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RF Defocusing in Particle Accelerator
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Electric field lines between the ends drift tubes. If
accelerating, the field is focusing at input and defocusing at

output. While field level is increasing while particles cross
the gap to provide longitudinal beam bunching, the
defocusing effect is larger.
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RF Defocusing in Particle Accelerator (cont.)

dp,
Equation for radial momentum i =q(E, — BcBy)
1+ OE 1 OE
E N Tz 'd ' Z
Radial electric field A7) re oz n 2 0z '
g o L[OE . 10E
Azimuthal magnetic field G_EIX” eS|
JE,  OE,
Because E_= Ecos(wt—k.z) ot % 07
Equation of radial motion in RF field d’r g OE,
r
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RF Defocusing in Particle Accelerator (cont.)

Assume that particle radius in RF gap ___/’ { o
r = const. Change of slope of partice St s
trajectory at the entrance to RF gap:
dr % OF E, @) ‘
A, =L | Trge T,
dz 2my v Y 0z 2my’v,, 'S E.(2)
/X0
Change of slope of particle trajectory at the \
exit of RF gap: (b) >z
d E
A(_r)out = q gutZ r Er(Z)/rﬂ
dz 2my°v, j \
Total change of slope of particle trajectory at \ / ’ -
RF gap: U
dr qr Eout Ein .
Ad = 2y (Vz - 2 )
LAY Vou m Longitudinal and radial electric field in
RF gap.
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RF Defocusing in Particle Accelerator (cont.)

Difference in field AEZ =E,, —E,

Difference in velocity Av=v,, —V,

Total change of slope of particle trajectory: A dr qL,r (AE _9 ﬂ )
defocusing by RF field, but “static” focusing dz 2m}/3v.2 E. %
due to change in particle velocity :

8,
BA
E, =E, cos(@, + %)

Field at the entrance of RF gap E;, = E, cos(@, -

Field at the exit of RF gap

£ ~ 2|t in(E)
Relative change of RF field E, = <|I80S BA
Ay AE |sing, g gEA
In order to focus particles in RF gap ,, ~ 2f_ or cos” @, mc2 By sin(S)
in mn ﬂl

For proton beam in accelerator with E=5 MV/m, A =1 m,
B =0.04, g/BA = 0.25, synchronous phase should be too small:
@s < 10°. RF defocusing is dominant effect, which requires additional

_ focusing.
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Earnshaw's Theorem

Earnshaw's theorem states that a collection
of point charges cannot be maintained in a
stable stationary equilibrium configuration o
solely by the electrostatic interaction of the

charges (Samuel Earnshaw, 1842).

_ Effective potential created
Laplace Equation: by static field

U J°U U
o oy o )

All second derivatives of potential cannot be
positive (at minimum) at the same time.
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Grid or Foil Focusing of Charged Particles

/ ), @ 4
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Fig. 7. Various shapes of grids.

AN\

FOCUSING

Foil or grid focusing—the defocusing
effect is suppressed

RF Defocusing effect is suppressed by closing
the the drift-tube hole at the exit of the gap
with a foil thin enough to be crossed by
particles. First test: 1947, Alvarez linac
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Focusing Elements

A

| N 1Y . y ’ by
$ 0 x 0 x 0 x
Y
- W e S

S N S / \

N

DIPOLE QUADRUPOLE SEXTUPOLE

Focusing magnets used in accelerator facilities: dipole,
quadrupole, sextupole.
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Magnetostatic and Electrostatic Fields

Equations describing magnetostatic field are obtained from Maxwell
equations assuming 9d/9dt =0 :

rotH =0 divB=0 B=uH

Because rot(grad U, . )=0, the magnetic field can be expressed through

magn

magnetic scalar potential, U as

magn

B=—-grad U

magn

On the other hand, because div(rotA__)=0, magnetic field can be

magn
-

equally determined using vector potential, A

magn *

Ezmtﬁ

magn

Magnetic scalar potential is convenient to determine ideal pole contour,
while vector potential is convenient to determine magnetic field shape.
Electrostatic field is expressed through electrostatic potential:

E=-grad U,
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Laplace Equation for Electrostatic and Magnetic Fields

<

Because div(gradU)=V°U, both magnetic and electrostatic multipole fields are
derived from Laplace equation with appropriate boundary conditions:

VU =0

where U stands for U, , or U, . On the other hand, because of equity

magn

rot(rotA )= gmd(div;& )—V*A

magn magn magn

and taking additional condition divA

magn

=0, magnetic field can be expressed through

components of vector — potential:
Transverse components of magnetic multipoles can be expressed through z -
component of vector potential A . Because (Vzﬁ)Z = V?A_, formally, both magnetic

and electrostatic multipole fields are derived from Laplace equation

1011 oI 1 0T o'IT _

+ + 0

— + — =
ror or’ r’d0° 97
where I1(r,0,z) stands for either z - component of vector-potential, A_, .., or scalar
potentials U,,,.., U, .
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Solution of Laplace Equation

General solution of 3-dimensional Laplace equation in cylindrical coordinates

— N N (_1)”m1 m+2n (2n) (2n) -+
H(r,@,z)—z 2 4”n!(m+n)!r (©, " cosmO+Y¥, " sinmb)

m=0 n=0

1, . 1
=0, ——r’'0 +—r'e" - ..
4 64

o

1, . 1 :
+(O, — §r2®1)r0089+ (Y, - grz‘lfl)rsine

1 ’ 1 :
+(0, — Erz(%z)r2 cos20+ (W, — Erzllfz)r2 sin20 + ...

m = 0 for axial-symmetric filed
m = 1 for dipole

m = 2 for a quadrupole

m = 3 for sextupole,

m = 4 for octupole,

m = 5 for decapole

m = 6 for dodecapole,
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Multipole Fields

Number of poles to excite the multipole lens of the order mis N, =2m

poles

In most of cases, it is possible to substitute actual z-dependence of the field by
“step” function. For such representation, solution of Laplace equation is

I1(r,0)= 2 r"(©, cosmf+Y¥, sinm0)

Solutions for magnetic field can be represented as a combination of multipoles
with field:

G G :
A =——"r" cosmb Upgn =——1" sinmb
m m 2 2
B(ro) \/Brm(r0)+B0m(r0)
where G,, is the strength of the multipole of order m G, = e = e
and B(r,) is the absolute value of magnetic field at certain rad(fus V. ’
oU 1 0A,
| = = — X =G " sinmO
Field components: o  rof
10U 8A
B, =-———"%" =G r" ' cosmf
om r 00 o "
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Potential of Multipoles

Magnetic vector potential -A, and electrostatic potential U,; of “normal” multipole

m =2 Quadrupole G 2 os00= g(xz _y)

3

m = 3 Sextupole G, G,

—3ricos30=—(x"=3xy’
3 3( xy”)

m =4 Octupole G G
T“r“ cos40 = T“(x“—6x2y2 +y*)

m =5 Decapole
%rs cos50 = %(x5 —10x°y* +5xy")

m =6 Dodecapole G, & G, 6 ) 5 4
?r cos69=?(x —y —=15x"y " +15x7y")
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Potential of Multipoles (cont.)

Magnetostatic potential —U

m

of “normal” multipole

G . G
m =2 Quadrupole 721"2 sin 20 = 72xy

G : G

m =3 Sextupole ?31”3 31113(9:?3(3)62)/ -)

G4 4 . 3 3
m =4 Octupole i sindd =G, (x"y —xy°)

G, 5 . G, s 4 2.3
m =5 Decapole i 81n59=?(y +5x"y —10x7y7)

m =6 Dodecapole %F6 sin 66 = %(6x5y —20x°y" +6x ")
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Quadrupole Focusing

Lorentz Force

F=g¢qg(E+vxB)

(a) Magnetic quadrupole and (b) electric quadrupole.

Arrows indicate direction of Lorentz force acting on
positively charge particle moving from the screen.

Field is proportional to distance from axis, G- gradient
of quadrupole field.

Equation for determination of pole shape: Gxy = const

‘@ Los Alamos Y. Batygin - USPAS 2024

NATIONAL LABORATORY

15



Quadrupole Magnets

g N e et e e v

Electromagnetic quadrupole magnet in
Maier-Leibnitz Laboratory, Munich

Electrostatic quadrupole of
High Voltage Engineering
Europa B.V.

% Los Alamos ) W Batygin - USPAS 2024 16
“ NATIONAL LABORATORY



<

e

X ¥ S e

LANL Drift Tube Linac Quadrupole Magnets

(®)

(©)

DTL quadrupole details: (a) yoke and pole pieces; (b) current coil;
(c) coil assembled with iron; (d) quadrupole fully assembled.
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Quadrupole Focusing (cont.)

F

D

"]

pr—— | - Foral Point
~

Lens number

¥
S —————

1 2 3 4 5,6 7 8 10 11 | 12
F | DJ|F D

S |

N — "l
N N
Cell
€

Focusing properties of combination of quadrupole lenses
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Various Types of Focusing Periods

t % !

= -

® 1 ® oo
e
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Quadrupole Pole Shapes and Higher Order Harmonics

Pole contours are determined by lines of equal values of 7
scalar potentials
Umagn (r,0) = const, Uel(r,H) = const ® N
Shape of “normal” quadrupole poles are described by
infinite hyperbolas: S ¥

2 2 _ 42 :

X" —y =Xa for electrostatic quadrupole
2xy = t+a®  for magnetostatic quadruple

Actual pole shapes are different from that determined
above. Solution of Laplace equation for multipole is anti-
symmetric after angle 7 /m because of separation of
neighbor poles with alternative polarity:

I1(r,0)=—I1(r,0 + )
m
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Quadrupole Pole Shapes and Higher Order Harmonics (cont.)

It determines the number of higher harmonics & with respect to
fundamental harmonic m:

cosk(0+2)=—coskf.  sink(6+—)=—sink®
m m
T . T
which are satisfied when  cos(k—)=—-1, sin(k—)=0
m m

Both equations are valid for k=m(+2/), [=0,1,2,3,..... For

example, the field of a quadrupole lens contains the following
multipole harmonics:

A (r,0)= —(G?r2 cos20 + %r6 cos 60 + (l;—g’rlo cos100+...)
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Multipole Harmonics of Magnetic Field

Multipole harmonics of magnetic field presented in focusing lenses

m =1 Dipole k=1,3,5,7....

m =2 Quadrupole k=2,6, 10, 14,..

m =3 Sextupole k =3,9,15,21,27,....
m = 4 Octupole k=46 12, 20, 28, 36,.....
m =5 Dodecapole k=5, 15, 25, 35, 45,.....

m =6 Duodecapole k=06, 18, 30, 42, 56, ....

i%¥® Los Alamos
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Electromagnetic Quadrupole Lens

Number of Ampere-Turns per pole

P - dissipated power, W

0 - coil resistance, Ohm cm

[ - average length of one turn, cm
S, - area of coils

f -ratio of coil area to window area
G - field gradient, Gauss/cm

a - radius of aperture, cm

Q@ Los Alamos Y. Batygin - USPAS 2024
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NI = 0.44Ga*

P=6.1PL Gy
S

o
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Permanent Magnet Quadrupoles (PMQ)

Quadrupole

25mm Thickness

Gradient of PMQ ﬂ
AR

11
G=2B.(———)Kpp (

rin r out \ /

K = cos? . sm@r/M) VAR
PMQ M (27[/M)

e

VV
- ‘ Field direction
|

Inner ring| \" /

r,, — internal radius r, - outer radius
B, - remnant field, M —number of magnet
segments = oA,
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Focal Length of Quadrupole Lens

_ _ d’x _ qGx
Equation of motion: 42 me By
Integration of equation of motion along lens assuming constant x
dx dx 't G
Z=(5),-x] LT
dz dz Y mcBy

In the analogy with light optics, we can introduce the focal length of the lens:

i
/Orbit

Effect of a thin lens (focal length f) on a
particle trajectory initially parallel to the
axis (from Humphries, 1999).
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Effective Length of the Lens

L'-",: o) ‘

Variation of gradient along the axis of a
quadrupole lens.

We will assume step function approximation of the field inside the lens, where actual
dependence of field gradient G(z) is substituted by an equivalent lens with constant

gradient G=G(0), equal to that in the center of lens. Length of the equivalent lens:

D=D,+ R,

where D, is the length o the real lens, and R, is the distance from axis to pole tips
(radius of the aperture).

‘@ Los Alamos Y. Batygin - USPAS 2024
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Single Particle Dynamics in a Quadrupole Focusing Channel

Equation of motion in x- and y-

directions (Mathieu-Hill Equations):

2
d—f +k(z2)x=0
dz

d’y
d—Zz — k(Z)y =0

where focusing function
G
k(z)=2 (z)
mc By

Equivalent gradient of
electrostatic lens G, = fcG

% Los Alamos
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General Form of Mathieu Equation

d’x .
Mathieu equation d—T2+7r2(a—2qsm2m)x:O

Unstable solutions are around a = n?, or when average frequency of oscillator is
close to half-integer value of that of driving force.

First region of parametric instability is b, <a<a,,

1 1
where: bh=1-g—=g*+—qg° —...
| q 84 64q
1, 1 5
a=14+g——qg ——qg —...
1 q 8q 64q

The second region of parametric instability is b, <a<a,,

q 1 5
here: bh,=4——qg*+——qg* — ..
W : 127 T138041
Shaded ble regions of gy =4+ gt -2
aded are stable regions o ) 124 " Tagoa?

solutions of Mathie-Hill equation.

0'3 Los Alamos Y. Batygin - USPAS 2024 28
" NATIONAL LABORATORY



Amplitude and Phase of Solution

Differential equations with periodic coefficients are called Mathieu - Hill equations.
We will be looking for a stable solution in the form:

X(2) = /3,0,(2) cos(®,(z) + D,)

where V3. is a constant, ox(z) is the z - dependent amplitude, and @,(z) is the z -
dependent phase of the solution. Substitution of the expected solution gives:

[0.- 0,(D,) +ko Jcos(D +D,) -(0,D, +20 P )sin(®, +P, )=0

To solve this equation, we can put independently to zero both 'cosine' and 'sine'
parts:

n

o - 0. DS + koy=0
0D, + 20.P, =0

% Los Alamos
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Amplitude and Phase of Solution (cont.)

Multiplying the second equation by o,, it can be written as
(02) =0
which gives

®.c2 = const.

Selecting arbitrary value of constant as 1, finally get for second equation:

o= 1
X ze

With that condition, 'cosine' part of equation is written as

n 1
6 ——+k(z)0,=0
o

X

% Los Alamos
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Courant-Snyder Invariant

Let us determine the physical meaning of the constant >,. Differentiation of
x(z) = Vo 0:(2) cos®@(z) gives:

X = \/?x (Ox cos D, - O CD,; sin®y) = \/?x (Ox cosD; - %) :

X

On the other hand, from the original equation it follows, that:

cos®=—2 |
3y Oy
Substitution gives: x'= 0y X -3, SinPx
Gx GX
Rearranging of the equation (2.48) results in: 3 sin’ @, =(x' Ox - Ox x)z_

(2.46)

(2.47)

(2.48)

(2.49)

Taking into account Eq. (2.47), let us express the left side of the equation (2.49),

3, sin" D=3, (1- cosz@x), as
.2 X2
3y Sin" Dy =3y - S -
Ox

% Los Alamos
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Courant-Snyder Invariant and Beam Emittance

Finally, the following equation is valid: (X Oy - O X"+ x—z =3
Ox

.. (2.51)

Equation describes ellipe with constant area, which is called Courant-Snyder invariant.

X

X

Area of Ellipse =1 3x

|

_dx
dz
_dx
dt

Transformation of Courant-Snyder invariant along the channel and subsequent positions of a

particle in phase space.

If particle belongs to certain ellipse at the initial moment of time, it will remain on ellipse
boundary always. Because It is true for all particles belonging to partial ellipses within
largest ellipse comprising al the beam, all particles within largest ellipse remain there.
The largest ellipse occupied by particles is associated with beam emittance.

% Los Alamos
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Beam Emittance

Beam emittance is the area, occupied by the particles on the phase plane (x, dx/dz)

Results of beam emitance measurements in GSI UNILAC accelerator (W. Bayer et
al., Proceedings of PACO7, Albuquerque, New Mexico, p. 1413 (2007) ).

0@ Los Alamos Y. Batygin - USPAS 2024 25
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Liouville’s Theorem

p | a) pd b)

Area = [pdq = constant p(a,p.t)=p, Q=

P(Qg.Pg.to)=Pg

Q0

- -

— . q . q
q [llustration of conservation of phase space volume

Element of phase space: dV =dx dy dz dPx dPy dP,

Phase space density (beam distribution function):

Phas_e spz_ace volume occupied by f(x,y,2, Px, Py, P;) = dN

particles is constant. dx dy dz dPy dPy dP,
Liouville’s theorem: if the motion of a system of mechanical particles obeys Hamilton’s
equations, then phase space density remains constant along phase space trajectories and
phase space volume occupied by the particles is invariant (Liouville's Equation):

Qf = ﬂ + af d; + af d}) — 0
dt 9t gx dt  Hp di
05 Los Alamos Y. Batygin - USPAS 2024 ”
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Hamiltonian Dynamics

Hamiltonian of charged particle with charge ¢ and mass m

H= N m2e2 + (Py- gAyY + (Py- gAyY + (P - gAY + q U

X, V, z position in real space
P, P, P, components of canonical momentum
Ay, A, A, components of the vector — potential
Ux,y,z) scalar potential of the electromagnetic field
o e dx _OH dp __OH
uations of motion: - DY
1 a  Hp dt ox

Canonical momentum P = (Px, Py, P;) and mechanical momentum ; = (px, Py, pz) are related:
;=P-qA

In quadrupoles p = P , whilein solenoid P:=px —qu Py=p, + qB;C

0@ Los Alamos Y. Batygin - USPAS 2024 35
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Liouville’s Theorem (Proof)

Consider phase space element dQdP.
Number of particles dN inside elementis dN = f(QJD,t)deB/JA i

Change of particle density inside element is equal to | l
divergence of the flux density (Continuity Equation) d ?L
dq
O 4 div(£7)=0 B J
ot 0 Q
dQ
Flux density in Q-direction fz On derivation of

Liouville th |
Flux density in P-direction ¢4 iouville theorem
dt

Continuity Equation: a_f:_i . d :_a_f . df 5 B_Q B_P
TN T e L AT

But because of Hamiltonian equations 0= B_H p= _B_H the term in square

oP 00

brackets is zero and total derivative of distribution function
is equal zero (Liouville theorem). a_f +C a_f + pa_f — i -0
ot 00 oP dt

30
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Liouvillian and non-Liouvillian Processes

Liouville theorem is valid for Hamiltonian processes only (where equations of
motion are determined by Hamiltonian equations). Liouville’s theorem does
not allow to insert particles in phase space already occupied by the beam
(there are no forces for that).

Liouvillian Processes: Dynamics in any electromagnetic fields without
dissipation or scattering.

Non-Liouvillian processes: Scattering (foil, residual gas, Coulomb particle-
particle), synchrotron radiation.

Example: Two oppositely charged beams can be made to travel along the same
trajectory. In the straight section, the beams are passed through a thin foil, which
strips the electrons from the H- ions, leaving a single proton beam of higher
density in phase space.

: | {é/

Foil

% Los Alamos
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Increase of Effective Phase Space Volume

There are processes which do not violate Liouville’'s theorem, but result in
increase of effective phase space volume of the beam. Example: filamentation
in phase space.

/{;’"R\

N

N

Two distributions with the same actual areas, but with different
effective areas. Left distribution occupies 8 cells, while right
distribution occupies 25 cells.

0@ Los Alamos Y. Batygin - USPAS 2024 38
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Effect of Coupling on Beam Emittance

Liouville’s theorem is valid in 6-dimensional phase space. Beam
emittance is a projection of 6D phase space volume on 2D phase
plane. Like any projection, it can be larger or smaller while total 6D
phase space volume is conserved. In accelerator technique,
emittance exchangers are commonly used:

i A ‘j B(=A) ‘r
61 UF AD ~52 vp AD _h&

Insertion of skew quadrupoles 84, d,, &3 into regular FODO
quadruplle structure to exchange emittances between phase

planes (from P.J.Bryant, CERN 1994-001).

]
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Normalized and Un-Normalized Emitttance

Un-normalized (energy-dependent)

emittance 1
9~ EE—

B.y

Normalized (energy-independent)
emittance, €

A

. 7
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Twiss Parameters and Beam Emittance

The area of an ellipse with semi-axes M and N1s w M N.

The general ellipse equation yx2+2axx + B x%=>

Parameters o, 3, yare called Twiss parameters and ellipse area is 7.
dx

Emittance units: 7-m-radian (- cm-miliradian)

Example : Emittance=n>=n-M -N =021 cmmrad Ellipse of the beam at phase plane of
transverse oscillations.

0@ Los Alamos Y. Batygin - USPAS 2024 "
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Twiss Parameters and Area of Ellipse

Codx
x'=—
dz
yx2 +2 ocxx'+Bx'2:31

yx2+2 axx' +Bx'2:32

}/x2+2axx'+ﬁx'2:33 /

Twiss parameters
determine family of
ellipses, while actual
ellipse is determined
also by the value of
ellipse area.

‘@ Los Alamos Y. Batygin - USPAS 2024
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Twiss parameters:
o, =0, =04

ﬁ1:ﬁ2:ﬁ3

Area of ellipses:
3,<3, <3,
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Ellipse Properties

Let us express the ellipse parameters in terms of the semi-axes M, N and the angle y.
In the (x,x) system of coordinates, the ellipse is upright, and is described by the equation

ER (X =1

2 + ( &— =

M N

The transformation to this system of coordinates 1s given by
X=X cosY+x siny

X =-XSiny+Xx cosy

Comparison with previous ellipse equation yields the relationships between Twiss
parameters and ellipse parameters:

—(N _ M)
o= --%) siny cosy
M N
ﬁ=ﬂsin2y/+Mcos2w
M N
_N 2 M 2
y = coscy+ M sin“y
M N

From last equations it follows that | By —a® =1].

0’3 Los Alamos Y. Batygin - USPAS 2024 43
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Twiss Parameters and Amplitude Function

: ! N2 X 2
Compare two ellipses  yx” +20xx'+ Bx'"? =3 (xXo -x0 )+ (;) =3

Comparison gives the following relationship between functions o(z), o’(z), and Twiss

parameters:
| 2 1 .
x=—-00 B=oc Yy =—+0"
o

From equation o = \/B the equation for amplitude function o(z)

" 1
6. ——+k(z)6,=0
o

X

can be rewritten as

1. (B
2ﬁxﬂx 4

+k(z)B =1

Twiss parameters are connected as o(z)=-

B'(z)
0

% Los Alamos
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Beam Envelope

Envelope of the beam, R (z), corresponds to the maximum value of cos(® (z)+®,) =1 in

equation x(z)= \/z 0 .(2) cos(P (z)+ @, ) within the beam:

R«(2) =max {x(2)} = \/?x Ox(2)- (2.52)
Slope of the beam envelope is, therefore, given by
R:(2) = V3x 0:(2) (2.53)
Taking into account previously introduced notations
oc=Vp
o'=-_0_ 4%
VB
beam envelope and slope of beam envelope are given by
dR, 3,

R.=\>. . )

0@ Los Alamos Y. Batygin - USPAS 2024 45
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Beam Envelopes (cont.)

Substitution of expression for g, (z)
R (2)

Ix

0x(2) = (2.54)

into Eq. (2.43) gives us the equation for beam envelope:
2

Ri -2+ kz) Rc =0 (2.55)
R}

Beam envelope equations without space charge forces are:

2
Ry -2X + ky(2) Ry =0

{ *

2
Ry -2+ ky(2) Ry =0

Ry

(2.56)
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Beam Spot Size and Beam Slope

Beam spot and beam envelope slope can be determined in
other way as well. Let us rewrite the ellipse equation as

F(x,x")=yx" +20xx'+ Bx° - 3=

b ——— : : : dx —
rs We need to find a solution to the equations I =0

M According to the differentiation rule of an implicit function,

dF
ﬂ_ﬂ__ZO{)HZ,Bx':O

= |w

1\l

R

dx' dF  2yx+2ax'
dx

which has a solution x' = - x a/pf. Substitution of the
obtained value of x' into the ellipse equation gives
xmar=+ VB>. The value of R = x,, is associated with the

envelope size of the beam
R=pB>
p'(z)

Differentiation of this equation taking into account that o(z)=-— ,

| aR _ 1
gives iz [

0'3 Los Alamos Y. Batygin - USPAS 2024 47
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Floquet Theorem

A second-order linear differential equation with periodic coefficients has a
solution of the form e? g(z) where A is a constant and o(z) a periodic function.

Mathieu - Hill equation  d*x . k(z) x=0 ‘; o
dz2 = Resseeo |

Solution: X(2) = [3,0,(2) cos(® () + P,)

o1
Equations for amplitude o, ——+k(z)0, =0

———————— .
e |

and phase: O, N~ :
U 4 7 T

~

If function k(z) is a periodic function  k (z+S) = k(z)

there is an unique periodic solution o (z+S) = o(=z).

This solution can be found by adjusting o(z), 0’(z) in the way that solution after one
period o (z+S), 0’(z+S) coinsides with o(z), o’(z).

Periodic function o (z+S) = 0(z) is called module of Floquet function
Corresponding function @(z) is called phase of Floquet function

0@ Los Alamos Y. Batygin - USPAS 2024 48
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Beam ellipse:

Floquet Ellipse

! ! 2 x 2
(xo -x0 ) +(G—) =3,

X

Focusing period

Input

If o (z+S) = 0(2), 0" (z+S) = 0'(2),
beam ellipse is transformed into
itself after one period.

Output

Floquet ellipse is a unique beam ellipse which transforms into itself after one
focusing period.

~
1% Los Alamos
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Beta-Function

Periodic solution of Mathieu — Hill equation FODO focusing structure
is called beta-function of the focusing channel:
B:gz G TNV AV AT AT ..
[3 AVAVAUVLAVUA
(B
ﬁ ﬁ ——+k(z )ﬁ o), B(z)
- 8

Beta-function of periodic structure

[ : (2
Twiss parameters ol(z) = — [32 )

Single-particle trajectories in periodic
structure (d) *

(e) *
Matched beam in periodic structure
"Q Los Alamos Y. Batygin - USPAS 2024
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Matched Beam in Periodic Focusing Structure

y.
= - f =

Transport of a matched beam in a quadrupole channel. Matched beam ellipses repeat
into themselves after each focusing.period
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Acceptance of Periodic Focusing Structure

Focusing Quadrupole Defocusing Quadrupole
410 ' ' ' ' o ' | ' Acceptance]
B Acceptance Beam y
21074 , . 21074 -
0F - s 0} A
>
-21074} E -21074} E
—-41074 = 5 1 -41074 - = 5 ]
. - a
a X a a X
: R(z)=+/3 B(z
Beam radius (2) P
Maximal beam radius R = a @ = AP,
Acceptance of periodic focusing chanell A a’
is the largest Floquet ellipse limited by the A= —[3
aperture of the structure a. max
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Mismatched Beam in a Periodic Structure

NY

paal
A T

The envelope of an unmatched
beam 1n a quadrupole channel.

Effective beam emittance.
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Matched Beam Focusing

08.0551

0.08539
08.08529
0.6519
8.6509
0.0499
0.0489
0.06479
0.08469
0.046
8.045
0.0844 A
0.043
08.042
0.041

0.64
0.08393

Plottype
Sample ( 57/232)
Time 1.0801e+000 ns
Particles @

Beta

Matched beam in RF linear accelerator (Courtesy of Sergey Kurennoy).
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Instantaneous Frequency of Transverse

Oscillations

Instantaneous frequency of transverse oscillations: w = do,
" dt

Combining cp; = Lz with expression for beam emittance

Ox

.= R,f /Gi one can express beam emittance with R0

instantaneous frequency of transverse oscillations: 3,= BC -

Emittance is expressed through Twiss parameter 3 = R? /B

Instantaneous frequency of transverse oscillation and Twiss v

parameter 3 are connected as: W, = ﬁ_z

Instantaneous frequency of transverse oscillations has a
minimum value in focusing lens and maximum value in
defocusing one.
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Matrix Method for Particle Trajectories

Let us divide focusing structure by elements, where
equation of motion are individual linear differential

X, =myxX,+m;,x,

equations with constant coefficients (drift space, X, = M, X, + M, X,

quadruple lens). Solution at each element can be
written as linear combination of initial conditions:

X1
| . X,
or in matrix form
.X2
Matrix of two subsequent elements: ,
X
2

. X, 1
Inverse matrix; =

% Los Alamos
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Matrix Method for Particle Trajectories (cont.)

Particle trajectory at arbitrary point can be X _ my, ny, Xo
expressed as a function of initial conditions x m,, my, \x
, _0x L 9%
X=m X, +m,x, A= dx, o dx, o ox odx
| , . ox' ox' dx, Ox,
£ Mty M, o e M e o
Matrix elements can be written as dx, 0x,
ox 0x ox' ox'
1 ox, Poox, M ox, 2 ox, e x
Determinant of matrix coincides with Jacobian: dxdx’ = det ox'  ox' dx,dx,
dx, ox,

Because of Liouville’s theorem, phase space element is transformed as
dx dx’ = dx,dx’, , and, therefore, determinant of matrix M is equal to unity:

det M = 1
% Los Alamos
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Transformation of Beam Ellipse Through Arbitrary Channel

y AY 0y, [52

Y _ C S y o, By A
y’ N Cc’ S’ y' Position and velocity
S 0 of test ion satisfies
/ y  both ellipses \ y
By inserting the inverse trajectory transformation . > >
a*l’ ﬁxl / \
Yo | S =S y cC §
| - C ! c s

Yo y
into the ellipse equation, we have at point s, ENTRY Transfer line T

¥y, By

YoYo +20YoYo + Boyy’
=y, (Sy— Sy’)2 +20, (S’y — Sy’)(—C’y + Cy') + B, (—C'y + Cy')2
=(C7 By —2C"S0ty + 87y, )y* +2(—CC'By +(S'C+SC" )ty — S5y, )3y’ +(C° B, —2CSt, + 87y, )y

J/ A J

J .

o
VT

Y o B
=Yy +20yy" + By
1, I+a -
Thus B, o = _Eﬁ ,and y = can be calculated from the principal
o . . B c: 205 8 B
trajectories C, S by the linear 3x3 trasnformation: 0 2| —cor csaser _ss o,
,}/ C/2 _zclsl Sl2 ’}/O

0@ Los Alamos Y. Batygin - USPAS 2024 cg
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Transformation of Particle Trajectory Through Arbitrary Channel

Transformation of particle trajectory
through arbitrary channel

Initial conditions (z = 0):

x(2) = /3,0,(2) cos(®,(z) + D,)
X (2)=+3,[0.(z)cos(P,(2) + P,) -

sin(®, (2)+®,),

X

x,=4+/3,0, cos®,

X, = \/5(0; cosP —

sin®,

)

4

Particle transformation through the channel

GX
o

4

x=x,(

o, ©

x =x,[cos D (

o X

“)—sin® (0 0, +

cos® —o o, sin® )+x,0 0, sindP,

1 o,

)+ x,(
(o)

X o X

cos®_ +0.0,sin®d)

% Los Alamos
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Transformation of Particle Trajectory Through Arbitrary Channel

In matrix form with O = [3 o'= _a/\/ﬁ

M(cos ® +o sind) JB,B.(z)sin®d,

X B,
(x') B cos® (o, (2)-0,)+sin® (1+o, 0, (2)) L(COS D -, sind ) ( '
\ B.(2) )

JB,B.(2)

Q@ Los Alamos Y. Batygin - USPAS 2024

AAAAAAAAAAAAAAAAA



Transformation of Particle Trajectory Through Periodic Channel

For periodic solution in periodic channel: B.($)=P, a.(S) =a,

Transformation matrix trough COSU, + &, smi, p.siny,
periodic channel (Twiss matrix): M = 1+ o’

X

B,
Phase advance of transverse
oscillations per period of structure K, =PD.(S)

sini,  cospl - o sinl,

The value of p, can be found from
transformation matrix as a half sum of cosU, =
diagonal elements

Myt My | —1<cosp, <1

Stability criteria: m, +m,, <2

Twiss parameters of matched m, m,, — .,
beam:

% Los Alamos
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Single-Particle Matrix in a Quadrupole Focusing Channel

In quadrupole lens, the Mathieu — Hill equation is transformed into
equation with constant coefficients k:

d’x d’y qG

= b kx=0 S ky=0 k=

dz’ dz’ © myBc
Solution of equations of motion in quadrupole lense:

X
X =X, COS k) + == sin(zv/k
(zvk) N (zvk)

X = —x \k Sin(zx/z) + x; COS(Z\/z) cos(i¢) = cosh(@)

sin(i@) = i sinh(Q)

y=y, cosh(z\/z )+ Yo sinh(z\/z )

Jk
y =y Nksinh(zVk)+y cosh(zvk)

i%¥® Los Alamos
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Single-Particle Matrix in a Quadrupole Focusing Channel

Transformation of particle coordinate and slope of particle
trajectory through the quadrupole of the length of D, can be written

as a matrix:

Between lenses particle perform drift at the distance I

i%¥® Los Alamos

AAAAAAAAAAAAAAAAA

p
cos(D\/; )

L k Sin(D\/; )

)
cosh(D\/; )

| Vksinh(Dvk)

\
ﬁsin(D\/; )
cos(D\/; ) )

1

\
ﬁsinh(D\/E)

cosh(D\/; ) )

1
M. =
ek

>



Matrix of FODO Cell

= o
>

-

D F
Matrix of one period LA
of such structure A

D F
LA
iy |

2 2

M,=M MM,M,M,| [M =M,M,MM,M,

Elements of resulting x- matrix of one period

2
m,, = cosh y(cos y — Ik sin X ) +sinh )((lx/%cos% - %sin)()

m,, =cosh %(% + 2/ cos’ %) + sinh %(ﬁ +/sin y + 1>k cos> %

m,, = cosh y(2lksin’ % —Jksin X )+ sinh )((\/E + k1% sin’ 9 lksin )

2
m,, = cosh y(cos y — Ik sin ) +sinh ;((l\/zcos;( - %Sin X)
where quadrupole lens rigidity 7=DJE=D qG
myBc

Q@ Los Alamos Y. Batygin - USPAS 2024
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Phase Advance Per Period in FODO Channel

| _omy, +m,, . , kl?
Using COSH, = > cos it, = cosh y(cos y — Ik sin y) +sinh y (INk cos y — —sm X)
Using approximations
3 5 3 5
{ [smy=y-— + sinh y= y+ +
AT e 0] T T AT 6 120
] 2 4 2 4
1 [cosy=1- £ X cosh y = 1+2 42
_ 2 24 2 24
] Fx'k 2
] cosu, =1— 5 l\/_)( —=

00 02 04 06 08 10 1.2 1.4 16 18 20

x 2

cospy, =1-— H

Phase advance per period of FODO focusing channel, Smooth appzroximation to FODO
as a function of quadrupole lens rigidity: (solid) exact phase advance:

values; (dotted) smooth approximation. Numbers

indicate ratio of lens length to period, D/S. Smooth S 4 D qGD2

. . . . 0 =—|/1-—=
approximation is valid for; < 60°. Ho D 3 S myBe
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Beta Functions and Acceptance of FODO Channel

Beta-function p= &
sin |,
2.2
Expansions cos U, zl—l A k:1—2sin2& sin&z*‘l%\/E:irﬂ
2 2 2 2
2+ kI 3y’
Element my, m,, = 21+ ( )% + 24 =S £ sin ‘uo)
Jk 2 2
Maximum and minimum S (1 — sin ‘u") S+ sin&)
values of beta-function B = 2 B = . 2
i Sinuo Slnuo
Acceptance of FODO channel a’ sin (4
A = GZ/ﬁ A == o
max S .U
(1 + sin—*%)
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Beta Functions and Acceptance of FODO Channel (cont.)

o= — Acceptance of FODO Channel

L ]
251 1\ .

\ 2 .

- 1 A a sin U,
20} i - - S u

i ! - (1 + sin—2%)
1.5} ﬁmin \\\ ‘ ' ' A - - ] 2

L S \\ A 4
10—+ 3 | — :

r A Optimal value of phase advance,

L i ax 7 )
05L N S | | | | where acceptance reaches it’s

: I RO d maximum
0.0 M e 0 ¢ 1 4 1 5 1 et

0 20 40 60 80 100 120 140 160 180

u,(deg) 94 u,=763"
. | oM,

Characteristics of FODO focusing channel as
functions of phase advance per period of structure. 5

Maximal FODO acceptance
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Maximal and Minimal Beam Size in FODO Channel

Taking into account expression for beam size R(z) =+ B(2) B(2) and using expressions

for Bnax and By, in FODO channel

Maximal beam size
Minimal beam size

Average beam size

Let us express maximal and minimal
beam size as

Relative variation of beam size

For u, <60°

% Los Alamos
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23 +sin&)=R0\/1 + sinke
2 2

sin U,

sin U,

EINY

sin U,

R =R (+v

max )

R . = 25 1 - sin&) :RO\/I ~ sinke
2 2

Rmin = Ro(l —V

max )

\/1 + sinte —\/1 ~ sinte
Umaxz 2 2
2
1
v ~—sinbe < e
™22 4



Higher Stability Regions

Consider FD focusing structure. Matrix of of one FD period:

1 ] :
cosy coshy —=(cosh y sin y+sinh y)
M, MM, = Jk
’ ’ \/% (-cosh y sin y+sinh y) cosy coshy
where quadrupole lens B qG, t i
rigidity x=D myBc F\\ ;
o4 |
ni S - |
Phase advance per cell COSl =Cosy coshy ‘_;‘2. I
Condition for stability
of transverse —1<cosy coshy <1 08
oscillations s

Variation of gradient along FD
focusing structure.

0@ Los Alamos Y. Batygin - USPAS 2024 20
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Higher Stability Regions (cont.)

The first area of stability 0=y <1.873

Second area of stability 4.694 <y <4.73

Higher order stability regions are placed
around cos y = 0, or

%n - %(271—1), n= 293,45---

Bandwidth of stability regions can be
approximately estimated as

Ay, = 2 Stability areas -1< cos y, <1 versus quadrupole

Cosh[%(zn —1)] lens rigidity.

Areas of stability drop quickly with number n. In practice, only first
stability area is used for focusing.
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Matrix of Thin RF Gap

Change of particle slope in RF gap: A dr  qE.r (AE ZAV) _ qrAE
dz 2my’v: E_ v ~| 2myv’
Change of RF field while particle crossing the AE =-2E sing sing
gap: ¢
Transverse matrix of thin RF gap X 1 0 X
( ,]z _qUTrsing ’
X mczﬁ3}/3l X,

Focal length f of RF gap is determined by:
1 qUlrmsmg

o mByA
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Focusing Structure Including RF Gap

Consider FOD focusing structure including RF gap
(focusing period S = 2D, g << D): QF RF QD
Gap
Transfer matrix through focusing period < D > &; 42»
(neglecting drift spaces between elements):
1 1 0 1 .
coshy —=sinhy cosy —=siny |(x
2)- T 1 Tl
X — 1 X
\/;sinh)( cosh y f -\/Esin)( cos y °

Phase advance per period:  cos = cos y cosh y + D sin y cosh  +cos y sinh ¥
2x

Defocusing factor I,
D _ #n§SQ, sing T
f PLo |sinq)s‘ Y

i%¥® Los Alamos
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Smith-Gluckstern Stability Diagram

Transverse stability is provided for
area restricted by curves:

X £oS =1

cosuy=-1, cosu=1

2
Vi A S 2 | ongitudinal stability is provided for
V//?f/’/‘///%/f €85 Bf  phases within separatrix:
(20802008002 — 20,< ¢ < -
| f Ps< @ < - P
, ~ [

Defocusing factor is varied within

-[s<T,<2[scos s

where defocusing factor for
synchronous phase

S Q
¢ l"s — (275)2

!
o
o
o
)
“
A
S
&
S
“

Stable area is shaded. For
synchronous particle:

COS ‘Ul < COS ,LLS < COS ‘U2
05 Los Alamos Y. Batygin - USPAS 2024 o
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Averaging Method for Particle Trajectory

SINUSOIDAL
TRAJECTORY

REAL
BEAM TRAJECTORY

ENVELOPE

»- 7~
/ X ~ . ' ;
_ Rt N : '/ N7 LY

—

@M[_TJIDW (F] (o] [F] [0] (F] [0 [F] [0 R
- |- -

(Solid line) actual particle trajectory and (dashed line) the
sine approximation to that trajectory.
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Motion in Fast Oscillating Field (L.Landau, E.Lifshitz, “Mechanics”)

Consider one-dimensional particle motion in the combination of constant field

U(x) and fast oscillating field

f(x,t)= f,(x)cosmt + f,(x)sinwt

Fast oscillations means that frequency >>% , Where T'is the time

period for particle motion in the constant field U only. Equation of particle
motion:

d’x v + f, coswt + f, sinwt
m =—
> dx ’

Let us express expected solution is a combination of slow variable X(#) and fast

oscillation &(r):
x(t)= X(0)+E(@)

where  |E()| << | X (2)|
dU

Fields can be expressed as: U(x)=U(X)+ d_Xé:
_ a4
J(x)=f(X)+ ng

Q@ Los Alamos Y. Batygin - USPAS 2024
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Small Fast Oscillating Term

Substitution of the expected solution into equation of motion gives:

. = dU _dU df
X +mg=———- + f(X,1)+§—
m¥ tm€ === E— s [X)+E

X
For fast oscillating term: mé = f(X,1)
g=--1
After integration: mao”>
Let us average all terms over time, where averaging means mean value over period 7 = %t
17
<g()>=— g
Iy
. ’ dU d’U df
<mX>+<mE>=-<—>-< >+ < f(X,))>+<E—>
> dX ° dx’ el ° dX
Average value of &(t) at the period of 7= 2T s zero, while function X(?) is changing slowly

during that time. Taking into account that

<X>=X <&>=0

0@ Los Alamos Y. Batygin - USPAS 2024 77
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Effective Potential of Averaged Motion

dU df dU 1 df
T e T
dX dX dX mw dX
df 1 df ?
Taking into account that <f d_X >= E < X >

equation for slow particle motion is mX = —

where effective potential is U.=U-+

0@ !.os Alamos Y. Batygin - USPAS 2024 2o
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Averaging Method for FD Focusing Structure

Consider periodic FD structure of quadrupole lenses with length of D = §/2, and field
gradient in each lens G,. In FD structure, focusing-defocusing lenses follow each other
without any gap. Let us expand focusing function G(z) in Fourier series:

AG. . mwz. 1 . 3nz. 1 . 5nz
G(z)= k +— —)+— —)+ ...
(2) - [Sm([ ) 3Sln( : ) 5Sln( : )+ ...

x direction | .

o (50 8 -
y direction | | &
| I |

Focusing cell

T~

FD focusing structure and approximation of field
gradient.
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Averaged Particle Trajectory in FD Channel

2
Let us keep only first term: mﬂ _ q 4 ﬂﬁc
dt’ y
. . o 2 4G nf3c
Equation of particle motion in d_ _ sin ot f = xﬁ 2 Bcl|lw="=
fast oscillating field " dt? S (st : Yy 7w D
can be substituted by slow motion in an effective ff 4 qGD_, ,
. Ueﬁ” = > = —(— > ) X
potential Amo my &
y du
Equation for slow particle motion mX = — X
2
can be written as d )2( +Q2X=0
dt
where frequency of transverse oscillations o - 4 2x/§G0D
r 2
ym T
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Phase Advance per FD Period

d’X Q

After substitution t - z equation for transverse —+( YX=0
oscillations is dz Pc
. . . Q)
Averaged particle trajectory X=X, sin( 2 +D, )
Phase advance of slow oscillations per period S _Q g
M, Be
Phase advance of slow oscillations in FD channel per _ 49 4\/§G0D2
2
Taking into account, that 4v2 _ 1 the phase advance U = I 4G,D
can be written 2 3 J3 myBe

(This result can be obtained exactly if we take all terms in FD expansion)

Compare with matrix method for
FODO period with $ =2D : U,

" 2D 3S myBc 3 myBe

S 4D qGD* 1 ¢gGD’

Averaging method gives the same result for smoothed phase

advance as matrix method.
% Los Alamos
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Averaged Particle Dynamics in a Quadrupole
Focusing Channel

Equation of motion in x- and y- directions

d’x d’y
d—Z2+k(z)x=O d—Zz—k(z)y=0

where focusing function  f(;)= qG(2)

are substituted by averaged trajectories

d2X u 2 2
2+( O)X:() dY+ ILLO ZY:()
dZ S dZ2 ( S )
Fast oscillating term is substituted as:
G(z
k(Z): q ( )%(:Lto )2
mcfBy S
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Particle Trajectory in Averaging Method

Equation for fast component: &= _ f2 £=_xd 4G,D* sin(@t)

ma ym 1 Bc

Relative amplitude of small fast oscillations in FD _ S _ 43 _
v = u,=0223u,
structure: X T

Solution of equation of motion in
averaged approximation (t =z/ S)

x=X,smm(urt+P, )1+v_ SIn27T)

y=Y,sin(u,t+®, )1-v,, sin277) z/S

(Solid) particle trajectory in quadrupole
channel and (dotted) approximation by
averaging method.
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Averaging Method for Trajectory in FODO Channel

8 m—l
Fourier expansion of field 5,y = 46,5 =D Ym—1 EQ in27(2m—1D>
gradient @ T Z 2m—1 sm{(2m=1) S] sin[2m(2m )S]

m=1

qG S2 oo SlIl
Smoothed phase H, = \/52—0 Z
advance per FODO

period (compare with

matrix method) i T (2)2(1_£2)
m=1 (2m — 1)4 8 S 3 S
_S [|_4D4GD’
% =D 38 myBc
: D
Amplitude of small o) sin(7r E) >
oscillation term Upax = ;) M| = u, =0.2026u,
2 A
i l-—— ()
N S forD << S
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Transverse Dynamics Including RF Field

Equation of transverse motion in
traveling wave:

k,r
For near-axis particles 2y
transverse equation of motion in
RF traveling wave

kr
1)~
Y

Transverse equation of motion in
quadrupole structure and RF traveling

wave

Smooth approximation to transverse
motion

Frequency of smoothed oscillations

% Los Alamos
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dp, E _kr

dt

=q(E, — BcBy)=—q—1,(—) sin@
Y Y
d*x

d’x _ gEmsing
dt’

mABy’

X

qEmTsing
mABy’

d’x __qbc
my

G(z)+ ]x

dr*

d’X >, qEmsing
—=—Q’X -

dt mASy’




Transverse-Longitudinal Coupling

Let us express sin@ =sin(@, +y) =sin@_+y cos@, =sin@ (1+yctgp,)
Smoothed transverse oscillations in VED'e , Q2
focusing and RF field e +[€27 —7(1+wctg(ps NX=0

Frequency of longitudinal oscillations: O? = 21 gE ‘Smﬁgs
A m By

Non-synchronous particle performs
longitudinal oscillations with amplitude ®

v =-Osin(Qr+y )
and longitudinal frequency Q:

Transverse equation of motion can d’X , Q7 .
be rewritten as 77 X[, - 70tg(pﬂ> sin(Qt +y,)]=0
Q2
Transverse oscillation frequency of Q =QF ——
synchronous particle 2 { ,Ufz
Phase advance of synchronous particle at Hy = Ho 2/15
the period of focusing structure in RF field
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Parametric Resonance in RF Field

Selecting ©r = 27 T transverse oscillation in Mathieu equation
RF field becomes d’ .
)ZC + 7’ (a—2qsin2n7)x =0
dX + 7:2[(&)2 —2®|ctge,|sin277]X =0 a
dr’ Q ad
2Q ., P
- ' a=(—=% q=D|ctgp,| =
Parameters of Mathieu equation ( 0 ) | | tgQ.
Q. =20, n=1,2,3
Parametric resonance occurs when a = n? n Ty EL S
Regions of parametric instability \/E < 2 < \/Z
2 Q 2
where for the first two regions of q2 q3 _ q2 q3
instability, n = 1, 2, the parameters ¢, = 1+q—§—a b = 1_q_§+6_4
an, b, are , A
B +5q2_763q4 _q4_4 5¢q
12 13824 12 13824
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Regions of Parametric Resonance

Phase advance for synchronous particle

nRF field y =q >

Bc

Defocusing factor = :(7?_59 >
Y flw

In linac, the transverse oscillation
frequency is typically larger than the
longitudinal oscillation frequency, and
the first parametric resonance instability
region is avoided. The potentially
dangerous region in this case is the
second parametric resonance bandwidth
where n = 2. Instabilities of higher-order
resonance regions are typically
unimportant.

Parametric resonance regions.
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Experimental Observation of Parametric Resonance

0.40 -
)
g ®— Experiment
0
g 035 DYNAMION
= & - TraceWin ,..-'-+
E _ ’_..’__/
uEJ » —4/ NYe
@ 030 AT
g. o [o e
@ ?é SN o a4 0, =3
c e -
1+ ‘e - 500
= 025 ? R
= 70 55
g 800 600
S
2
0.20 T T T .
0.0 0.5 1.0 1.5 20

Initial Depressed Tune Ratio o)/ o+

Figure 8: Mean of horizontal and vertical rms emittance at
the DTL exit as a function of the initial ratio of depressed
longitudinal and transverse phase advance.

(L.Groening et al, LINAC2010)
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Statistical Description of Beams

Realistic beam is
characterized by
certain distribution in
phase space. In order
to apply theory to real
beams, the concept of
moments of distribution
function is used.

~
1% Los Alamos
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Statistical Description of Beams (cont.)

Consider a beam with a distribution function f (x, P, ¢) and let g (x, P, ) be an arbitrary

function of position, momentum, and time. The average value of the function g (x, P, 1) is
defined as:

T Tg(%f,t)f(ic’,ﬁ,z)dmﬁ

oo

| T f(%,B,t)dx dP

— 00 %

The integral in the denominator is just the total number of particles. Now, let us consider

some examples of physically significant average values. For g()_c’,f’,t) = x , the average
value

1 5 7 . .
<X>=X=— x f(x,P,t)dxdP
Wl 1
gives the center of gravity of the beam in the x-direction.
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Moments of Distribution Function

Analogously, for g()_c’,f’ )= (x—X)", the average value of x° is defined as
1% % _ .
2 —\2 pr= ~
<X >=— (x—Xx) f(x,P,t)dxdP
vl o

and is called the mean-square value of x. Similarly, the mean-square value of transverse
canonical momentum P is defined as

<P’>=—[ [ (P-P) f(&.P.r)didP

1
N
The correlation between variables x and P, is given by the following expression
taking g(x,P,t)=(x—Xx)(P.—P.):

1 % % _ . .
<xP >=— x—x)P -P x,P.,t)dx dP
3 Ni _{( )P, —P.) f(%,P.1)
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Gaussian Distribution

dN 1 ox [_(x—)_c)2]
dx 2mo P ?

O =\N<x >

34.1% 34.1%

13.6% 13.6%

Y. Batygin - USPAS 2024
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Root-Mean-Square (RMS) Beam Emittance

The following combination of second moments of distribution function is called
the root-mean-square beam emittance:

3 =<t ><x?>—<xx'>

and the normalized root-mean-square beam emittance is given by

1
E e =

rms

\/< x*>< P} >—<xP. >’
mc

By the reasons discussed below, beam emittance is adopted as the value, four times
large than rms emittance

=A< 2 >< x> — < xx' 2
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Distributions with Elliptical Symmetry

The density of particles in phase space, normalized by the total number of particles A, 1s
described by a distribution function py (x,x'), which is an integral of the beam

distribution function over the remaining variables:

o . OO

px(x,x')=1l ’
N.—OO J-o0

. OO . O

f&x,x,y,y,2,7) dy dy dz d?

J-oo J-o

It 1s convenient to consider distributions in phase space with elliptical symmetry:

Px (X, x') = py (Y x2+2 OxXx X'+ By x|2

Such distributions have particle densities, p, (x, x'), that are constant along concentric
ellipses

2=y, x2+2 ax x + By x2

but are different from ellipse to ellipse, so one can write py (x, x') = px (7). Namely,
equation this describes a family of similar ellipses, which differ from each other by
their areas.
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Rms Beam Parameters

Using transformation
=
the ellipse equation can be rewritten as
2 = (x0y - X0y) + (X
X
Let us calculate rms beam parameters and rms beam emittance for an arbitrary function

px (x, x'). We begin by changing variables:

X _
X =y cos
{ o, X ()
X0y - X'Oy =1y SINQ
Now we rewrite it as
{ X =TFyOxCOSQ

Ix

‘ .
X'=ryOxCcosQ - sing
X

The absolute value of the Jacobian of transformation gives us the volume
transformation factor of the phase space element:

ox  Ox
ory aQ
dx dx' = (abs Ydry do=rydry do
dx' dx'
ory AQ

~
1% Los Alamos



Rms Beam Parameters (cont.)

Then, the rms values are:

.271- - 00

<x?>= (”xGxCOSQD)sz(”%) ry dry do
JO JO

12 ! Ix . 2 2

<x'e>= (ryOxcos @ - sin Q) Px(r§) ry dry do
JO o X
2w [ ©

<xx'>= ’ T Oy COSQ (T O')'Ccos(p - er sin(p)px(r)%) ry dred@
X
JO JO

Let us take into account previously introduced expressions:

o=Vp
o= O

VB
By -a2=1

Q@ Los Alamos Y. Batygin - USPAS 2024
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Rms Beam Ellipse

Calculation of integrals over ¢ gives: ]

* OO

<x?>=m By 12 px () dry

<x'%> =Y x 12 Py (rf) dry

JO
Therefore, four-rms beam emittance is given by

<x >
1 | 1

3= ﬂj r’p. (rl)dr,

Beam distribution and 4-rms ellipse.

. ! 2 12
Twiss parameters 5 —_ S 2 _<x'> _<x">
X x x —
Iy 3, 3,
12 | 2
, <x°> 5, <xx'> <X > ,
Rms beam ellipse —x -2—xx+—x" =3,
3, N 3,

‘@ Los Alamos Y. Batygin - USPAS 2024
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Example: Uniformly Populated Ellipse

Consider an example, where the beam ellipse has an area of 74,, and is uniformly
populated by particles. Particle density 1s constant inside the ellipse rf = Ay:

2y - 1
Px(rg) = ——
775Ax 211073
Calculation of the rms value, < x° >, 3
gives: i
. Ax ~>< o
V A i
<x?>=1 B, P Py (rd) dry = s
10 -1103f
=103 S0 0.0 ' 1.0
X
Uniformly populated ellipse at phase
plane (x, x”).
05 Los Alamos Y. Batygin - USPAS 2024 99



4-RMS Emittance of Uniformly Populated Ellipse

The beam boundary is given by

Rx: \?Axﬁx

Radius of the beam represented as a uniformly populated ellipse is equal to twice the
rms beam size:

R=2"V<x*>

Rms beam emittance:

VAx

=Aix.0 rs dry = Ax

Ix

Therefore, the area of an ellipse, uniformly populated by particles, coincides with the 4 x
rms beam emittance. This explains the choice of the coefficient 4 in the definition of
rms beam emittance.
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Beam with Gaussian Distribution

Particle density in the phase plane (x, x’)

Fraction of particles within emittance >

Beam with Gaussian distribution in phase
space >,=rms emittance

Normalization condition

Fraction of particles within the emittance of a
Gaussian beam is:

Fraction of particles within the four-
rms emittance of Gaussian beam

% Los Alamos
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PrI= rdrd
NO)_ a1 p. 2 dr?
1 r’
pur= 70 5 P55
e nzpmf)drf -1
= lmen )

1—exp(=2) = 0.865



Sigma Matrix of the Beam

It is common to represent beam in 4D phase space (x,x,y,y’) as an 4D ellipsoid:

a11x2 + a22x'2+ a33y2 + a44y'2+ 2a,,xx'+2a,,xy+2a,,xy'+2a,,x'y+2a,,x'y+2a,,yy' =1

This equation can be writtenas  X'a X =1

<
I

where the vector of particle position in phase space

- R

|

Y

matrix 57! =5 , and rewrite 4D ellipsoid equation as

= o
X'67'X=1 H

Qi
[l

where introduced sigma-matrix has the form
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Explicit Expression for Sigma-Matrix Equation

Explicit expression of equation for sigma-matrix X'67'X=1is (4D beam ellipsoid):

Fx,x",y.,y)=
y’2011623° + 2y’y011023Ga4 - Y 011024 - ¥ °012°033 + ¥ 701102033 - 2y X G} Oag
033+ 2y X 012024033 - X 024”033 - 0147 (Y O + X (-2y03 + X 033)) + 2y’ yO1°
034-2y ¥Y01102034+2y X 011023 O34 -2y X012023034 + 2X yO011024034 - 2XYy
012024034 T 2%’ 023024034 - X’2(511 0342 +2X’X0), 0342 - X 02 (5342 -2014(012(y’y
O3 - y2 O -y X 033 + X yO3s)+ X(-y’ (5232 +(y O - X 024)033 - Y0034 + O23(y
O +X'034))) - (}’2(5122 - (711(}’2 On-2XyOx+ x> 033) + 012(-2 XyOy +2Xx'X
033) + X (O3 - G2 033))Ous - O137(y " Opp + X (-2y Opg + X Oyg)) +2 O15(014(y’
Y02 + X' (-y 023 - yOa4 + X O31)) + Op2 (Y’2023 -y (yOu +X 034) +X y Os) + X
(Y 24" - X" G4 O34+ O3 (-’ 24 + X* Oug) + 02(Y O34 - YOus))) = 1 (5)
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<

Projection of 4D Ellipsoid on (x-x’)

Projection of ellipsoid on any plane (for example, x, x’) is obtained as

oF , N oF , N
a_y(X,XaY7Y)_O (()—}]'(XaxayaY)_O

9

and substitution solutions of these equations into equation for ellipsoid.

Actually, for every fixed value of x, the point at the boundary of projection
corresponds to max possible value of x’:

ox _

ay =Y

=0
ay:

or, according to differentiation of implicit functions,

Los Alamos

NATIONAL LABORATORY

oF oF
o _ dy oy
dy ~ OF’ dy ~ OF °

o' '
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Projection of 4D Ellipsoid on (x-x’) (cont.)

oF

Jdy

-G14” (2Y 0 - 2X 023) + 2Y 611623024 - 2Y 011 024" + 2y G12° O34 - 2y’ 611 022034 + 2 X’ Oy
G4 O34 - 2X O3 Opy O34 - 2014(012(Y Op3 - 2Y 024 + X' O34) T X (023024 - G22034)) - (23’(5122 -
2X012023 - 011(2Y 022 - 2X7023))Oas T2 013(014(Y 022 - X’ Opg) T O12(-y Ops TX'Oyy) T X
((5242 -0y Oy)) = 0 (9)
oF

Jy'

-2y’ 01103 + 2yYG110,304 - o3’ (2 0 -2X"0y4) -2y’ G1y 033+ 2y 01102033 -2X’ Oy
024033 +2X 012024033 - 2014(012(Y O23 - X’ 033) + X(-O23°+ Opz O33) + 2y012° O34 - 2YGy1 O

O34 72X 011023034 - 2X013023034 72 013(014(Y 022 - X' G33) + 012(2Y Op3 - YO - X' O34) T X
(023024 T 022034)) =0 (10)

Solutions: — X‘(512013 + X013022 |X‘011023 - X012023
) ) (52 G110
12 ~V11Y22

y'=- X 012014 - X014022 - X011024 + X0 12024
O, - 611022

0@ Los Alamos Y. Batygin - USPAS 2024 105
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Coefficients of Sigma-Matrix

After substitution solutions to 4D ellipsoid
equation, we get projection on (x-x’) plane

097x2 + 011x2 - 2019xx = 011027 — 6%2

This equation determines ellipse on phase plane (x,x’). Comparison with equation
for rms beam ellipse, one determines coefficients in sigma — matrix:

o,=<x> o,= <xx'> 0, =<x">

Right-hand terms determine square of area of ellipse (rms beam emittance):

2

2

C =00, =0y,

X_rms

Analogously, projection on x-y plane

where

033%2 + O11y2 - 2013%y = 011033 — 6%3

Op= <Xy>

0@ Los Alamos Y. Batygin - USPAS 2024 106
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Explicit Expression of Sigma-Matrix

Finally, sigma-matirix is expressed through second order momentums of beam
distribution

<x’> <xx'> <xy> <xy'>

<xx'><x”> <x'y> <x'y'>

Q!
I

<xy> <x'y> <y’> <yy'>

<xy'><x'y'> <yy'> <y >

Because of identity <& >=<¢£> 10 elements in sigma-matrix are independent.
Combinations of coefficients 0,0;,—0;  determine area of projections of beam
ellipsoid on each plane, and, therefore, must be positive. Coefficients of sigma-
matirx must satisfy the following conditions:

o,>0

O. O.
ii ij >O

=1,234 j>i
Gl] G]] I ’ 137 ’ ,I I
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Evolution of Sigma-Matrix

n/2

Volume of n-dimensional ellipsoid v/ \/7
—./deto

where [(x) is the gamma-function: Y, = n
'+ 5)

3

2
T
For different dimensions the volume is V, =z /detc  V, = % deto Vi = ?«/deta

During beam transport, beam phase space volume experiences rotation in phase
space, which can be described as evolution of sigma-matrix between two points of
transport channel. Initial phase space volume is determined by initial sigma-matrix:

X'67'X, =1
while final phase space volume is determined by X!G.' X, =1

Evolution of single particle between two points is determined by R-matrix: )22 = f(l
Evolution of sigma matrix is determined by

(K.Brown et al, SLAC-PUB-3381) — n) | R Reo Ry Ry |(x,

O, = Ro 1R x'z R, R, R; R, xi
Because detR=1 ,then deto,=deto, which b R, R, R, R, ||}
means that phase space volume is conserved ¥, R, R, R, R, ¥,

(Liouville’s theorem).
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Evolution of Sigma-Matrix (cont.)

Example: (x-x") beam dynamics can be determined by 2x2 sigma-matrix. In this
case

which gives equation for beam ellipse at phase plane (x, x’). Application of
equation describing evolution of beam ellipse using single- particles matrix gives:

2 ! 2 '
<XxX°T> <Xx >_ my mpl| <Xy > < XpXg 2| My My,

2 ‘ 2
<Xx'> <X | My Myl <Xxyx, > <x'§> || My My,

which can be written in explicit way as

2 2 2 2
<X > mp, 2m11m12 m,, <Xy >
' . 1
<XX > = omym, My My, +mymy,  Mym,  (I<XX, >
12 2 2 12
<x" > m;, 2m, m,, ms, <x'yg>

~
1% Los Alamos



Slit-Collector Beam Emittance Measurement Device

MOVABLE WIRES A
! ENTRANCE ° X
$sur o, '

D= EMITTANCE 2

[+
_—____1,.-1—"——‘5 : DIAGRAM
o -

N

-0000000
"

Emittance measuring device.
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LANL Slits and Collectors

Slit: For energy <1 MeV: water-cooled graphite
with a 0.012” wide slit

For energy 100 MeV: 0.025” wide BeCu slits

B Low energy transport collectors

® 70 ea. 0.016" thick copper
plates.

® 0.004" mica spacers.
1.625" x 1.625” active area.

® Take signal off downstream
side.

® Water cooled.

® Envex (polyammide) used for
rad-hard insulating material to
hold assembly together.

® Rad-hard Kapton wires used to
bring signals out.

@ Advantages compared to harps:
acts as beam stop, 12X more
signal.

‘@ Los Alamos Y. Batygin - USPAS 2024
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Slit and Collector Actuators

Emittance
measurement
switcher

~
1% Los Alamos

SRS ., Collector actuator in beam box



Emittance Scan and Equivalent 4-RMS Beam Ellipse

Result of measurement are two- . o R
dimensional function of intensity L il A

distribution at phase plane I; (x,x’)

YP-AXIS

R File:
= . /epics/1cs/data/em/
—Y-PRGT| console/emitdata.24541

2.51 cm by 62.4 mr e e Y-AXIS

Rms beam parameters

N
2, 1 )1 (x.x' prigtess S Tenany
= — —_ :45: -Sep-
<X > = ('xi 'x) i('x9x ) Beam: H- Meas,p Norm
)i N Egtgta})= 3635 0.148 pi
j— = 3 i
i=1 g /\ ECmd)’ = 0.474,70.019 pi
N \ Etot/rms= 7.66
1 : Alpha = 1.337
2y = 5 . , \ S Ui,
<x'> == (=X ) (x,x) : s gR e
I P CP = 1.674 mr
i=1 — / X Sigma = 0.2670 cm
B L.
1 N // r\/% Maximum Counts = 745
! Ny — %' ! = Pem Jnniiss IQUER
< XX >=— (x— X)(.Xl. —X )Il.(x,x ) Slit Pos = 1160 1375
(Jetr Pos=_ 1267 1820
=1 S1it Rate = 91, Nom.= 76
l Clctr Rate= 238, Nom,= 227
EEea§ =5o811, “0.232 P
E(ea)/E(rms) =12.252

Four-rms beam emittance: 3= 4\/< X2 ><x? >—<xx'>?

12
. <xx'> <x*> y= 42
Twiss rms parameters: o=- —3 p=4 5 )
Rms beam ellipse yx® +20xx'+ Bx"? =3
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Allison Scanner

GRAPHICS
TERMINAL %

BEAM—= S]  ~~-. SCANNER

' CURRENT

LSl 11723
COMPUTER
1024 J\
CHANNEL AMPLIFIER
DIGITIZER
|ON PULSE
SOURCE GENERATOR
1024 \—/ RAMP Ground Shield Suppressor
CHANNEL GENERATOR lon Beam ¢ +V araday|
DIGITIZER Position Scan
XI
STEPPER | | 4
MOTOR lon Beam
Trajectory
-100V J ! J
I — J Entrance Slit Exit Slit
DEFLECTOR PLATES Figure 1: Schematic of SNS Allison Emittance Scanner.
FRONT SLIT —\\
. R R -
— /‘_\—-‘__~q}§‘\~”7 j

—_ —F
0 \I\—REAR SLIT

Fig. 1. Schematic of electric-sweep emittance scanner.
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Four Slits Method for 4D Phase Space Distribution

o,

First pair of slits selects particles with coordinates x,,
Yo. Second pair of slits selects particles with certain

angles dx/dz, dy/dz.
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Pepper-Pot Method

AL UPDATE UGYEW Opore FFT Cosbasin Abed Suf Clbaxion Solbatssrart Hip

lon Beam

Calculating
Emittance (in x)

(7
el
| ————
[ 2
X

1.4 MeV/u Ar+1 ion beam
projection (P. Forck, LINAC 2000)

pepperpot

L 1s the distance from the
pepperpot to the
phosphorous screen

X
s
=
i by 2
L = phosphorous
screen
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MEASURING THE FULL 4D TRANSVERSE BEAM MATRIX OF
ION BEAMS”, M.Maier (IPAC16)

Mob Emi~, .

| extended ' g ]
doublet -

. [ &

skew Triplet

L L) /S - R

& 4 i, s L A ,—"-‘""- - ] ,,,H/ F !
B —— e T
: B L ¥
. N

= ‘ "" ‘
_ -V

beam current transformer

Figure 8: Experimental setup used for the ROSE commissioning.

XX XX' Xy Xy’
X'X X'X'" XY XY
¥YX ¥YX° YY YY°
¥ VX ¥r ¥Y

C =

rotation angle theta
doublet L 4/

o - 1 4
Reconstruction point Y. Batygin - USPAS 2024 Slit

Flgure 9: Experimental proof for ROSE capability to
-measure the 4d beam matrix. 117




MEASURING THE 6D BEAM DISTRIBUTION

BENDING
MAGNET
SLIT_Y_ 2 SLIT_X_2

SLIT_Y_1 SLIT_X_1 1

|

-—-lv_
—  w—

.d dx-dy’

dx-dy
/.- BEKMLET
M
B SLIT_X_3
BUNCH
SHAPE
MONITOR
SLIT_X 4
c - . FARADAY
Points per dimension 10-20 cup
Total number of points 5.6e06
Scan time 32 h

Six-dimensional phase space measurement
(B.Cathey et al, PRL 121, 064804, 2018).
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MEASURING THE 6D BEAM DISTRIBUTION (cont.)

Energy vs Horizontal Momentum at the Beam Core Energy Profile from Full and Partial Projections
0.06 16 0.025
14
_ 0.020
S\ 0.04 Q 12
(] c
2 ; 10 0.015
3 0.02 £,
() (]
— 0.010 \
& o.00 _{:E‘; 6 ' Hih
> O 4 P
o 0.005
0 -0.02 5 /\”M‘
- I M1
0 0.000
—0.04 -0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10
Energy Spread [MeV] Energy Spread [MeV]
-0.004 -0.002 0.000 0.002 0.004 FIG. 4. Results from a 5D scan. The left plot shows the total
Horizontal Momentum (rad) projection of the energy spectrum. The right shows different 1D
partial projections of energy with three different horizontal
FIG. 3. A partial projection plot of the energy spread w against momentums. The blue curve’s x’ is about 0.2 mrad, the yellow’s
the horizontal momentum x’. is about 0.7 mrad, and the green’s is about 1 mrad.
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Indirect Emittance Measurement: Wire Scans

Single —particle transformation matrix

)-(20)(2)

Evolution of an ellipse

B4 C? -25C S? Be
a, | = -CC'" SC'+5C -55 Q,
\ " C;2 -28'C’ 512 Yo
©y
:
8 System of equation to determine
§ unknown valuesof ¢ , B .5
¥
o Beam !
5 profie R\ [ ¢ -2¢8 st (B
o
4 2 _ 2 2
" Ry/>|=| C, =2C,8, §, a,
2 - R}/> C; 208, S; \7,
) Scanning voltage o« beam displacement
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Emittance:

B (m)

Wq Los Alamos

Indirect Emittance Measurement: Wire Scans (cont )

e= (B,e)7,8) - (0,€)"

o, e=[C;(R;S] — R'S;)+ C}(RIS; —R;S;) +
+ CHR2S? - R2SY))/2d,

ﬁ(l‘g: [_R?fSISZ (C,S, —C,S,)+ C3S3(R22S12
—-C;(C\S,R;

—R!S;)-
- C,S,R)/d ,

y,€=[R}C,S,(C,S,—C,S,)+C,S,(R:C; —R;C})+
+C[(C,S,R; - C,S,R)]/d ,

d=(C,S, —C.S,))(C,S, —C,S,)(C,S, - C,S,)

NATIONAL LABORATORY

10

ALtopt =

Y. Batygin - USPAS 2024

b
9 ]
3 60°
Nwires - g sf :
w :
° ,
6 3 L
—
% 1
40 50 60 70 80
1"
10
Nwires - 4 9t
s 8r
=~ 7t
&
6
5
4 " 1 " 1 4 1 i 1 L 1 "
20 30 20 50 60 70 80
W (degrees)
6.0
Nwires - 5 _ 55¢
%
&
50}
180°
a5
1 s 1 1 1 1
Nwires 20 30 40 50 60 70 80
u (degrees)
O¢
Error—‘— 2(8 -’ inbeam
(N_l i=1

emlttance determmatlon as a function of
phase advance for different numbers.of
wire scanners



Wire Scans of LANL Linac Modules 41 - 48

1o U8 22-DEC-09 CRIN=LD GRTF B T

FS=1000 B FS=1000
U:IS@M“’
H HCq =
D.ISaO.QS,D;EQV/L/\\\\\\i\ O.DQDD.QQLQ*EEV/+N\\\\\& Y ga???immmém;
ABNSOT
ZlolteE
~o,37,gk§{fgjg§\\ on05,0n35,ghj%{// v Sﬁ???immwa;
47NS01
Acpa=
-0.12.0.49.8788 [~ ~0.16.0.44.6789 ? ?ﬁ???iwwwa
1BWSO1
H BAGKG=
0.24,0.41,0.89 ~0.258,0.36-0.78 N Y Em?hgv_mw?;
ISWS01
BEKG=
0.37.0.45,0.89 ~-0.13,0.42,5789 ? gﬁm%g_umm§¢
12NS01
H ACKG=
D-DBnD-M\ -0.02.0.41.0.66. | Vggt&g'_%
I3WS01
—o.057oug§g£x€£;m+\\\\\\\ o,o%,o,gliguéﬁf/r ? ;a???fmwm%
t2WS01
0.13.0.46.0 89" —o.zq.o$§g4éf;;\\F\\x¥, ? Esgggfmmma,
TWNSOT
1.50 CM H (CENTRZID. RMSFW. WATI v 1.50 CM
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Emittance of the Beam Extracted from lon Sources

CPLASMA
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Schematics of a plasma ion source (from

M.Reiser, 1994).
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Thermal Beam Emittance in Particles Sources

The ultimate goal of accelerator designers is to minimize emittance. An intrinsic limitation
of beam emittance in particle sources comes from the finite value of plasma temperature in
an ion source, or the finite value of cathode temperature in an electron source. Equilibrium
thermal particle momentum distribution in these sources is in fact, close to the Maxwell

distribution:
2

_ m  \3n b
f(P)—n(anBT) exp( 2kaT)

Rms value of mechanical momentum 1is

< pl>=mk,T

Beam radius is usually adopted to be double the root-mean-square beam size, R =2 V<x 2>
Fortunately, for particle sources, one can assume that <xP,> = 0 because there is no
correlation between particle position and particle momentum. Therefore, the normalized
emittance of a beam, extracted from a particle source, is

k,T

2
mc

E=2R

~
1% Los Alamos



Thermal Beam Emittance in Particles Sources (cont.)

Some sources can be operated only in presence of a longitudinal magnetic field, which
produces an additional limitation on the value of the beam emittance. For instance, in an
electron-cyclotron-resonance (ECR) ion source, charged particles are born in a longitudinal
magnetic field B,, fulfilling the ECR resonance condition 2@, = gz, where @, is the
Larmor frequency of electrons and wy is the microwave frequency. Canonical momentum
of an ion, P, = px - gA,, in a longitudinal magnetic field B, is:

B
Pr=pi-q= Y
The rms value of canonical momentum is given by:
2 p2
<Pi> = <pi>-q B, <p.y>+ 9 B <y*>

The first term describes the thermal spread of mechanical momentum of ions in plasma, and
is given by <p#> = mkT . The middle term equals zero because there is no correlation between
p, and y inside the source. The last term is proportional to the rms value of the transverse
coordinate <y2> = R*/4. As a result, we can rewrite <P>> as follows:

qBZR)z

>
<Pi>=<pi> + (

% Los Alamos
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Thermal Beam Emittance in Particles Sources (cont.)

The normalized beam emittance &, extracted from the source is

BR
£=2R \/kBT+(q -

2
mc 4mc

Therefore, the presence of a longitudinal magnetic field at the source acts to increase the
value of the beam emittance.

Example: Normalized beam emittance due to thermal spread of particles in
plasma (kT = 0.1 eV, R =3 mm, mc2= 938 MeV):

R / kT
g, = ~=1.5-10" 7 cmmrad
2 Vmc

Additional sources contributing to beam emittance :

e irregularities in the plasma meniscus extraction surface

e aberrations due to ion-source extraction optics

e optical aberrations of the focusing elements of the LEBT

e non-linearity of the electric field created by the beam space charge

e beam fluctuations due to ion-source instability or power regulation
% Los Alamos
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Duoplasmatron

Solenoid Field
Iron Return Yoﬁke

Conical Iron
Intermediate
/ Electrode

Solenoid
f Expansion
/ Anode Cup
Hydrogen Extraction
Feed Electrode
'_J\}ﬁ
Filament o L '
I
Power Supply ) =
2-100 A : = y
Cathode — Z Beam
Filament L——
Defocusing
Solenoid
= High
Discharge - Voltage
Power Supply Extraction Insulator
2-100A Voltage

Supply
5-50kV
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LANSCE Duoplasmatron

Side view of assembled LANSCE duoplasmatron ion source with Pierce electrode.

Pulse Rate Pulse Beam Normalized rms
(Hz) Length (us) | Current emitttance
(mA) (Tr cm mrad)
40 830 14 0.003
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Emittance of LANSCE Proton Beam

YP-PROJ| E = 750.0 KeV
b*g = 0.04000
Polarity: +
Scale: 1 mA
File:

— - /epics/1cs/data/em/
‘‘‘‘‘ Y-PROJ ccr/emitdata. 26023

YP-AXIS

2.51 cm by 29.8 mr Ellipses: Tot Y—AXIS _________
Run:26023 Stn: TAEMO1-V
21:27:38 18-Jul-2015
Beam: H+ Meas, Norm
Egtgtag = 9:379; .0.015 pi
e = § q
Etonds’ = 8:885.770.003 pi
Et?t rms= 5.90
= Alpha = 4.882
\ S §
= rms) = :
% CEEEE = 8;3% g;ln
entP = : mr
N—f—~o X Sigma = 0.25%5 cm
TNV X Signa= 12244 mr
Tho = 2.0 %, i4 2nts
—— Maximum Counts = 21
T~E=———= Beam thru_thresh= 44049
. Total Beam = 44177
S11§ Pgs = %%94 %8%%
r i
Spoea. 1309, Wik -  aos
E1ct Rate= 229, Nom,= 219
ea§ =°0.651, “6.028°m
EEea /E(rms) =10.367

Emittance of proton beam extracted from LANSCE proton ion
source. Additional component contains H;/Hg particles.
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Electron-Cyclotron Resonance (ECR) lon Source

Solenoid cotl
Jron yoke ECR resonance condition: O, = O,
Microwaves {18GHz)

Insulator

{ K Gans)

By =0 )

2D image of the 12°Xel’*ion beam
of the energy of 255 keV and
current of 12 epA extracted from
T First Stage the mVINIS lon Source, together
B TN with the image of the 1602* beam.

N

Cross sectional view of RIKEN 18 GHz ECRIS
(T.Nakagawa et al, NIM-A 396, p.9 (1997)
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Electron-Cyclotron Resonance (ECR) lon Source

Beam Profile

oLt =0
x10” 107
4 0.6 0.6 —
In the electron cyclotron resonance ion source ’ 0] 04—
(ECRIS) plasma is confined in a minimum B iy ™ 2T o2 ”;

. . . . . S o fan) X0 & o D
magnetic mirror configuration created by solenoid =, \\V > MERNSZ s
coils and multipole lens. In many sources a 2 04 04
sextupole lens is used to confine particles in a radial D e i i S i e S B L o R R
direction, while longitudinal confinement is provided x, em x, cm y. om
by the solenoid field. The ECR surface, where oLt = 8.96
electrons are heated, is defined by 2w, = wgr, where o ot
w, is the electron Larmor’s frequency and wrggis a . 06 06

i i 3 04 04
frequency of microwave power . At this surface the 21 02 =
. . . 1
absolute value of the vector of the magnetic field is §o N\ DH/ g o (€ ol <\~@

. . > N
equal to the resonance value B¢, Which defines the b NI/ zj Z: T~
ECR condition: 3 ‘ '

AR R R SR R RN RS R R AR R
X, cm X, cm Yy, cm
2
9 2 BO 4 n, oLt = 26.88
B — B-+B—+ — 7T =— <10’ xi0”
res Z r 4 rf
R ¢ 06 0.6
0 3 04 A\ 04 /’
HANSNB= oy 02 / ‘\ 02 =4
§o S~\§77/ & o 45\\\ &0 ::_:3 |
> \ 0. L .
The extracted beam can have an 2 i o % A A\
. . -3 ’ N
aXIa|-n0nunIf0rm Shape due tO the A Era— oi Y R R R R R R I e A N RN
topology of the magnetic mirror x, om x, om y. om

field.
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Ar+5 particle trajectories in combination with the
solenoid field and the sextupole field (Y.B., Journal
Appl. Phys., Vol. 83, No. 2, 1998).
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Electron-Cyclotron Resonance (ECR) lon Source
Beam Profile

Image of a triangular He* beam 80 cm after extraction.
(D.Winklehner et al, 2010 JINST 5, P1 2001)
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Electron-Cyclotron Resonance (ECR) lon Source

0.3 T T T T | I |
. +
| 5
N 025[ 4 g
©  u BLL At
£ [ " "He
8 0.2 -_ A “E‘O
§ : P :E:EiKr
g 0.15 5 @ ZDgBi
'g [ A — 1 T magnetic
o 010 emittance
E - A
L : A
0.05 + i
- *® @
i A o ® o0
0 [ ] 1 ] | | | ]

M/Q

Emittance measurements on the AECR-U for various masses in comparison
with predicted emittances for an extraction magnetic field of 1 T (D. Leitner
et al, 2011 JINST 6 P07010 )
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H- lon Source

SUEIEER Heated Filament
Converter Cathode
Electrode %

Outlet
Ra
- ; &
. vak H Beam
Cs disffenser
Sectional schematic of a multicusp surface
converter ion source.
x' . Multicusp e
oy +  Acceptance of H-ion Magnets et
L) source
R, —R,
( Lo ) A — 4 Rconv Ra
= AN S, r L
-R,,. : X
| Ru-R,
( L(‘OIH' )
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YP-AXIS

LANSCE H- Beam Emittance

YP-PROJ| E = 80.0 KeV¥
b*g = 0.01300
Polarity: +
Scale: 200 uA
File:
/epics/1cs/data/em/
Y-PROI console/emitdata. 25970
MK =0
Shiy = _ov32
3.77 cm by1006 mr Ellipses: Tot Y-AXIS
Run:25970 Stn: IBEMO1-V
12:26:47 10-Feb-2015
Beam eas, Norm
9.283, 0.121 pi
8.440 pi
1,348," 0.018 pi
6.89
-0.687
0.411
5.392 pi
-0.130 cm
3.946 mr
0.7447 cm
2.1964 mr
= 2.0 %, 8 _cnts
Max1mum Counts = 423
Beam thru_thresh= 91723
] otal Beam = 92250
S1it Pos = 1167 1724
C]ctr Pos= 840 1399
S1it Rate = 148, Nom.= 145
Clctr Rate= 148, Nom,= 146
EEeag =16.515, ~0.215 pi
ea)/E(rms) =12.252
Analytical Experimental
n | ]
| |
Normalized beam emittance: beam 4€,ms beam
emitttance emitttance

<
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£=—

4 [2qU

cony

Rconv Ra

T

2

mc

(Tr cm mrad)

(Tr cm mrad)

L

0.076

0.072
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H- lon Source Parameters

TABLE 1
LIST OF ACCELERATOR H ION SOURCES ALONG WITH THE RELEVANT
PARAMETER SPACE DISCUSSED WITHIN THIS REVIEW. TYPICAL Iz —

CURRENTS ARE GIVEN WITH AN ASSOCIATED EMITTANCE. [13], [14] WERE
USED TO FILL IN VALUES NOT PREVIOUSLY CITED. UNDERLINED PARAMETERS

ARE FROM [13] AND BRACKETED PARAMETERS ARE FROM [14]

Source Source Iy Beam Rep. Enms XY Py e/H  Life-
Type Location (ma) df Rate (7 mm-mrad) (kW) time
(drive) (%) (Hz) (month)
Multicusp
Volume, H,
RF DESY
(HERA) 40 0.12 8 0.25 ~20 26 =12
LaB; fil. J-PARC
{KEK) 38 0.9 25 35
Multicusp
Volume,
Cs+H,
RF SNS 33 6.0 60 0.22/0.18 ~40
W fil. TRIUMF 20 100 dc 0.022 ~5 4.5 ~?
W fil. J-PARC 72 5.0 50 0.13/0.15
(JAERI)
SPS
Magnetron BNL 100 0.5 75 0.4 ~2 05 ~6
Fermilab 60 0.1 15 0.2/0.3 ~7 ~6
DESY 50 0.05 6 0.46/0.31 {~5} ~9
Penning ISIS 45 1.0 50 0.6/0.7 ~4 ~2
INR 50 2.0 100 0.4/0.7 (e,72) {~10} ~0.5
Hollow cath. BINP 8 100 de 0.2/0.3 0.4 ~0.2
Converter LANSCE 17 12.0 120 0.13 ~6 25 ~1
(W fil.)
(LaBg fil.) KEK 20 0.5 20 0.33 ~4 4.5 34
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