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Self-Consistent Particle Dynamics

Example of self-consistent dynamics: two - body problem

In classical mechanics, the two-body problem is to determine the motion of two point particles that 
interact only with each other according to the gravitational law: 

F = G m1m2

r2
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Self-consistent approach: solution to the equations of motion of the particles, 
together with the equations for the electromagnetic field that they create.  Evolution 
of charged particles interacting through long-range (Coulomb) forces is determined 
by Vlasov’s equation 

df
dt

 = ∂f
∂t

 + ∂f
∂x

 dx
dt

 + ∂f

∂P
 dP

dt
 = 0

 
 

Solution of self-consistent problem: the phase space density, as a constant of 
motion, can be expressed as a function of other constants of motion I1, I2, …. 
 

f = f (I1, I2, ....) 

Self-Consistent Approach to N-Particle Dynamics 
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Field created by the beam is  
described by Maxwell's equations: 

ρ = q  
- ∞

∞

 
- ∞

∞

f dPx dPy dPz

- ∞

∞

 

space charge density:       

 j = q  
- ∞

∞

 
- ∞

∞

 
- ∞

∞

v f dPx dPy dPz
 

beam current density: 

Maxwell's Equations 
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Field Equations 

Instead	of	electric	 field 
!
E and	magnetic	 field	 

!
B ,	 it	 is	common	to	use	vector	

potential	 
!
A 	and	scalar	potential	U :	

	

 

!
E = − ∂

!
A
∂t

− gradU 						 	 	 	 	
	

 
!
B = rot

!
A	 	 	 	 	 	 	 	

	
The	field	of	the	beam	is	described	by	the	equations	
	

	
	

	

ΔUb - 1
c2

 ∂
2Ub

∂t 2
 = - ρ

εo

ΔAb - 1
c2

 ∂
2Ab

∂t 2
 = - µo j
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Consider system of coordinates, which moves with the average beam velocity β. We will 
denote all values in this frame by prime symbol. Potentials U ' , A

'
 are connected with that in 

laboratory system, U, A , by Lorentz transformation 
 

     
 

U = γ  (U ' + β cAz
' ) 

 
Ax = Ax

' ,   Ay = Ay
'  

 
 

Laboratory and moving systems of coordinates

Az = γ (Az
' +

β
c
U ')

Lorentz Transformations
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In the moving system of coordinates, particles are static, therefore, vector potential of the 

beam equals to zero, . According to Lorentz transformations, components of vector 
potential of the beam are converted into laboratory system of coordinates as follow 
 

 ,  ,  

Ab
'
 = 0

Axb  = 0 Ayb  = 0 Azb = β Ub
c

In a particle beam, the vector potential and the scalar potential are related via the 

expression Ab = vz  /c 2Ub, therefore, it is sufficient to only solve the equation for the 
scalar potential. Equation for scalar potential of moving bunched beam is  
 

∂2Ub

∂x 2
 + ∂

2Ub

∂y 2
 + ∂

2Ub

γ 2∂ζ 2
 = - 1

εo
 ρ (x, y, ζ) 

 
 

Self-Consistent Field Equation
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The unknown distribution function of the beam is then found by substituting equation for 
distribution function into the field equation and solving it. For beam transport, equation 
for unknown space charge potential is 

 

Equation for unknown potential of the beam together with Vlasov’s equation for beam 
distribution function  
 

 

 
constitute self-consistent system of equations describing beam evolution in the field 
created by the beam itself 

ΔUb = - q
εo

  
-∞

∞

f (I1, I2, ...) dP 

df
dt

 = ∂f
∂t

 + ∂f
∂x

 dx
dt

 + ∂f

∂P
 dP

dt
 = 0

Self-Consistent Field Equation
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Vlasov's equation describes behavior of interactive particles in self field.  
 
Charged particles within the beam interact between themselves: 
 (i) interaction of large number of particles resulted in smoothed collective charge  
density and current density distribution 
(ii) individual particle - particle collisions, when particles approach to each other 
 at the distance, much smaller than the average distance between particles.  
 
First type of interaction results in generation of smoothed electromagnetic field,  
which, being added to the field of external sources, act at the beam as an external 
field.  
The second type of interaction has a meaning of particle collisions resulting in  
appearance of additional fluctuating electromagnetic fields.  
 

Applicability of Vlasov's Equation to Particle 
Dynamics
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Applicability of Vlasov's Equation to Particle 
Dynamics (cont.)

Using Vlasov's eqauiton, we formally expand it to dynamics of interacting 
charged particles, assuming that the total electromagnetic filed of the 
structure (U, ) 

 
 

 

, , external field 

,  field created by the beam. 
 
and neglecting individual particle-particle interactions. Vlasov's equation 
treats collisionless plasma, where individual particle-particle interactions are 
negligible in comparison with the collective space charge field. 

A
U = Uext + Ub

A = Aext + Ab

Uext Aext

Ub Ab
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Quantative treatment of validity of collisionless approximation dynamics to particle 
dynamics: n - particle density within the beam,  r - the average distance between 
particles:  

nr 3 = 1 , or       r  = n -  1/3  

Applicability of Vlasov's Equation to Particle 
Dynamics (cont.)

Individual particle-particle collisions are neglected, when kinetic energy of thermal 
particle motion within the beam is much larger than potential energy of Coulomb 
particle-particle interaction: 

 
 

 is the root-mean square velocity of chaotic particle motion within the beam: 
 

mvt2
2 = kT2  

 

T    is the “temperature” of chaotic particle motion  
k = 8.617342 x10-5 eV  K-1 = 1.3806504 x 10-23 J K-1 is the Boltsman's constant. 

mvt
2

2
 >> q2

4 π  εo r
vt
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Number of Particles in Debye Sphere  

Radius	of	Debye	shielding	in	plasma:										 	
Combining	all	equation	one	gets:										 											or				(2π )3/2nλD

3 >>1	
Volume	of	Debye	sphere	is	V = (4 / 3)πλD

3 	and	number	of	particles	within	Debye	
sphere	is	ND = (4 / 3)nπλD

3 .	
Condition	(2π )3/2nλD

3 >>1	can	be	rewritten	as	

ND = 4
3
πnλD

3 >>1 	

	
Individual	particle-particle	collisions	can	be	neglected	if	number	of	particles	within	
Debye	 sphere	 is	 much	 larger	 than	 unity	 	(or	 average	 distance	 between	
particles	is	much	smaller	than	λD).		
	
Particle	density	within	uniformly	charged	cylindrical	beam	of	radius	R,	with	current	
I,	propagating	with	longitudinal	velocity	βc,	is		

	

		

λD = εo kT
q2n

r << 2π  λD

ND >> 1

n = I
π q βc R2
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Vector potential    A = Amagn + Ab   

is a combination of that of magnetic lenses, Amagn, and of that of the beam, Ab , 
 
Scalar potential   U = Uel  + Ub 

is a combination of the scalar potential of the electrostatic focusing field, Uel, and of  

the space charge potential of the beam, Ub.  

 

Hamiltonian of charged particle 
 
 

H = c m2c 2 + (Px - qAx)
2 + (Py - qAy)

2 + (Pz - qAz)
2  + q U 

Hamiltonian of Particle Motion in Quadrupole 
Focusing Channel 
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Vector - potential of an ideal magnetic quadrupole lens with gradient G inside the 
lens is given by 

Azmagn =
G
2
(x2 − y2 )       

 
Electrostatic quadrupole with gradient Gel, creates the field with electrostatic potential 
 

 Uel = - Gel

2
 (x 2 - y2)     

Transversal components of mechanical momentum are equal to that of canonical 
momentum, px = Px, py = Py, and Hamiltonian can be written as: 
 

K = c m2c 2+px2 + py2 + (Pz -  q Az)
2  + qU     

Hamiltonian of Particle Motion in Quadrupole 
Focusing Channel (cont.) 
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In the moving system of coordinates, particles are static, therefore, vector potential of 

the beam equals to zero, Ab
'
 = 0. According to Lorentz transformations, components 

of vector potential of the beam are converted into laboratory system of coordinates 
as follow 

Axb = 0 ,      Ayb = 0 ,  Azb = β Ub
c  

          

 
Total vector-potential of the structure is therefore 
 

 Az = Az  magn +
β
c
Ub

Kinetic energy of the beam is typically much larger than the potential energy of 
focusing elements and than the potential energy of the beam. Therefore, Pz >> qAz, 
and we can substitute canonical momentum by the mechanical momentum: 
 

(Pz - qAz)2 ≈ Pz
2 - 2 Pz q Az ≈ pz2 - 2 pz q Az  

It corresponds to the case when longitudinal particle motion is not affected by the 
transverse motion, which is typical for beam transport.  

Hamiltonian of Particle Motion in Quadrupole 
Focusing Channel (cont.) 
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Hamiltonian can be rewritten as  
 

K = mc2 ( 1 + pz
2

m 2c2
 ) + 

px
2 + py

2

m 2c2
 - 2 q pzAz

m 2c2
 + qUel + qUb 

 
The term in brackets is close to square of reduced particle energy:                       

1+
pz
2

m2c2
≈ γ 2

 

 
Taking that term out of square root gives for Hamiltonian: 
 

K = mc2γ  1 + 
px
2 + py

2

(γm c)2
 - 2 q pzAz
(γm c)2

 + qUel + qUb 

Hamiltonian of Particle Motion in Quadrupole 
Focusing Channel (cont.)
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Hamiltonian of Particle Motion in Quadrupole 
Focusing Channel (cont.)

After expansion of small terms ,  the Hamiltonian becomes: 
 

 
 
Removing the constant mc2γ results in the general form of Hamiltonian in a focusing channel: 
 

 
 
Both Uel and Az magn can be a combination of that of multipole lenses of an arbitrary  
order. 

1+x ≈ 1 + x / 2

K = mc 2γ  + 
px2 + py2

2mcγ
   -   
2 q pz (Az magn + βc  Ub)

2mcγ
 + qUel  + qUb

H = 
px
2 + py

2

2 m γ
 + q(Uel - βcAz magn) + q Ub

γ 2
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Kapckinsky-Vladimirsky (KV) Beam Envelope Equations

Consider now dynamics of the beam in focusing quadrupole channel including space 
charge forces of the beam. All particles move with the same longitudinal velocity βc, and 
the longitudinal space charge forces are equal to zero. Hamiltonian of particle motion in 
qudrupole channel with space charge is given by 

 

 H =
px
2 + py

2

2mγ
+ qβcG(z) x

2 − y2

2
+ q

Ub

γ 2  .                 (2.96) 

 
Assume that transverse space charge forces are linear functions of coordinates. 
Correctness of this assumption will be checked later. Linear equation of motion are 
 

d 2x
dz2

+ kx
' (z)x = 0 ,                                                   (2.97) 

 

d2y
d z2  

  + ky
' (z) y = 0

 
,                                                  (2.98) 

 

where kx' (z), ky' (z) are modified focusing strengths including space charge. Equations of 
motion (2.97), (2.98) are linear, therefore, invariant of Courant-Snyder, is valid in both 
planes (x, x'), (y, y') for space charge regime as well. 
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Self-consistent solution can be obtained when distribution function is expressed as a 
function of integrals of motion. Due to equations of motion in linear field are uncoupled, 
Courant-Snyder invariants are conserved at every phase plane: 
 

(x 'σx - σx
' x)2 + x 2

σx
2
 = ∍x

 
,                                                      (2.99) 

 

    
(y 'σy - σy

' y)2 + y 2

σy
2
 = ∍y

 
.                                                     (2.100) 

Courant-Snyder invariants.

Courant-Snyder Invariants
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KV Distribution Function
Values of ∍x, ∍y  are areas of ellipses at phase planes (beam emittances), which are the 
constants of motion during beam transport. Let us express beam distribution function as a 
function of values ∍x , ∍y : 
 

                f = fo δ (∍x  + ∍y  - Fo)                                     (2.101) 
 

where fo,  Fo, ν are constants defined below and δ (ξ)  is the Dirac delta -function:  
 

      
δ (ξ) = { ∞, ξ = 0

0,   ξ ≠ 0  ,                                                  (2.102) 
 

f(ξ)δ (ξ-X) dξ
a

b

 = { 
0,              X<a,   X>b,
1/2f(X),      X = a  or  X = b,

f(X),                 a<X<b
                         (2.103) 

 
In the selected distribution, Eq. (2.101), particles are placed at the surface of four-
dimensional ellipsoid: 
 

F(x, x ' ,y,y ' ) = (x'σx- σx
' x)
2
+ x2

σx
2
 +  (y'σy  - σy

' y)
2
+ y

2

σy
2
  - Fo = 0

.            (2.104) 
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Boundary of (x - y) Projection of KV Beam Distribution

Let us find boundary of projection of the surface F(x, x ' ,y , y ' ) = 0 on the plane (x, y). Boundary of 
projection of the four-dimensional surface F(x, x ' ,y , y ' ) = 0 on arbitrary two-dimensional plane is 
obtained by equating to zero the partial derivatives of function F(x, x ' ,y , y ' ) over the rest of variables: 
 

∂F(x, x', y, y')
∂x'

 = 0 ,         
∂F(x, x', y, y')

∂y '
 = 0 

,                     (2.105) 
 

and substitution of the solutions of equations (2.105) into equation F(x, x ' ,y , y ' ) = 0. Actually, for every 
fixed value of x, the point at the boundary of projection corresponds to maximum possible value of y: 
 

∂y
∂x'

 = 0 ,  
∂y
∂y'

 = 0
 
,                           (2.106) 

 
or, according to differentiation of implicit functions,  

∂y
∂x '

 = - 

∂F
∂x '

∂F
∂y

 ,  

∂y
∂y '

 = - 

∂F
∂y '

∂F
∂y

 ,                         (2.107) 

which coincides with Eq. (2.105). 
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Boundary of x-y Projection of KV Beam 
Distribution (cont.)

Partial derivatives over variables x', y' in equation of four-dimensional ellipsoid are: 
 

 
∂F
∂x'

 = 2 (x 'σx - σx
'x)σx = 0    
 

  
∂F
∂y'

 = 2 (y 'σy  - σy
' y)σy  = 0          

 

Substitution of solution of equations ∂F/∂x' = 0, ∂F/∂y' = 0 into equation F(x, x ' ,y , y ' ) = 0 
gives the expression for the boundary of particle projection on plane (x, y): 
 

x2

σx
2
  + y

2

σy
2
 = Fo

        
 

 
Therefore, particles of KV beam distribution are surrounded by ellipse with semi-axes 
Rx = σx Fo  , Ry = σy Fo   and the area of ellipse  S = π σx  σyFo .  

Y. Batygin - USPAS 2024
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Boundary of (x - y) Projection of KV Beam Distribution (cont.)

Boundary of projection of KV beam on (x,y).

23
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Space Charge Density of KV Beam

Phase-space element is transformed according to: dx '  dy ' =  
 ∂x'

∂α
   ∂x'

∂Ω
 

 ∂y '

∂α
  ∂y '

∂Ω
 

 dα  dΩ   = α dα dΩ  
σx  σy

 

(2.116) 
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With introduced transformation, Eqs. (2.112), (2.113), the space charge density of the 
beam is 

ρ(x, y) = fo
σxσy  

  
o

2π
 

o

∞
 δ (α 2 + x2

σx
2
 +  y

2

σy
2
 - Fo ) α  dα  dΩ

   
=  

 
Let us use one more transformation:                  α2 = u,                                              (2.118) 
 

x2

σx
2
  +  y

2

σy
2
 - Fo = - uo

.                                     (2.119) 

π fo
σ xσ y

δ(α 2 + x2

σ x
2 +

y2

σ y
2 − Fo)

o

∞

∫  dα 2

Space Charge Density of KV Beam (cont.)

With new transformation, space charge density is       .      (2.120) 

 
As far as the value of uo is always positive inside the ellipse, Eq. (2.110), the integral over 
delta function in Eq. (2.120) is equal to unity and space charge density is equal to constant: 
 

.                                         (2.121) 
 

KV distribution gives projection on plane (x, y) as uniformly populated ellipse, Eq. (2.110).  

ρ (x, y) = π fo
σx  σy

  
o

∞

 δ (u - uo) du

ρ (x, y) = π fo
σx  σy

 = ρo
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Projection of KV beam on (x,y).

Space Charge Density of KV Beam (cont.)
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Boundary of KV Beam Distribution at x-x’
Consider particle distribution at phase plane (x, x'). Follow the method described above and 
put the following derivatives over variables y, y' to zero 
 

 
∂F(x, x', y, y') 

∂y
  = 0,               

∂F(x, x', y, y')
∂y '

 = 0 .                     (2.123) 
 

Substitution of the solution of Eqs. (2.123) into Eq. (2.101) gives us the boundary of 
particle distribution at phase plane (x, x'): 
 

 (x'σx  - σx
'  x)

2
+ x2

σx
2
 = Fo

 
,                                      (2.124) 

 

which is also the ellipse. To find an area of ellipse, let us change the variables: 
 

 {  
 x
σx

 = rx cos θ             

x σx'  - x '  σx = rx sin θ  .                                    (2.125) 
 
Transformation, Eq. (2.125), in explicit form is 
 

 { x = rx  σx  cosθ                 

x' = rx  σx
'  cosθ  - rx

σx
 sin θ  .                            (2.126) 

Y. Batygin - USPAS 2024
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Phase space element is transformed analogously to Eq. (2.116) as 
 

                                          dx dx' = rx  drx dθ  .                                                     (2.127) 
    

With the new variables, equation for the ellipse boundary, Eq. (2.124), is rx2 = Fo. Area of 
the ellipse, occupied by the particles, is: 

S =  
o

2π
 

o

Fo
rx drx dθ = π Fo.                                                 (2.128) 

 
Therefore, parameter Fo = ∍x  is equal to beam emittance at phase plane (x, x'). 

Boundary of KV beam projection on (x,x’).

Boundary of KV Beam Distribution at x-x’ (cont.)
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Distribution of particles at phase plane, ρx  (x, x ' ), is obtained via integration of distribution 
function, Eq. (2.101), over remaining variables y, y': 
 

ρ (x,x ' )=fo  
-∞

∞

 
-∞

∞

δ{(x'σx  - σx
' x)
2
+ x2

σx
2

  + (y 'σy  - σy
' y)

2
+ 

y 2

σy
2

 - Fo}dyd y '.           (2.129) 
 

Let us make transformation from variables y, y' to new variables T, ψ  in Eq. (2.129): 

(y 'σy  - σy
' y)

2
 = T cos ψ ,                  

y 2

σy
2
  = T sin ψ                         (2.130) 

Phase space element dy dy’  is transformed analogously to (2.116): 
 

 dy dy ' = T dT dψ .                                                  (2.132) 
 

Integration of Eq. (2.129) gives distribution in phase plane ρx(x, x') = ρx(rx2): 
 

ρx(rx2) = π fo  
o

∞
 

o

2π
 δ (rx2 + T 2 - Fo) T dT dψ  = πfo.                        (2.133) 

 

Integral, Eq. (2.133), is evaluated in the same way as that in Eq. (2.117). Therefore, distribution 
of particles at phase plane (x, x') is uniform inside the ellipse, Eq. (2.124). 

KV Beam Distribution at x-x’ (cont.)
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Projection of KV beam on (y-y’) Projection of KV beam on (x-x’) 

KV Beam Distribution on x-x’ , y-y’

KV distribution provides two-dimensional elliptical projections at every 
pair of phase-space coordinates with uniform particle distribution within 
each ellipse. 30
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Potential of the beam, Ub, is to be found from Poisson’s equation: 
∂2Ub

∂x2
 + ∂

2Ub

∂y 2
 = - ρ(z)

εo  ,                                        (2.136) 
where space charge density  

ρ(z) = { 

I
πβcRxRy

 ,       x2

Rx
2
 + y

2

Ry
2
 ≤ 1

0,                        x2

Rx
2
 + y

2

Ry
2
 ≥ 1.                          (2.137) 

 

Solution of Eq. (2.136) for potential of elliptical charged cylinder with current I and beam 
envelopes Rx, Ry  is: 

Ub(x, y, z) = - I
4πεoβ cRxRy

 [x2 + y 2 - Rx - Ry

Rx + Ry
 (x2 - y 2)] ,             (2.138) 

 

and field components  
!
E = −gradUb  are: 

 

Ex = I
πεoβ cRx(Rx + Ry)

 x  ,         Ey = I
πεoβ cRy(Rx + Ry)

 y                   (2.139) 
 

Uniformly populated beam with elliptical cross section provides linear space charge forces. 
Therefore, initial suggestion about linearity of particle equations of motion in presence of 
space charge forces is correct.  

Space Charge Potential of Elliptical Beam

Y. Batygin - USPAS 2024
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Ic = 4πεo
mc3

q
= 3.13⋅107 A

Z
[Ampere]

Hamiltonian of particle motion within the beam with elliptical cross 
section is: 

  
H =

px
2 + py

2

2mγ
+ qβcG(z) (x2 − y2 )

2
− qI

4π εoβγ
2c Rx Ry

[x2 + y2 −
Rx − Ry

Rx + Ry

(x2 − y2 )].    (2.141) 
 
Equations of particle motion in presence of space charge forces are: 
 

d2x
dz 2

 + [kx(z) - 4 I
Ic β3γ 3Rx(Rx + Ry)

 ] x  =  0 ,                           (2.142) 

d2y
d z2

 + [ky(z) - 4 I
Ic β3γ 3Ry(Rx + Ry)

 ] y = 0 .                              (2.143) 
 

Characteristic current:  
 
Eqs. (2.142), (2.143) are similar to that without space charge forces, 
where instead of functions kx(z), ky(z) the modified functions kx(z), ky(z) are 
used: 

 kx(z) = kx(z) - 4 I
Ic β3γ 3Rx(Rx +  Ry)

 ,   (2.144) 
 

ky(z) = ky(z) - 4 I
Ic β3γ 3Ry(Rx +  Ry)

     (2.145) 

KV Envelope Equations

Y. Batygin - USPAS 2024
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Equations (2.146), (2.147) are non-linear differential equations of the second order. They 
can be formally derived from Hamiltonian: 

 

H = (Rx
' )

2

2
 +  

(Ry
' )

2

2
 +  kx(z) Rx

2

2
 + ky(z) Ry

2

2
 + 2P 2ln 1

Rx+Ry
 + ∍x

2

2Rx
2
 + ∍y

2

2Ry
2  

,         (2.148) 

 

where parameter P2 is called the generalized perveance 
 

P2 = 2I
Ic β3γ 3  

.                                            (2.149) 

KV Envelope Equations (cont.)
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In general case, solution of the set of envelope equations, Eqs. (2.146), (2.147) are non-
periodic functions, which corresponds to envelopes of unmatched beam. However, if 
functions kx.(z), ky(z) are periodic, there is a periodic solution of envelope equations. 
Envelope equations can be solved numerically at the p eriod of structure via varying the initia l 
conditions Rx(0), Rx

' (0), Ry(0), Ry
' (0) unless the solution at the end of period coinsides with  

initial conditions Rx(L) = Rx(0), Rx
' (L) = Rx

' (0), Ry(L) = Ry(0), Ry
' (L) = Ry

' (0). Again, as in case of 
beam with negligible current, this beam is called the matched beam. It occupies the smallest 
fraction of aperture of the channel. 

The envelope of unmatched beam 
in a quadrupole channel

KV Envelope Equations (cont.)
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Averaged Beam Envelopes
Consider	 periodic	 focusing	 structure	 with	 periodic	 focusing	 function	

.	 For	 focusing	 channels,	 where	 phase	 advance	 ,	 one	 can	
use	smooth	approximation	to	beam	envelopes.	Let	us	rewrite	envelope	equations	as	
	

											 	 	
	
where	potential	function		

																							 	
Analogously	 to	 particle	 trajectories	 in	 smoothed	 approximation,	 solution	 for	 beam	
envelopes	can	be	represented	as	
	

	 	 	 	 	 	 	 	
	

where	 ,	  are smoothed envelopes, and	 ,	 	are	small	fast	oscillating	

functions.		After	averaging,	fast	oscillating	term	is	substituted	as	 .		

k(z) = kx (z) = −ky(z) µo ≤ 60
o

d2Rx

dz2
= − qG(z)

mcβγ
Rx −

∂U(Rx , Ry )
∂Rx

d2Ry

dz2
= qG(z)
mcβγ

Ry −
∂U(Rx , Ry )

∂Ry

U(Rx , Ry ) = − 4I
Ic(βγ )

3 ln(Rx + Ry )+
∍x
2

2Rx
2 +

∍y
2

2Ry
2

Rx(z) = Rx (z) + ξx(z) Ry(z) = Ry (z) + ξy(z)

Rx (z) Ry (z) ξx (z) ξy(z)

qG(z)
mcβγ

→ (µo

S
)2
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Averaged Beam Envelopes
Equations	for	smooth	envelopes	are	
	

	 d
2Rx

dz2
− ∍x

2

Rx
3 +

µo
2

S2
Rx −

4I
Ic(βγ )

3(Rx + Ry )
= 0       

	
d2Ry

dz2
−

∍y
2

Ry
3 +

µo
2

S2
Ry −

4I
Ic(βγ )

3(Rx + Ry )
= 0 	 	 	 	 	  

	
Small	 oscillating	 functions	 are	 determined	 by	 fast	 oscillating	 terms	 only.	
Therefore,	 solution	 for	 small	 oscillating	 parts	 are	 are	 the	 same	 as	 that	 for	
single-particle:	

ξx =υmaxRx sin(
2πβct
S

) 																	ξy = −υmaxRy sin(
2πβct
S

) 	 	 	 	
	

Solution	of	envelope	equations	in	smooth	approximations	are	
	

Rx (z) = Rx (z)[1+υmax sin(2π
z
S
)] 		 	 	 	 	 	

	

Ry(z) = Ry(z)[1−υmax sin(2π
z
S
)] 		 	 	 	 	 	
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Matched Beam with Negligible Current 
In the limit of negligible current, I = 0, envelope equations are decoupled. Consider 

matched beam, , with equal emittances in both planes : 
 

− ∍2

Rx
3 +

µo
2

S2
Rx = 0 ,                 − ∍2

Ry
3 +

µo
2

S2
Ry = 0       

 

Equations have the common solution, Rx = Ry = Ro :                   Ro
2 = ∍ S

µo

 
 

 

It defines the averaged beam radius in quadrupole channel for the beam with 
negligible space charge forces. Beam	envelopes	for	negligible	current:	
	
 

         Rx (z) = Ro[1+υmax sin(2π
z
S
)]    Ry(z) = Ro[1−υmax sin(2π

z
S
)]  

 

where relative amplitude of envelope oscillation in FODO channel from averaging 
method: 

                
υmax =

2

π 2 1− 4
3
D
S

sin(π D
S
)

(π D
S
)

µo ≈ 0.2026µo 		(for D << S)
 

                Matrix method  gave for FODO channel:    
Ro =

∍ S
sinµo  , 

υmax ≈
µo

4  

Rx
 ''  = Ry

 ''  = 0 ∍x  = ∍y  = ∍

Y. Batygin - USPAS 2024
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Matched Beam with Negligible Current (cont.)
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Aperture, a, is reached by the beam with maximum possible emittance in the points where 
Ro (1+υmax ) = a . Acceptance of the channel obtained from  envelope equations: 

 

 Aenv =
a2µo

S (1+υmax )
2

      
 

 

Acceptance of FODO channel with thin lenses, D / S <<1 , estimated from envelope equations, is: 
 

     Aenv =
a2µo

S (1+ 0.203µo )
2  

 

Normalized acceptance of the channels:   εch = βγA       

Compare with FODO acceptance 
obtained from matrix method:

A = a
2

S
sinµo

(1 + sin µo

2
)

Acceptance of the Channel from Envelope Equations 
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Beam Radius in Space-Charge Dominated Regime
When space charge forces are not negligible, smoothed KV equations  
for matched beam, Rx

 ''  = Ry
 ''  = 0: 

 

−
∍2

Rx
3 +

µo
2

S2
Rx −

4I
Ic (βγ )

3(Rx + Ry )
= 0 ,    − ∍2

Ry
3 +

µo
2

S2
Ry −

4I
Ic (βγ )

3(Rx + Ry )
= 0   

 

Equations have common solution Rx = Ry = Re :  − ∍2

Re
3 +

µo
2

S2
Re −

2I
Ic (βγ )

3Re
= 0  

 

Which can be rewritten as                                   Re −
Ro
4

Re
3 −

2IRo
4

Ic (βγ )
3Re ∍

2 = 0  
 

From the last equation, the averaged beam radius in space – charge regime is  
expressed via beam radius with negligible space charge forces as 
 

Re = Ro bo + 1+ bo
2       

 

where bo is the space charge parameter         bo =
1

(βγ )3
I
Ic
(Ro
∍
)2 = 1

βγ
I
Ic
(Ro
ε
)2  

Y. Batygin - USPAS 2024
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Matched Beam Envelopes Versus Beam Current
I = 0 I ≠ 0

Envelopes of the beam with negligible current and non-negligible current. While average  beam 
radius is different, relative amplitude of envelope oscillations is the same in smooth 
approximation	
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1

2

3

4

Matched Beam Versus Beam Current (cont.)
I = 0 I ≠ 0

Ellipses of 
matched beam 
with non-zero 
current no longer 
coincide with 
Floquet ellipses. 
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Depressed Transverse Oscillation Frequency
Eqs. (2.142), (2.143) define particle trajectory in quadrupole channel in presence of space charge 
field of the uniformly populated beam with elliptical cross-section. TakingRx ≈ Ry = Re , equation 
for single particle trajectory in smoothed approximation is 
 

 
d 2X
dz2

+ [µo
2

S2
− 2I
Ic (βγ )

3Re
2 ]X = 0 ,      

 
and similar for y - direction. It can be re-written as  
 

 
d 2X
dz2

+ µ2

S2
X = 0 ,         

 
where µ is the averaged	betatron	 frequency	 in	presence	of	 space	charge	 forces,	which	 is	also	
called	the	depressed	betaron	tune:	

µ2 = µo
2 − 2I

Ic (βγ )
3 (
S
Re
)2 .		 	 	 	 	 	  

 
Equation for depressed betatron tune indicates that space charge forces result in reduction of 
frequency of transverse oscillations. It can be rewritten as 

 µ = µo( 1+ bo
2 − bo ) .        
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Transverse oscillation frequency drops with increase of beam current, but remains non-zero. 
Therefore, beam stability can be provided at any value of beam current. However, increase of 
beam current requires increase of aperture of the channel, and stability of transverse 
oscillations can be provided at arbitrary high value of beam current, but in the channel with 
infinitely large aperture. 

Averaged beam radius and transverse 
oscillation frequency as functions of space 
charge parameter bo.  

Effect of Space Charge on Beam Size and Phase Advance

44

Ratio of depressed to undepressed phase shift 
 

µ
µo

= 1+ bo
2 − bo =

1
1+ bo

2 + bo
   

 

serves as an indication of space charge 
dominance:  
µ / µo < 0.7 	space-charge-dominated	
regime,		
µ / µo > 0.7 		emittance	dominated	regime. 
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Beam Current Limit

Aperture a = R(1+υmax )

Beam current limit corresponds to the beam, which fills 
in all available aperture. 
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Beam Current Limit (cont.)
Maximum beam current in quadrupole focusing channel corresponds to the beam, 
which fills in all available aperture, a = R(1+υmax ): 
	

a = ∍ S
µo

bo + 1+ bo
2 (1+υmax ) 		 	 	 	 	

	

For bo= 0, this equation describes the beam with maximum possible emittance in 
the channel, equal to acceptance of the channel,	∍= Aenv : 
	

a = Aenv S
µo

(1+υmax )        

 

Ratio of equations gives us the relationship between acceptance of the channel and 
the maximum emittance of the beam with non-zero current, which fills in all 
aperture of the channel: 

∍ = Aenv( 1+ bo
2 − bo ) 		

	
Substitution of the expression for space charge parameter bo gives for maximum 
transported beam current: 

Imax =
Ic
2
µo

S
Aenv(βγ )

3[1− ( ∍
Aenv

)2 ] 	
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Hamiltonian corresponding to the motion in averaged linear focusing field is given by 
 

H = 
px2 + py2

2 m γ
 + mγ Ωr

2

2
 (x2 + y 2) + q Ub

γ 2  
,                    (4.26) 

 
where Ωr is the frequency of smoothed particle oscillations. If the beam is matched 
with the continuous channel, space charge potential Ub is constant, and Hamiltonian 
is a constant of motion.  

In general case, the Hamiltonian is not a constant of motion, because potentials can depend on time, 
A = A(t), U=U(t). Note that even if the potentials of the external field, Aext, Uext, are time-

independent, the beam field potentials, Ab, Ub, might still depend on time, and the Hamiltonian 
remains time-dependent. If an additional condition of matching the beam with the channel (where 
the beam distribution remains stationary) is applied, explicit dependence on time disappears from the 
beam potentials. In this case, the Hamiltonian becomes time-independent, and therefore, is an 
integral of motion. The Hamiltonian, can then be used to find the unknown distribution function of 
the beam via the expression f = f (H) and the subsequent solution of equation for space charge 
potential (Kapchinsky, 1985). 

Non-Uniform Beam Equilibrium in Linear Field
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Let us transform Hamiltonian, Eq. (4.26), to another one, multiplying Eq. (4.26) 
by a constant: 

K = L 2

mγ  (βc)2
 H 

                             (4.39) 
It corresponds to changing of independent time variable t for dimensionless 
time τ  =  tβ c / L. New Hamiltonian is given by 
 

K = x
2 + y 2

2
 + µo

2

2
 (x2 + y 2) + q L 2  Ub

m c 2  γ 3β2 ,                (4.40) 
 

where  !x = dx / dτ ,  !y = dy / dτ . Let us use particle radius R2 = x2 + y 2 and total 
transverse momentum  P

2 = !x2 + !y2 , where 
 

x = P cos  θ ,     y = P sin θ  .                   (4.41) 
 

Hamiltonian, Eq. (4.40), is now 
 

K = P
2

2
 + µo

2

2
 R2 + q L 2  Ub

m c 2  γ 3β2                     (4.42) 

Non-Uniform Beam Equilibrium in Linear Field (cont.)
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Consider the following distribution: 
 

f  = {  fo,   K  ≤ Ko

0,   K  > Ko   
.                        (4.43) 

 

According to transformation, Eq. (4.41), space charge density of the beam is expressed as 
 

ρ (R) = 2π q fo  PdP
o

Pmax (R )

 = π  q fo Pmax
2 (R)

.                (4.44) 
 

For each value of R, the maximum value of transverse momentum Pmax (R) is achieved 
for K = Ko. From Eq. (4.40) 
 

Pmax
2  (R) = 2Ko - µo

2R2 - 2
 q L 2  Ub

m c 2  γ 3β2  
.                       (4.45) 

 

Therefore, space charge density, Eq. (4.44), is  
 

ρ (R) = π  q fo (2Ko - µo
2R2 - 2

 q L 2  Ub

m c 2  γ 3β2
)
 .             (4.46) 

Poisson’s equation for unknown space charge potential of the beam Ub is 
 

1
R

 d
dR

 (R dUb
dR
) = - π

 q fo

εo
 (2Ko - µo

2R2 - 2
 q L 2  Ub

m c 2  γ 3β2
)
 
.      (4.47) 

Non-Uniform Beam Equilibrium in Linear Field (cont.)
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Let us introduce notation: 

Ro = εom c 2β2  γ 3

2π q2  fo L 2
 ,   

s = R
Ro ,                    (4.48) 

 

Then, Poisson’s equation, Eq. (4.47) is  
 

1
s  d

ds
 (s dUb

ds
) - Ub = m c 2β2  γ 3

q L 2
 ( µo

2s 2Ro
2

2
 - Ko)

 .            (4.49) 
 

Solution of differential equation (4.49) is a combination of general solution of the 
homogeneous equation Ub

(u)  = Co Io(s) and of a particular solution of non-homogeneous 

equation Ub
(n)  = C1 s 2 + C2  : 

Ub = m c 2β2  γ 3

q L 2
 [(2 µo

2Ro
2 - Ko)(Io(s) - 1) - µo

2s 2Ro
2

2
]
 . (4.57) 

Space charge density profile 

ρ (sb R
Rb
) = ρo

[ 1 - 2I1(sb)
sb Io(sb)

 ]
  [ 1 - 

Io(sb R
Rb
)

Io(sb)
 ]

,                   (4.74) 

 

where the following notation is used:             sb = Rb
Ro              

Non-Uniform Beam Equilibrium in Linear Field (cont.)
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Non-Uniform Beam Equilibrium in Linear Field (cont.)
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Projection of the volume at the phase plane (x, x): 
 

sb
2

4µo
2Rb

2
 x2 + 1

Io(sb)
 Io(sb x

Rb
) = 1

 
.                    (4.65) 

 
Eq. (4.65) describes the boundary of phase space of the beam at the plane (x, x). 

Non-Uniform Beam Equilibrium in Linear Field (cont.)
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Similar results can be obtained 
for another distribution function
f = fo exp(−

H
Ho

)

Space charge density for different distributions:
(solid) 
(dotted) f = fo exp(−H /Ho )

f = fo , H ≤ Ho

Non-Uniform Beam Equilibrium in Linear Field (cont.)

53

Performed anlysis shows, that for small values of space charge 
forces, particle phase space trajectories are close to elliptical, and 
beam profile density is essentially nonlinear. With increase of space 
charge forces, boundary particle trajectories become more close to 
rectangular, and density beam profile becomes more uniform. In 
space charge dominated regime, stationary beam profile tend to be 
uniform, and space charge field of the beam compensates for external 
field.  
 Y. Batygin - USPAS 2024



Rms Beam Envelopes 

d
dt

 < x  > = <vx>

d
dt

 < vx  > = 1
mγ

 < Fx >

d
dt

 < x vx  > = < vx2>  + 1
mγ

 < x Fx >

d
dt

 < x2 > = 2 < x vx  >

d
dt

 < vx2 > = 2
mγ

 < vxFx >

Set of equations for the first and the second moments of distribution 
function in x-direction 

Fx = q (Ex + vyBz - vzBy)where the Lorentz force in x-direction is 
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Taking	into	account	that	 	and	introducing	notation	
	

		 	 	 	 	 	 	 	
	

the	set	of	moment	equations	is		
	

	 		 	 	 	 	 	 	 	
	

		 	 	 	 	 	 	 	
	

		 	 	 	 	 	
	

		 	 	 	 	 	 	 	
	

		 	 	 	 	 	 	 	

vx = vz  x '

fx  = Fx

mγ  (βzc)2

d
dz 

 < x > = < x '>

d
dz 

 < x ' > = < fx  >

d
dz 

 < x x ' > = < x ' 2>  + < x fx  >

d
dz 

 < x2 > = 2 < x x ' >

d
dz 

 < x ' 2 > = 2 < x ' fx  >

Rms Beam Envelopes (cont.)
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∍x
2= 16(< x2 >< x '2 > − < xx ' >)

d∍x
2

dz 
 = 32 (< x2 > < x ' fx> - <x x '>  < x fx  > )

d∍x
2

dz 
 = 32 k (< x2 > < x '  x > - <x x '>  < x2 > ) = 0

If Lorentz force is linear with 
coordinate, fx = - kx , the rms 
beam emittance is a constant of 
motion 

Square of 4-rms beam 
emittance

Derivative of square of 4-rms 
beam emittance

Conservation of RMS Beam Emittance in Linear 
Field

In nonlinear field rms emittance is not conserved.
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Rms Beam Envelopes (F.Sacherer, P.Lapostolle, PAC 1971)

 эx =4 < x2 >< x '2 > − < xx ' >2

 эy =4 < y2 >< y '2 > − < yy ' >2

Rms envelope equations

2-rms beam envelopes

4-rms beam emittances

RMS envelope equations are valid for arbitrary distribution, but rms 
emiattnce is no longer constant. RMS envelope equations are not 
closed. 

57
Y. Batygin - USPAS 2024



Particle Distributions with Elliptical Symmetry in 4D Phase Space

Consider quadratic from of 4-dimensional phase space variables: 

I = (σ xx
' −σ x

' x)2 + ( x
σ x

)2 + (σ yy
' −σ y

' y)2 + ( y
σ y

)2

Consider different distributions f = f(I) in phase space which depend on 
quadratic form:

Water Bag:
f = {

2
π 2Fo

2 ,   I ≤ Fo

0,    I > Fo

Parabolic:

Gaussian: f = 1
π 2Fo

2 exp(−
I
Fo
)

f = 6
π 2Fo

2 (1−
I
Fo
)

−∞

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

∞

∫ f dx dx 'dydy ' = 1Normalization:
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Characteristics of 4D Beam Distributions
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KV

Gaussian

εmax = 4εrms

εmax = 6εrms

εmax = 8εrms

εmax =∞

Particle distributions with equal values of rms emittance.

Water Bag

Parabolic

Projections of 4D Distributions on Phase Planes
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Projections of 4D Distributions on Phase Plane

Let us change the variables            for new variables 

ρx (x,x') =  
-∞

∞
 

-∞

∞
 f (x, x', y, y') dy dy'

 

T ,ψ  σyy'- σy'y = T cos ψ     

 y
σy

 = T sin ψ  Phase space element dy dy' is transformed as 
 

dy dy' =  

∂y
∂T

          ∂y
∂ψ

 

∂y'
∂T

          ∂y'
∂ψ

 
 dT dψ = T dT dψ .     

 

The quadratic form is     I = rx2 + T 2  where the following notation is used:   
 

rx
2 = (σxx' + σx'x)2 + ( x

σx
)2. 

 

With new variables, the projection on phase space is 

ρx  (x, x') = π  
o

∞
 f (rx2 + T 2) dT 2 .     

(y, y' )

Projections of 4D Distributions on phase plane (x-x’) is 
the integral of distribution over remaining variables
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For Parabolic distribution, projection on (x-x') is: 

ρx  (x, x') = 6 
π  Fo

2
  
0

T12

 (1 - rx2 + T 2

Fo
) dT2 = 3

πFo
 (1 - rx2

Fo
)
2

  

For Gaussian distribution projection on x, x' plane is 

ρx  (x, x') = 1
πFo

2
   

o

∞
exp (- rx2 + T 2

Fo
) dT2 = 1

πFo
 exp (- rx2

Fo
) 

Water Bag distribution
is restricted by surface

rx2 + T1
2 = Fo ,      T1

2 = Fo - rx2 

ρx (x, x') = 2
πFo

2
  

o

T12

 dT 2 = 2
πFo

 (1 - rx2

Fo
)
 

Projection of Water Bag distribution on (x-x’)  

f = {

2
π 2Fo

2 ,   I = rx
2 +T 2  ≤ Fo

0,    I > Fo

Projections of 4D Distributions on Phase Plane (cont.)
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Water bag distribution:   ∍x = 8
Fo

  
o

Fo

rx
3 (1 - rx

2

Fo
) drx = 2

3
 Fo

 
 

Four rms beam emittance ∍x = 4π  
o

∞
rx
3 ρx (rx

2) drx
 

Rms Emittance of 4D Beam Distributions

Parabolic distribution      ∍x = 12
Fo

  
o

Fo

rx
3 (1 - rx

2

Fo
)
2
 drx = Fo

2  
 

Gaussian distribution:     ∍x = 4
Fo

  
o

∞
rx
3 exp (- rx

2

Fo
) drx = 2 Fo
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Fraction of Particles Residing within a Specific Emittance

_______________________________________________________ 
                 Beam distribution Fraction of particles within 

emittance ∍     
( ∍ x = 4rms emittance) 

_______________________________________________________ 

Water bag   ρx(rx2) = 4
3π ∍x

 (1 - 2
3

 rx2

∍x
)
        

N (∍)
No

 = 4
3

 ( ∍
∍x
) (1 - 1

3
 ∍
∍x
)
  

 

Parabolic     ρx(rx2) = 3
2π ∍x

 (1 - rx2

2 ∍x
)
2

      
N (∍)
No

 = 3
2

 ( ∍
∍x
) [1 - 1

2
 ∍
∍x

 + 1
12

 ( ∍
∍x
)
2
]
 

 

Gaussian    ρx(rx2) = 2
π ∍x

 exp( - 2 rx2

∍x
)
       

N (∍)
No

 = 1 - exp (- 2 ∍
∍x
)
 

N (∍)
N

= π ρx (rx
2 )

o

∍

∫ drx
2Fraction of particles within specific emittance 
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Fraction of particles versus rms emittacnes for different particle distributions. 

Fraction of Particles Residing within a Specific Emittance
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Coherent Beam Oscillations

Misalignments of the channel results in 
oscillation of center of beam gravity

Ub (r,θ ) = − ρ
4εo

(r2 − 2xo cosθ )−
ρRc

2

2εo m=1

∞

∑ 1
m
( r
RT
)m ( xo

RT
)m cosmθ

Potential of the beam shifted from axis

µcoh
2 = µo

2 − ( S
RT
)2 2I
Ic (βγ )

3
Frequency of oscillations of 
center of gravity 
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Envelope Instability
Averaging procedure (smooth approximation) was based on assumption that 
solution of envelope equations are stable

d 2Rx

dz2
−
∍x
2

Rx
3 + k(z)Rx −

2P2

(Rx + Ry )
= 0

d 2Ry

dz2
−
∍y
2

Ry
3 − k(z)Ry −

2P2

(Rx + Ry )
= 0

Envelope Equations

 Rx (z) = !Rx (z)+ ξx (z)

 Ry (z) = !Ry (z)+ ξy (z)

Let us represent solution as a combination of 
periodic solutions                     and deviations 
from that 

 
!Rx (z),  !Ry (z)

ξx (z), ξy (z)

ξx
" + ξxa1(z)+ ξyao(z) = 0

ξy
" + ξya2 (z)+ ξxao(z) = 0

 
a1(z) = k(z)+ 3

∍x
2

!Rx
4 +

2P2

( !Rx + !Ry )
2

 
a2 (z) = −k(z)+ 3

∍y
2

!Ry
4 +

2P2

( !Rx + !Ry )
2 

ao(z) =
2P2

( !Rx + !Ry )
2

Equations for deviations from periodic
solution:
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In smooth approximation                      and 
equations for deviations from periodic 
solution, where coefficients

 
!Rx = !Ry = R

ao =
P2

2R2
a1 = a2 =

µo
2

L2
+ 3 ∍x

2

R4 +
P2

2R2

ξx
" + ξxa1 + ξyao = 0

ξy
" + ξya1 + ξxao = 0

µ2 = µo
2 − P2 (L

R
)2

 
э= µR2

L

Taking into account expression for phase 
advances (depressed and undepressed), 
as well as expression for unnormalized 
beam emittance, we get equations for
oscillations of two envelope modes

(ξx + ξy )"+
σ even
2

L2
(ξx + ξy ) = 0

(ξx −ξy )"+
σ odd
2

L2
(ξx −ξy ) = 0

Symmetric envelope mode

Anti-symmetric envelope mode

Envelope Oscillations Modes

σ even = 2(µo
2 + µ2 )

σ odd = µo
2 + 3µ2

Envelope Instability:                      or σ even = 180
o σ odd = 180

o
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σ even = 2µo
1
2
+ 1
2
( µ
µo

)2 < 2µo

σ odd = 2µo
1
4
+ 3
4
( µ
µo

)2 < 2µo

µo < 90
o

No instability for 

	

	Envelope instability in FODO channel with μο=104ο, μ=72ο. 

Mismatching envelope 
modes for μο=104ο  as 
functions of space-charge 
depressed phase advance, μ. 

Envelope Instability (cont.)
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Latest studies suggest that 
envelope instability is 
superimposed by 4th order 
single particle space charge 
induced instability (Lecture 9).



Multipole KV Beam Instability Modes  
(I.Hofmann, L.Laslett, L.Smith, 1983) 
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Multipole KV Beam Instability Modes  
Eigenmode grequencies and amplitude growth 
rates can be derived analytically from analysis of 
small perturbtion of 4D distribution function:

Poisson’s equation for perturbed electrostatic 
potential created by perturbed space charge 
density:

The solution for perturbed distribution function and
beam potential is being searched as  
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Third-order instability of KV beam in FODO structure with 
μο=90ο, μ=45ο . Numbers indicate FODO period. 

3rd Order KV Beam Instability in FODO Channel

KV

Gaussian
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Fourth-order instability of KV beam in FODO structure with 
μο=90ο, μ=30ο . Numbers indicate FODO period. 

4th Order KV Beam Instability in FODO Channel

	

KV 

Gaussian
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Experiments on Stability of Transport Beam at LBNL (1985 )
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Structure resonances of  3rd, 4th, etc . 
order were not observed in real beams.
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Stability Limit Summary
(M. Tiefenback, LBL-22465,1986)



Beam Drift in Free Space
Important case is propagation of the beam in the area 
without any external fields. Consider transport of a 
round beam Rx = Ry = R  in drift space, described by 
envelope equation 
 

d 2R
dz2

−
∍2

R3
−
P2

R
= 0 .   (D-1) 

 
Equation (D-1) has the first integral: 
 

(dR
dz
)2 = (dR

dz
)o
2 + ( ∍

Ro
)2 (1− Ro

2

R2
)+ P2 ln( R

Ro
)2   (D-2) 

 
which determines divergence of the beam as a function of 
initial beam parameters, beam current, and beam 
emittance. Eq. (D-2) can be further integrated to 
determine distance, where beam with initial radius of Ro  
and initial divergence Ro

' is evolved up the radius R 
 

z = Ro
2

2 ∍
ds

[1+ (RoRo
'

∍
)2 ]s + (PRo

∍
)2 s ln s −1

1

( R
Ro
)2

∫    (D-3) 

Eq. (D-3) can be integrated in case of negligible current, 
P = 0: 
 

       (D-4) 

 

R
Ro

 = (1 + Ro
'

Ro
 z )2  + ( ∍

Ro
2
)2 z 2
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Drift of Space-Charge Dominated Beam
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On maximum current transported through the tube 

Maximum Beam Current Transported Through the Tube 
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Optimization of Beam Drift Space
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Beam Current Measurement

LANL beam current monitor
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Faraday Cups
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Harps (Profile Monitors)

§   1.3 mil carbon wires
§   76 wires
§   20 mil spacing
§   Soldered on to g-10 board
§   1.5” aperture 
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Scintillation Screens and Steering Magnets

View of a Chromolux screen with a 
camera. The screen is illuminated by 
an external light. The lines have a 
separation of 5mm (P.Forck, 2011).

Steering magnet

LANSCE phosphor screens illuminated 
by 800 MeV proton beam.
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Beam Position Monitors

LANSCE BPM

Scheme of pick-up electrode 
(P.Forck, 2011).
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