mx = MF
2

MOMDMOMF
2

My = MD
2

MOMFMOM D
2

Matrix of one period 
of such structure 

Elements of resulting x-  matrix of one period

χ = D k = D qG
mγβc
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cosµo = coshχ(cosχ − l k sinχ) + sinhχ(l k cosχ − kl
2

2
sinχ)

Phase Advance Per Period in FODO Channel

Using cosµo =
m11 + m22

2

Using approximations

Phase advance per period of FODO focusing channel, 
as a function of quadrupole lens rigidity: (solid) exact 
values; (dotted) smooth approximation. Numbers 
indicate ratio of lens length to period, D/S. Smooth 
approximation is valid for . 

cosµo ≈1−
l2χ 2k
2

− 2
3
l kχ 3 − χ 4

6

sinχ = χ − χ 3

6
+ χ 5

120

cosχ = 1−  χ
2

2
+ χ 4

24

sinhχ = χ + χ 3

6
+ χ 5

120

coshχ = 1+ χ 2

2
+ χ 4

24

µo =
S
2D

1− 4
3
D
S
qGD2

mγβc

Smooth approximation to FODO 
phase advance:

cosµo ≈1−
µo
2

2

µo ≤ 60
o
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Beta Functions and Acceptance of FODO Channel

A = a
2

S
sinµo

(1 + sin µo

2
)

Acceptance of FODO channel
A = a2 /βmax

β = m12

sinµo

cosµo ≈1−
l2χ 2k
2

= 1− 2sin2 µo

2
sin µo

2
≈ ± lχ k

2
= ± l D k

2

m12 ≈ 2l +
(2 + kl2 )χ

k
+ 3lχ

2

2
≈ S (1 ± sin µo

2
)

Beta-function

Expansions

Element m12

βmax =
S (1 + sin µo

2
)

sinµo
βmin =

S  (1 − sin µo

2
)

sinµo

Maximum and minimum 
values of beta-function 
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Characteristics of FODO focusing channel as 
functions of phase advance per period of structure.

A = a
2

S
sinµo

(1 + sin µo

2
)

µo = 76.3
o

Beta Functions and Acceptance of FODO Channel (cont.)

Optimal value of phase advance, 
where acceptance reaches it’s 
maximum 

Acceptance of FODO Channel

∂A
∂µo

= 0

Amax = 0.6
a2

SMaximal FODO  acceptance
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Maximal and Minimal Beam Size in FODO Channel

R(z) = ∍ β(z)

Rmax =
∍ S
sinµo

(1 + sin µo

2
) = Ro 1 + sin µo

2

Rmin =
∍ S
sinµo

(1 − sin µo

2
) = Ro 1 − sin µo

2

Ro =
∍ S
sinµo

Taking into account expression for beam size                          and using expressions 
for βmax and βmin in FODO channel

Maximal beam size

Minimal beam size

Average beam size

Rmax ≈ Ro(1+υmax ) Rmin ≈ Ro(1−υmax )Let us express maximal and minimal 
beam size as

υmax =
1 + sin µo

2
− 1 − sin µo

2
2

Relative variation of beam size

υmax ≈
1
2
sin µo

2
≈ µo

4For µo ≤ 60
o
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Higher Stability Regions 

Variation of gradient along FD 
focusing structure. 

  

M F
2

M D M F
2

=
cosχ  coshχ 1

k
(coshχ sinχ+sinhχ )

k (-coshχ sinχ+sinhχ ) cosχ  coshχ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Consider FD focusing structure. Matrix of of one FD period:

		cosµo = cosχ 	coshχPhase advance per cell 

χ = D qGo

mγβc
where quadrupole lens 
rigidity

Condition for stability 
of transverse 
oscillations 

−1≤ cosχ  cosh χ ≤1
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Higher Stability Regions (cont.) 

The first area of stability

Second area of stability

Higher order stability regions are placed
αround cos χ = 0, or   

0 ≤ χ ≤1.873

4.694 ≤ χ ≤ 4.73

χn =
π
2
(2n −1), n = 2,3,4,...

Βandwidth of stability regions can be 
approximately estimated as 

Δχn =
2

cosh[π
2
(2n −1)]

Areas of stability drop quickly with number n. In practice, only first 
stability area is used for focusing. 

Stability areas -1< cos μο <1  versus quadrupole 
lens rigidity. 

χ
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Matrix of Thin RF Gap

Change of particle slope in RF gap:

Change of RF field while particle crossing the 
gap: 

Transverse matrix of thin RF gap 

Focal length f of RF gap is determined by:

		
Δ dr
dz

≈
qEinr
2mγ 3vin

2 (
ΔE
Ein

−2Δv
vin
) ≈ qrΔE

2mγ 3v2

  
ΔE = −2Eg sinϕ sinπ g

βλ

  

x

x '

⎛
⎝⎜

⎞
⎠⎟
=

1 0

− qUTπ sinϕ
mc2β 3γ 3λ

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

xo

xo
'

⎛

⎝
⎜

⎞

⎠
⎟

  

1
f
= − qUTπ sinϕ

mc2β 3γ 3λ
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Focusing Structure Including RF Gap

Consider FOD focusing structure including RF gap
(focusing period S = 2D, g << D):

Transfer matrix through focusing period
 (neglecting drift spaces between elements):

Phase advance per period:

Defocusing factor Γφ: 

		

x
x '

⎛

⎝⎜
⎞

⎠⎟
=

coshχ 1
k
sinhχ

k sinhχ coshχ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0
1
f

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

cosχ 1
k
sinχ

- k sinχ cosχ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

xo
xo
'

⎛

⎝
⎜

⎞

⎠
⎟

		
cosµ = cosχ 	coshχ + D

f
sinχ coshχ + cosχ sinhχ

2χ

QF QD RF
Gap

D Dg

  

D
f
= (πS

βλ
Ω
ω

)2 sinϕ
sinϕs

= Γϕ
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Smith-Gluckstern Stability Diagram
Transverse stability is provided for 
area restricted by curves:

       cos μ = -1,    cos μ = 1 

Longitudinal stability is provided for 
phases within separatrix:

                  2φs < φ < - φs

Defocusing factor is varied within

              - Γs < Γφ < 2Γs cos φs

where defocusing factor for 
synchronous phase

Stable area is shaded. For 
synchronous particle:

  cosµ1 < cosµs < cosµ2

  
Γ s = (πS

βλ
Ω
ω

)2

χ

0
ΓφΓs- Γs 2Γscosφs  
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Averaging Method for Particle Trajectory

(Solid line) actual particle trajectory and (dashed line) the 
sine approximation to that trajectory.
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m
d 2x
dt 2

= −
dU
dx

+ f1 cosωt + f2 sinωt

Consider one-dimensional particle motion in the combination of constant field 

U(x) and fast oscillating field  

f (x,t) = f1(x)cosωt + f2 (x)sinωt

Fast oscillations means that frequency , where T is the time

 period for particle motion in the constant field U only. Equation of particle 
motion:

Let us express expected solution is a combination of slow variable X(t) and fast 
oscillation       :

x(t) = X(t)+ξ(t)
where ξ(t ) << X(t )

Fields can be expressed as: U(x) =U(X) + dU
dX

ξ

f (x) = f (X) + df
dX

ξ

ξ(t)

ω >> 1T

Motion in Fast Oscillating Field (L.Landau, E.Lifshitz, “Mechanics”)
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Average value of         at the period of is zero, while function X(t) is changing slowly 
during that time. Taking into account that 

Substitution of the expected solution into equation of motion gives:

 
m !!X +m!!ξ = −

dU
dX

− ξ d
2U
dX 2 + f (X,t) + ξ df

dX

For fast oscillating term:  m
!!ξ = f (X,t)

After integration: ξ = − f
mω 2

Let us average all terms over time, where averaging means mean value over period 

 
< m !!X > + < m!!ξ >= − <

dU
dX

> − < ξ d
2U
dX 2 > + < f (X,t) > + < ξ df

dX
>

< g(t) > = 1
T

g(
0

T

∫ t)dt

 < !!X > ≈ !!X  <
!!ξ >= 0

T = 2πω

ξ(t) T = 2πω

77

Small Fast Oscillating Term 
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m!!X = −

dU
dX
 + < ξ

df
dX

> = −
dU
dX

−
1

mω 2 < f
df
dX

>

Taking into account that < f
df
dX

>=
1
2
<
df 2

dX
>

<
df 2

dX
> =

1
2
(
df1

2

dX
+
df2

2

dX
)

 
m !!X = −

dUeff

dX
equation for slow particle motion is

Ueff =U +
1

4mω 2 ( f1
2 + f2

2 )where effective potential is

Effective Potential of Averaged Motion
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Consider periodic FD structure of quadrupole lenses with length of D = S/2, and field 
gradient in each lens Go. In FD structure, focusing-defocusing lenses follow each other 
without any gap. Let us expand focusing function G(z) in Fourier series:  

G(z) = 4Go

π
[sin(π z

D
)+ 1
3
sin(3π z

D
)+ 1
5
sin(5π z

D
)+ ...]

FD focusing structure and approximation of field 
gradient.

Averaging Method for FD Focusing Structure
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Let us keep only first term:

Equation for slow particle motion

can be written as

where frequency of transverse oscillations 

m d 2x
dt 2

= x q
γ
4Go

π
βc sin(πβc

D
t)

Equation of particle motion in 
fast oscillating field

can be substituted by slow motion in an effective 
potential

m d 2x
dt 2

= f1(x)sinωt

Ueff =
f1
2

4mω 2 =
4
m
(q
γ
GoD
π 2 )

2 X 2

Averaged Particle Trajectory in FD Channel

f1 = x
q
γ
4Go

π
βc

Ωr =
q
γ m

2 2GoD
π 2

ω = πβc
D

d 2X
dt 2

+Ωr
2X = 0

 
m !!X = −

dUeff

dX
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Phase advance of slow oscillations per period S 

Phase advance of slow oscillations in FD channel per 
period S = 2D µo =

q
γ m

4 2GoD
2

π 2βc

Taking into account, that                      the phase advance
 can be written
(This result can be obtained exactly if we take all terms in FD expansion) 

4 2
π 2 ≈ 1

3
µo =

1
3
qGoD

2

mγβc

Compare with matrix method for 
FODO period with S =2D : µo =

S
2D

1− 4
3
D
S
qGoD

2

mγβc
= 1

3
qGoD

2

mγβc

Phase Advance per FD Period
d 2X
dz2

+ (Ωr

βc
)2 X = 0After substitution t à z equation for transverse 

oscillations is

Averaged particle trajectory X = Xo sin(
Ωr

βc
z +Φox )

µo =
Ωr

βc
S

Averaging method gives the same result for smoothed phase 
advance as matrix method.
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Averaged Particle Dynamics in a Quadrupole 
Focusing Channel

Equation of motion in x- and y- directions
d 2x
dz2

+ k(z)x = 0 d 2y
dz2

− k(z)y = 0

k(z) = qG(z)
mcβγ

where focusing function

are substituted by averaged trajectories 

d 2X
dz2

+ (µo

S
)2 X = 0 d 2Y

dz2
+ (µo

S
)2Y = 0

k(z) = qG(z)
mcβγ

→ (µo

S
)2

Fast oscillating term is substituted as:
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ξ = −x q
γ m

4GoD
2

π 3βc
sin(πβc

D
t)

υmax =
ξmax
x

= 4 3
π 3 µo = 0.223µo

Relative amplitude of small fast oscillations in FD 
structure:  

  
ξ = − f

mω 2
Equation for fast component:

	
(Solid) particle trajectory in quadrupole 
channel and (dotted) approximation by 
averaging method.

x = Xo sin(µoτ +Φox )(1+υmax sin2πτ )

y = Yo sin(µoτ +Φoy )(1−υmax sin2πτ )

Solution of equation of motion in 
averaged approximation (τ = z / S)    :

Particle Trajectory in Averaging Method
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G(z) = 4Go

π
(−1)m−1

2m −1m=1

∞

∑ sin[(2m −1)π D
S
]  sin[2π (2m −1) z

S
]

Averaging Method for Trajectory in FODO Channel 

µo = 2 qGoS
2

π 2mγ βc

sin2[(2m −1)π D
S
]

(2m −1)4m=1

∞

∑

sin2[(2m −1)π D
L
]

(2m −1)4m=1

∞

∑ = π 4

8
(D
S
)2 (1− 4

3
D
S
)

µo =
S
2D

1− 4
3
D
S
qGoD

2

mγβc

υmax =
2

π 2 1− 4
3
D
S

sin(π D
S
)

(π D
S
)

µo ≈ 2
π 2 µo = 0.2026µo

for D << S

Fourier expansion of field 
gradient

Smoothed phase 
advance per FODO 
period (compare with 
matrix method)

Amplitude of small 
oscillation term
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Transverse Dynamics Including RF Field

d 2x
dt 2

= −[qβc
mγ

G(z)+ qEπ sinϕ
mλβγ 3 ] x

dpr
dt

= q(Er − βcBθ ) = −q E
γ
I1(
kzr
γ
) sinϕEquation of transverse motion in 

traveling wave:

For near-axis particles
transverse equation of motion in 
RF traveling wave 

I1(
kzr
γ
) ≈ kzr
2γ

d 2x
dt 2

= − qEπ sinϕ
mλβγ 3 x

Transverse equation of motion in 
quadrupole structure and RF traveling 
wave

Smooth approximation to transverse 
motion

d 2X
dt 2

= −Ωr
2X − qEπ sinϕ

mλβγ 3 X

Ωr = µo
βc
S

Frequency of smoothed oscillations
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Transverse-Longitudinal Coupling
sinϕ = sin(ϕ s +ψ ) ≈ sinϕ s +ψ cosϕ s = sinϕ s (1+ψ ctgϕ s )Let us express

d 2X
dt 2

+ [Ωr
2 − Ω2

2
(1+ψ ctgϕ s )]X = 0

Smoothed transverse oscillations in 
focusing and RF field

Ω2 = 2π
λ
qE
m
sinϕ s

βγ 3Frequency of longitudinal oscillations:

ψ = −Φsin(Ωt +ψ o )
Non-synchronous particle performs 
longitudinal oscillations with amplitude Φ  
and longitudinal frequency Ω: 

d 2X
dt 2

+ X[Ωrs
2 − Ω2

2
ctgϕ sΦsin(Ωt +ψ o )] = 0

Transverse equation of motion can 
be rewritten as 

Ωrs
2 = Ωr

2 − Ω2

2
Transverse oscillation frequency of 
synchronous particle 2

21
2
oz

s o
o

µµ µ
µ

= -
Phase advance of synchronous particle at 
the period of focusing structure in RF field 
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d 2x
dτ 2

+π 2 (a − 2qsin2πτ )x = 0

Ωrs =
n
2
Ω,    n = 1, 2, 3 Parametric resonance occurs when a = n2  

Mathieu equationSelecting Ωt = 2π τ transverse oscillation in 
RF  field becomes

d 2X
dτ 2

+π 2[(2Ωrs

Ω
)2 − 2Φ ctgϕ s sin2πτ ]X = 0

a = (2Ωrs

Ω
)2 q = Φ ctgϕ s ≈ ϕ s

tgϕ s
Parameters of Mathieu equation

bn
2

< Ωrs

Ω
<

an
2

a1 = 1+ q −
q2

8
− q

3

64
b1 = 1− q −

q2

8
+ q

3

64

a2 = 4 +
5q2

12
− 763q

4

13824

where for the first two regions of 
instability, n = 1, 2, the parameters 
an, bn are 

Regions of parametric instability 

Parametric Resonance in RF Field

87

b2 = 4 −
q2

12
+ 5q4

13824
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Parametric resonance regions.

Phase advance for synchronous particle 

in RF field µs = Ωrs
S
βc

Defocusing factor

Regions of Parametric Resonance

In linac, the transverse oscillation 
frequency is typically larger than the 
longitudinal oscillation frequency, and 
the first  parametric resonance instability 
region is avoided. The potentially 
dangerous region in this case is the 
second parametric resonance bandwidth 
where n = 2. Instabilities of higher-order 
resonance regions are typically 
unimportant.

  
Γ s = (πS

βλ
Ω
ω

)2

Γs
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Experimental Observation of Parametric Resonance

89

(L.Groening et al, LINAC2010)
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Statistical Description of Beams

Realistic beam distribution in phase space. 

Realistic beam is 
characterized by 
certain distribution in 
phase space. In order 
to apply theory to real 
beams, the concept of 
moments of distribution 
function is used. 

90Y. Batygin - USPAS 2024



Consider a beam with a distribution function f (x, P, t) and let g (x, P, t)  be an arbitrary 
function of position, momentum, and time. The average value of the function g (x, P, t) is 
defined as: 

 

< g > = −∞

∞

∫ g(!x,
!
P,t) f (!x,

!
P,t)d!x d

!
P

−∞

∞

∫

−∞

∞

∫ f (!x,
!
P,t)d!x d

!
P

−∞

∞

∫
 

 
The integral in the denominator is just the total number of particles. Now, let us consider 
some examples of physically significant average values. For  g(

!x,
!
P,t) = x  , the average 

value 

 
< x > = x = 1

N -∞

∞

∫
-∞

∞

∫ x f (!x,
!
P,t)d!x d

!
P  

 
gives the center of gravity of the beam in the x-direction.  

Statistical Description of Beams (cont.)
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Analogously, for  g(
!x,
!
P,t) = (x − x )2 , the average value of x2 is defined as 

 

 
< x2 > = 1

N -∞

∞

∫
-∞

∞

∫ (x − x )2 f (!x,
!
P,t)d!x d

!
P  

 

and is called the mean-square value of x. Similarly, the mean-square value of transverse 
canonical momentum Px  is defined as  
 

 
< Px

2 > = 1
N -∞

∞

∫
-∞

∞

∫ (Px − Px )
2 f (!x,

!
P,t)d!x d

!
P  

 

The correlation between variables x and Px is given by the following expression  
taking  g(

!x,
!
P,t) = (x − x )(Px − Px ) : 

 

 
< xPx > =

1
N -∞

∞

∫
-∞

∞

∫ (x − x )(Px − Px ) f (
!x,
!
P,t)d!x d

!
P  

Moments of Distribution Function
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Gaussian Distribution

dN
dx

= 1
2πσ

exp[− (x − x )
2

2σ 2 ]

σ = < x2 >

x
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The following combination of second moments of distribution function is called 
the root-mean-square beam emittance: 
 

∍rms= < x2 >< x '2 > − < xx ' >2  
 
and the normalized root-mean-square beam emittance is given by 
 

ε rms =
1
mc

< x2 >< Px
2 > − < xPx >

2  

 
By the reasons discussed below, beam emittance is adopted as the value, four times 
large than rms emittance 
 

∍= 4 < x2 >< x '2 > − < xx ' >2  
 

Root-Mean-Square (RMS) Beam Emittance
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The density of particles in phase space, normalized by the total number of particles N, is 
described by a distribution function ρx  (x, x'), which is an integral of the beam 
distribution function over the remaining variables: 
 

ρx  (x, x') = 1
N

 
- ∞

∞

 
- ∞

∞

 
- ∞

∞

 
- ∞

∞

f (x, x', y, y', z, z') dy dy dz dz' 

 
It is convenient to consider distributions in phase space with elliptical symmetry: 
 

ρx  (x, x') = ρx  (γ x  x2 + 2 α xx x' + βx  x'2) 

Such distributions have particle densities, ρx  (x, x'), that are constant along concentric 
ellipses  

rx2 = γ x  x2 + 2 α xx x' + βx  x'2 
 
but are different from ellipse to ellipse, so one can write ρx  (x, x') = ρx  (rx

2). Namely, 
equation this describes a family of similar ellipses, which differ from each other by 
their areas.  

 

Distributions with Elliptical Symmetry
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Using transformation  
σ = β              σ ' = - α

β  

the ellipse equation can be rewritten as 

       
rx2 = (xσx'  - x'σx )

2 + ( x
σx

 )2  

 

Let us calculate rms beam parameters and rms beam emittance for an arbitrary function 
ρx  (x, x'). We begin by changing variables: 

 

{  
 x
σx

 = rx  cosϕ            

xσx'  - x'σx  = rx  sinϕ  
Now we rewrite it as  

      

{  x = rxσxcosϕ            

x' = rxσx' cosϕ - rx
σx

 sinϕ 

The absolute value of the Jacobian of transformation gives us the volume  
transformation factor of the phase space element: 
 

dx dx' = (abs 
 ∂x
∂rx

        ∂x
∂ϕ

 

 ∂x'
∂rx

        ∂x'
∂ϕ

 
 ) drx dϕ = rx  drx  dϕ 

 

Rms Beam Parameters
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Then, the rms values are: 
 

<x 2> =  
o

2π
 

o

∞
(rxσxcosϕ)2ρx (rx2) rx  drx  dϕ  

                 
<x'2> =  

o

2π
 

o

∞
(rxσx' cos ϕ - rx

σx
 sin ϕ)2ρx (rx2) rx  drx  dϕ  

 

           
<xx'> =  

o

2π
 

o

∞
rxσxcosϕ (rxσx' cosϕ - rx

σx
 sinϕ)ρx (rx2) rx  d rxdϕ   

 
σ = β 

 
σ ' = - α

β  

 
βγ  - α 2 = 1 

Let us take into account previously introduced expressions:

Rms Beam Parameters (cont.)
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Calculation of integrals over ϕ gives: 

<x 2> = π  βx  
o

∞
rx3 ρx (rx2) drx

    
 

<x'2> =πγ x  
o

∞
rx3ρx (rx2) drx 

<x x'> = - π  αx  
o

∞
rx3 ρx (rx2) drx

 
Therefore, four-rms beam emittance is given by  

  ∍= π rx
3

o

∞

∫ ρx (rx
2 )drx  

Rms Beam Ellipse

α x = − < xx ' >
∍x

Twiss parameters βx =
< x2 >
∍x

γ x =
< x '2 >
∍x

< x '2 >
∍x

x2 − 2 < xx ' >
∍x

xx '+ < x2 >
∍x

x '2 =∍xRms beam ellipse

 
    Beam distribution and 4-rms ellipse. 
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Consider an example, where the beam ellipse has an area of πAx, and is uniformly 
populated by particles. Particle density is constant inside the ellipse rx2 = Ax: 
 
ρx (rx2) = 1

πAx  
 

Calculation of the rms value, < x2 > ,  
gives: 
 

<x 2> = π  βx  
o

Ax

rx3  ρx (rx2) d rx  = Ax βx

4  

Uniformly populated ellipse at phase 
plane (x, x’). 

Example: Uniformly Populated Ellipse
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The beam boundary is given by 
 

Rx = Ax βx 
 
Radius of the beam represented as a uniformly populated ellipse is equal to twice the 
rms beam size: 
 

R = 2 <x 2>  
 
Rms beam emittance: 

∍x = 4
Ax

  
o

Ax

rx3 drx  = Ax 

Therefore, the area of an ellipse, uniformly populated by particles, coincides with the 4 x 
rms beam emittance. This explains the choice of the coefficient 4 in the definition of 
rms beam emittance. 

4-RMS Emittance of Uniformly Populated Ellipse
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ρx (rx
2 ) = 1

N
dN

rxdrxdφ
Particle density in the phase plane (x, x’) 

N (∍)
N

= π ρx (rx
2 )

o

∍

∫ drx
2

ρx (rx
2 ) = 1

2π ∍x
exp(− rx

2

2 ∍x
)Beam with Gaussian distribution in phase 

space      x = rms emittance 

N (∞)
N

= π ρx (rx
2 )

o

∞

∫ drx
2 = 1Normalization condition

N (∍)
N

= 1− exp(− ∍
2 ∍x

)Fraction of particles within the emittance  of a 
Gaussian beam is:

Fraction of particles within the four-
rms emittance of Gaussian beam 

1− exp(−2) ≈ 0.865

Beam with Gaussian Distribution

Fraction of particles within emittance ∍

∍
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Sigma Matrix of the Beam

It is common to represent beam in 4D phase space (x,x’,y,y’) as an 4D ellipsoid: 

a11x
2 + a22x '

2+ a33y
2 + a44y '

2+ 2a12xx '+ 2a13xy + 2a14xy '+ 2a23x 'y + 2a24x 'y '+ 2a34yy ' = 1

This equation can be written as  
!
XT !a

!
X = 1

 

!
X =

x
x '
y
y '

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

where the vector of particle position in phase space

and      is 4x4 symmetrical matrix of coefficients, aij=aji . Let us introduce inverse 
matrix                 , and rewrite 4D ellipsoid equation as 

 
!a

 
!σ −1 = !a

 
!
XT !σ −1 !X = 1

 

!σ =

σ 11 σ 12

σ 21 σ 22

σ 13 σ 14

σ 23 σ 24

σ 31 σ 32

σ 41 σ 42

σ 33 σ 34

σ 43 σ 44

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

where introduced sigma-matrix has the form 
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Explicit expression of equation for sigma-matrix                           is (4D beam ellipsoid):  
!
XT !σ −1 !X = 1

Explicit Expression for Sigma-Matrix Equation
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Projection of ellipsoid on any plane (for example, x,	x’) is obtained as 
 

∂F
∂y (x, x', y, y') = 0 ,            ∂F

∂y' (x, x', y, y') = 0         

 
and substitution solutions of these equations into equation for ellipsoid.  
 
Actually, for every fixed value of x, the point at the boundary of projection 
corresponds to max possible value of x’: 
 

∂x'

∂y = 0,      ∂x'

∂y'
'  = 0         

 
or, according to differentiation of implicit functions,  
 

                             ∂x
'

∂y  = - 

∂F
∂y
∂F
∂x'

 ,     ∂x
'

∂y' = - 

∂F
∂y'

∂F
∂x'

  .    

Projection of 4D Ellipsoid on (x-x’)
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y = - x
'σ12σ13 + xσ13σ22 +x'σ11σ23 - xσ12σ23

σ12
2  - σ11σ22  

Projection of 4D Ellipsoid on (x-x’) (cont.)

Solutions:
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After substitution solutions to 4D ellipsoid 
equation, we get projection on (x-x’) plane σ22x2 + σ11x'2 - 2σ12xx' = σ11σ22 − σ12

2
 

σ33x2 + σ11y2 - 2σ13xy = σ11σ33 − σ13
2Analogously, projection on x-y plane 

Coefficients of Sigma-Matrix

This equation determines ellipse on phase plane (x,x’). Comparison with equation 
for rms beam ellipse, one determines coefficients in sigma – matrix:

σ11 =  < x
2 > σ12 =  < xx ' > σ 22 =  < x '

2 >

Right-hand terms determine square of area of ellipse (rms beam emittance):

 эx_ rms
2 = σ11σ 22 −σ12

2

σ13 =  < xy >where
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!σ =

< x2 >  < xx ' >  < xy >  < xy ' >
< xx ' > < x '2 >  < x 'y >  < x 'y ' >
< xy >  < x 'y >  < y2 >  < yy ' >
< xy ' > < x 'y ' >  < yy ' >  < y '2 >

Finally, sigma-matirix is expressed through second order momentums of beam 
distribution 

Because of identity                         10 elements in sigma-matrix are independent. 
Combinations of coefficients                     determine area of projections of beam 
ellipsoid on each plane, and, therefore, must be positive. Coefficients of sigma-
matirx must satisfy the following conditions:  
 

< ξζ > = <ζξ >
σ iiσ jj −σ ij

2

σ ii > 0

σ ii  σ ij

σ ij  σ jj

> 0 i = 1, 2, 3, 4;     j > i 

Explicit Expression of Sigma-Matrix 
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Volume of n-dimensional ellipsoid
where Γ(x) is the gamma-function: Vn =

π n/2

Γ(1+ n
2
)
detσ

V2 = π detσ V4 =
π 2

2
detσ V6 =

π 3

6
detσFor different dimensions the volume is 

During beam transport, beam phase space volume experiences rotation in phase 
space, which can be described as evolution of sigma-matrix between two points of 
transport channel. Initial phase space volume is determined by initial sigma-matrix:

   
while final phase space volume is determined by 
Evolution of single particle between two points is determined by R-matrix:
Evolution of sigma matrix is determined by 
(K.Brown et al, SLAC-PUB-3381)  

   

 
!
X1
T !σ 1

−1 !X1 = 1

 
!
X2 =

!
R
!
X1

 
!
X2
T !σ 2

−1 !X2 = 1

Evolution of Sigma-Matrix

 
!σ 2 =

!
R !σ 1

!
RT

x2
x2
'

y2
y2
'

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

R11 R12
R21 R22

R13 R14
R23 R24

R31 R32
R41 R42

R33 R34
R43 R44

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

x1
x1
'

y1
y1
'

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Because                   , then                               which 
means that phase space volume is conserved 
(Liouville’s theorem).

 det
!
R = 1  det

!σ 2 = det
!σ 1
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Example:	(x-x’)	beam	dynamics	can	be	determined	by	2x2	sigma-matrix.	 In	this	
case	

1
detσ

x x '
σ 22

−σ 21

−σ 12

σ 11

x
x '

= 1	 	 		

	
which	 gives	 	 equation	 for	 beam	 ellipse	 at	 phase	 plane	 (x,	 x’).	 Application	 of	
equation	describing	evolution	of	beam	ellipse	using	single-	particles	matrix	gives:	
	

< x2 >
< xx ' >

< xx ' >
< x '2 >

=
m11

m21

m12

m22

< x0
2 >

< x0x0
' >

< x0x0
' >

< x '0
2 >

m11

m12

m21

m22

		

	
which	can	be	written	in	explicit	way	as	

< x2 >
< xx ' >
< x '2 >

=
m11
2 2m11m12 m12

2

m11m21 m21m12 +m11m22 m22m12

m21
2 2m21m22 m22

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

< x0
2 >

< x0x0
' >

< x '0
2 >

		

Evolution of Sigma-Matrix (cont.)
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Slit-Collector Beam Emittance Measurement Device

110Y. Batygin - USPAS 2024



Slit:   For energy < 1 MeV:     water-cooled graphite
           with a 0.012” wide slit

          For energy 100 MeV:    0.025” wide BeCu slits
 

LANL Slits and Collectors

Collector:
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Emittance 
measurement
switcher

Slit and Collector Actuators

Collector actuator in beam box

Slit and collector actuators
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Emittance Scan and Equivalent 4-RMS Beam Ellipse

Rms beam parameters 

Four-rms beam emittance:

α = − 4 < xx ' >
∍

β = 4 < x
2 >
∍

γ = 4 < x '
2 >
∍Twiss rms parameters:

< x 2>  = 1
I
  (xi − x
i=1

N

∑ )2 Ii (x, x ')

< x ' 2>  = 1
I
  (xi

' − x '
i=1

N

∑ )2 Ii (x, x ')

< xx ' >= 1
I

(x − x )(xi
' − x '

i=1

N

∑ )Ii (x, x ')

Result of measurement are two-
dimensional function of intensity 
distribution at phase plane Ii (x,x’) 

Rms beam ellipse γ x2 + 2αxx '+ βx '2 =∍

∍= 4 < x2 >< x '2 > − < xx ' >2
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Allison Scanner
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Four Slits Method for 4D Phase Space Distribution

First pair of slits selects particles with coordinates xo, 
yo. Second pair of slits selects particles with certain 
angles dx/dz, dy/dz.
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Pepper-Pot Method

1.4 MeV/u Ar+1 ion beam 
projection (P. Forck, LINAC 2000)

Layout of pepper-pot method
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MEASURING THE FULL 4D TRANSVERSE BEAM MATRIX OF 
ION BEAMS”, M.Maier (IPAC16)
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MEASURING THE 6D BEAM DISTRIBUTION

Six-dimensional phase space measurement 
(B.Cathey et al, PRL 121, 064804, 2018).

Points per dimension            10-20 
Total number of points   5.6e06
Scan time     32 h
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MEASURING THE 6D BEAM DISTRIBUTION (cont.)
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Indirect Emittance Measurement: Wire Scans

Single –particle transformation matrix

Evolution of an ellipse

System of equation to determine 
unknown values of αo ,  βo , ∍

R1
2 / ∍

R2
2 / ∍

R3
2 / ∍

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

C1
2 −2C1S1 S1

2

C2
2 −2C2S2 S2

2

C3
2 −2C3S3 S3

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

βo

αo

γ o

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
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σε

ε
 =  
1

ε
 

1

(N − 1)
  (ε i − ε )2

i=1

N

∑

Indirect Emittance Measurement: Wire Scans (cont.)
Emittance:

Error                                              in beam 
emittance determination as a function of 
phase advance for different numbers of 
wire scanners

Nwires  = 3

Nwires  = 4

Nwires  = 5

µopt =
180o

Nwires
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Wire Scans of LANL Linac Modules 41 - 48
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Emittance of the Beam Extracted from Ion Sources

Schematics of a plasma ion source (from 
M.Reiser, 1994).
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The ultimate goal of accelerator designers is to minimize emittance. An intrinsic limitation 
of beam emittance in particle sources comes from the finite value of plasma temperature in 
an ion source, or the finite value of cathode temperature in an electron source. Equilibrium 
thermal particle momentum distribution in these sources is in fact, close to the Maxwell 
distribution: 

f (p) = n( m
2πkBT

)3/2 exp(− p2

2mkBT
)  

 
Rms value of mechanical momentum is 
 

< px
2 >= mkBT  

Thermal Beam Emittance in Particles Sources

Beam radius is usually adopted to be double the root-mean-square beam size, R  = 2 <x 2> . 
Fortunately, for particle sources, one can assume that <xPx> = 0 because there is no 
correlation between particle position and particle momentum. Therefore, the normalized 
emittance of a beam, extracted from a particle source, is 
 

ε = 2R kBT
mc2  
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The rms value of canonical momentum is given by: 
 

<Px
2> =  <px

2> - q Bz <px y> + q
2  Bz

2

4
 <y 2> 

 
The first term describes the thermal spread of mechanical momentum of ions in plasma, and 
is given by <px

2> = mkT . The middle term equals zero because there is no correlation between 
px and y inside the source. The last term is proportional to the rms value of the transverse 
coordinate <y 2> = R2/4. As a result, we can rewrite <Px2> as follows: 
 

<Px
2> = <px

2> + ( q Bz R
4

)2
 

Some sources can be operated only in presence of a longitudinal magnetic field, which 
produces an additional limitation on the value of the beam emittance. For instance, in an 
electron-cyclotron-resonance (ECR) ion source, charged particles are born in a longitudinal 
magnetic field Bz, fulfilling the ECR resonance condition 2ωL = ωRF, where ωL is the 
Larmor frequency of electrons and wRF is the microwave frequency. Canonical momentum 
of an ion, Px = px - qAx, in a longitudinal magnetic field Bz is: 
 

Px = px - q 
Bz y
2  

Thermal Beam Emittance in Particles Sources (cont.)
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1 

The normalized beam emittance ε , extracted from the source is 
 

ε = 2R  kBT
mc2

+ (qBzR
4mc

)2  
 
Therefore, the presence of a longitudinal magnetic field at the source acts to increase the 
value of the beam emittance. 
 

Additional sources contributing to beam emittance :
• irregularities in the plasma meniscus extraction surface

• aberrations due to ion-source extraction optics 
• optical aberrations of the focusing elements of the LEBT
• non-linearity of the electric field created by the beam space charge
• beam fluctuations due to ion-source instability or power regulation

Thermal Beam Emittance in Particles Sources (cont.)

Example: Normalized beam emittance due to thermal spread of particles in 
plasma (kT = 0.1 eV, R = 3 mm, mc2 = 938 MeV):

εrms =
R
2

kT
mc2

= 1.5 ⋅10−3π cmmrad
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Duoplasmatron

127Y. Batygin - USPAS 2024



LANSCE Duoplasmatron

Side view of assembled LANSCE duoplasmatron ion source with Pierce electrode.

Pulse Rate 
(Hz)

Pulse 
Length (μs)

Beam 
Current 

(mA)

Normalized rms 
emitttance 

(π cm mrad) 

40 830 14 0.003
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Emittance of proton beam extracted from LANSCE proton ion 
source. Additional component contains             particles. H2

+ /H3
+

Emittance of LANSCE Proton Beam
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Electron-Cyclotron Resonance (ECR) Ion Source

Cross sectional view of RIKEN 18 GHz ECRIS 
(T.Nakagawa et al, NIM-A 396, p.9 (1997)

2D image of the 129Xe17+ ion beam 
of the energy of 255 keV and 
current of 12 eμA extracted from 
the mVINIS Ion Source, together 
with the image of the 16O2+ beam. 

ECR resonance condition: ω c =ω RF
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Electron-Cyclotron Resonance (ECR) Ion Source
Beam Profile

Ar+5 particle trajectories in combination with the 
solenoid field and the sextupole field (Y.B., Journal 
Appl. Phys., Vol. 83, No. 2, 1998).

In the electron cyclotron resonance ion source 
(ECRIS)  plasma is confined in a minimum B  
magnetic mirror configuration created by solenoid 
coils and multipole lens. In many sources a 
sextupole lens is used to confine particles in a radial 
direction, while longitudinal confinement is provided 
by the solenoid field. The ECR surface, where 
electrons are heated, is defined by 2ωL = ωRF, where 
ωL is the electron Larmor’s frequency  and  ωRF is a 
frequency of microwave power . At this surface the 
absolute value of the vector of the magnetic field is 
equal to the resonance value Bres, which defines the 
ECR condition: 

The extracted beam can have an 
axial-nonuniform shape due to the 
topology of the magnetic mirror 
field.

131Y. Batygin - USPAS 2024



Electron-Cyclotron Resonance (ECR) Ion Source
Beam Profile

Image of a triangular He+ beam 80 cm after extraction.
(D.Winklehner et al, 2010 JINST 5, P1 2001)
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Electron-Cyclotron Resonance (ECR) Ion Source

Emittance measurements on the AECR-U for various masses in comparison 
with predicted emittances for an extraction magnetic field of 1 T (D. Leitner
et al, 2011 JINST 6 P07010 )
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Sectional schematic of a multicusp surface 
converter ion source.

H- Ion Source

A = 4
π
RconvRa
L

Acceptance of H- ion 
source
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LANSCE H- Beam Emittance

Normalized beam emittance:

ε = 4
π

2qUconv

mc2
RconvRa
L

Analytical
beam 

emitttance 
(π cm mrad) 

Experimental
4εrms beam 
emitttance 

(π cm mrad) 

0.076 0.072
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H- Ion Source Parameters
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