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Self-Consistent Particle Dynamics

Example of self-consistent dynamics: two - body problem

In classical mechanics, the two-body problem is to determine the motion of two point particles that
interact only with each other according to the gravitational law:
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Self-Consistent Approach to N-Particle Dynamics

Self-consistent approach: solution to the equations of motion of the particles,
together with the equations for the electromagnetic field that they create. Evolution
of charged particles interacting through long-range (Coulomb) forces is determined

by Viasov’s equation

dfzaf+afd;+afdP=0
dt 0t gy dt a;dt

Solution of self-consistent problem: the phase space density, as a constant of
motion, can be expressed as a function of other constants of motion 7, I, ....

f=fi, b, ....)

This equation automatically obeys Vlasov's equation

-9 dh 9 dbh . _|
dr ol dt ol dt

because of vanishing derivatives, dI;/dt = 0. Distribution function determined in
this way 1s then substituted to Maxwell’s equation to find self-consistent field

created by the beam together with the external electromagnetic field.
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Maxwell's Equations

Field created by the beam is

described by Maxwell's equations: space charge density:

. ﬁ . 00 . 00 . 00
VoE= o p=q’ ’ fdPy dP, dP;
V-B=0 .

. beam current density:
U« E 0B
/X = —_—-—
()t 00] » OO « OO
OE i=q| | Vrap.dp,ar
VxB= ll-().] + [l,()-f.()a—f J=4 v x “lbytdz
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Field Equations

Instead of electric field Eand magnetic field B, it is common to use vector
potential A and scalar potential U:

. A
E = —a——gmdU
ot

—

B =rotA

The field of the beam is described by the equations
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Lorentz Transformations
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Laboratory and moving systems of coordinates
Consider system of coordinates, which moves with the average beam velocity . We will

denote all values in this frame by prime symbol. Potentials U, A are connected with that in
laboratory system, U, A, by Lorentz transformation

A =y(A;+EU')
C
U=y (U + BcA))

A=A, Ay=A,
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Self-Consistent Field Equation

In the moving system of coordinates, particles are static, therefore, vector potential of the

%’

beam equals to zero, A» =0. According to Lorentz transformations, components of vector
potential of the beam are converted into laboratory system of coordinates as follow

Axp =O,Ayb=0,Azb=ﬁ%

In a particle beam, the vector potential and the scalar potential are related via the

expression A, ={/>Z /c 2Up, therefore, it is sufficient to only solve the equation for the
scalar potential. Equation for scalar potential of moving bunched beam is

FU, U, 09U
dx dy v29¢ Eo
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Self-Consistent Field Equation

The unknown distribution function of the beam 1s then found by substituting equation for
distribution function into the field equation and solving it. For beam transport, equation
for unknown space charge potential 1s

. OO

AUy=-4 | f,b,..)dP

Eo
J -0

Equation for unknown potential of the beam together with Vlasov’s equation for beam
distribution function

df -9 +8fdx+8dp 0
dt p a

constitute self-consistent system of equations describing beam evolution in the field
created by the beam itself
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Applicability of Vlasov's Equation to Particle
Dynamics

Vlasov's equation describes behavior of interactive particles in self field.

Charged particles within the beam interact between themselves:

(1) interaction of large number of particles resulted in smoothed collective charge
density and current density distribution

(11) individual particle - particle collisions, when particles approach to each other
at the distance, much smaller than the average distance between particles.

First type of interaction results in generation of smoothed electromagnetic field,
which, being added to the field of external sources, act at the beam as an external
field.

The second type of interaction has a meaning of particle collisions resulting in
appearance of additional fluctuating electromagnetic fields.
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Applicability of Vlasov's Equation to Particle
Dynamics (cont.)

Using Vlasov's eqauiton, we formally expand it to dynamics of interacting
charged particles, assuming that the total electromagnetic filed of the

structure (U, X)
U: Uex[ + Ub

A =Aext+ Ab

Uext, A ext, external field

Ub, Ab field created by the beam.

and neglecting individual particle-particle interactions. Vlasov's equation
treats collisionless plasma, where individual particle-particle interactions are
negligible in comparison with the collective space charge field.
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Applicability of Vlasov's Equation to Particle
Dynamics (cont.)

Quantative treatment of validity of collisionless approximation dynamics to particle
dynamics: n - particle density within the beam, r - the average distance between
particles:

nr>=1 ,or r=n13

Individual particle-particle collisions are neglected, when kinetic energy of thermal
particle motion within the beam is much larger than potential energy of Coulomb

particle-particle interaction:

2
m o~ 4

2 4we,r

2

V: 1s the root-mean square velocity of chaotic particle motion within the beam:

my? _kT
2 2

T 1s the “temperature” of chaotic particle motion
k=8.617342x10” eV K" =1.3806504 x 10>’ J K is the Boltsman's constant.
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Number of Particles in Debye Sphere

A«D — 80 kT
Radius of Debye shielding in plasma: q2n

Combining all equation one gets: r<<\V2m Ap or (2m)”"” nlg >> 1
Volume of Debye sphere is V = (4 /3)mA; and number of particles within Debye
sphereis N, = (4 /3)nnA).

Condition (277)”"” nl; >>] can be rewritten as

4
N, :Enn/l; >> 1

Individual particle-particle collisions can be neglected if number of particles within
Debye sphere is much larger than unity Np>>1 (or average distance between

particles is much smaller than 4p).

Particle density within uniformly charged cylindrical beam of radius R, with current
I, propagating with longitudinal velocity fc, is

n=_—_1

7 g Bc R?
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Hamiltonian of Particle Motion in Quadrupole
Focusing Channel

Hamiltonian of charged particle

H=cV m2e? + (Pe- gAyY + (Py- gAY + (P, - gAY + q U

—  —>

Vector potential A =Amagn+ Ap

is a combination of that of magnetic lenses, Amagn, and of that of the beam, Xb,

Scalar potential U=Ue + Up

is a combination of the scalar potential of the electrostatic focusing field, U,;,, and of

the space charge potential of the beam, U,.
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Hamiltonian of Particle Motion in Quadrupole
Focusina Channel (cont.)

Vector - potential of an ideal magnetic quadrupole lens with gradient G inside the
lens is given by
G 2 2
A en = 7 (X7 =Y7)

zmagn 2
Electrostatic quadrupole with gradient G,,, creates the field with electrostatic potential

Uel = - Gzel ()c2 - y2)

Transversal components of mechanical momentum are equal to that of canonical
momentum, p, = P,, p, = P,, and Hamiltonian can be written as:

K= Cﬂ/m262+p)%+p)%+(PZ- gAY +qU

14
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Hamiltonian of Particle Motion in Quadrupole
Focusing Channel (cont.)

In the moving system of coordinates, particles are static, therefore, vector potential of

the beam equals to zero, Xb —(0. According to Lorentz transformations, components
of vector potential of the beam are converted into laboratory system of coordinates
as follow

A =0 Aw=0,  Ap=p%

Total vector-potential of the structure is therefore

Z magn

A=A +£Ub
C

Kinetic energy of the beam is typically much larger than the potential energy of
focusing elements and than the potential energy of the beam. Therefore, P, >> gA.,
and we can substitute canonical momentum by the mechanical momentum:

(P.- gAY’ =P?-2P,qA.~p2-2p, qA,

It corresponds to the case when longitudinal particle motion is not affected by the
transverse motion, which is typical for beam transport.
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Hamiltonian of Particle Motion in Quadrupole
Focusing Channel (cont.)

Hamiltonian can be rewritten as

2 2+2
K=me?A| (14 Pi_y PXTPy 24pAz | iy 4 U,
2.2 2.2 2.2
m cC m c m cC

The term in brackets is close to square of reduced particle energy:

m ¢

Taking that term out of square root gives for Hamiltonian:

2 2
+
K = mc?y \/1+px p);—quZAZZ + qU. + qU)p
(yme)”  (ymc)

16
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Hamiltonian of Particle Motion in Quadrupole
Focusing Channel (cont.)

After expansion of small terms V1+x=1+ x/2, the Hamiltonian becomes:

pF+pd 24P (A magn+ P U)

K=nm?y+ + qUe + qUp

2mcy 2mcy

Removing the constant mc’yresults in the general form of Hamiltonian in a focusing channel:

2 2

+
H="ETPY 4 U Bede magn) +q Y
2my Y

Both U,, and A4, magn CaN be a combination of that of multipole lenses of an arbitrary
order.

17
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Kapckinsky-Viladimirsky (KV) Beam Envelope Equations

Consider now dynamics of the beam in focusing quadrupole channel including space

charge forces of the beam. All particles move with the same longitudinal velocity fc, and
the longitudinal space charge forces are equal to zero. Hamiltonian of particle motion in
qudrupole channel with space charge is given by

Y g2t (2.96)

Assume that transverse space charge forces are linear functions of coordinates.
Correctness of this assumption will be checked later. Linear equation of motion are

d*x

d—Z2 +k (2)x=0 ’ (2.97)
d? .
dzzy +ky(2) y=0 | (2.98)

where k»(2), ky(z) are modified focusing strengths including space charge. Equations of
motion (2.97), (2.98) are linear, therefore, invariant of Courant-Snyder, is valid in both
planes (x, x'), (v, ¥') for space charge regime as well.

18
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Courant-Snyder Invariants

Self-consistent solution can be obtained when distribution function is expressed as a
function of integrals of motion. Due to equations of motion in linear field are uncoupled,
Courant-Snyder invariants are conserved at every phase plane:

2

(X0 - 0p X)” + 22 =3 (2.99)
2
! )
v'oy- oy y)” + (yjz =3, (2.100)
Y
X' y'
A A
. C 2 ’ ' )2 y2 M
(X Ox - Ox X)) + £ =), (V| Ol Oy )| s =
o \ Oy
/ >
>
/ X y
Courant-Snyder invariants.
19
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KV Distribution Function

Values of 3x, 3 are areas of ellipses at phase planes (beam emittances), which are the
constants of motion during beam transport. Let us express beam distribution function as a

function of values 3« , L

f=fo 0(3x +3y - F) (2.101)
where f,, F, v are constants defined below and 6 (§) is the Dirac delta -function:
0, £=0
GER] 0. Ex0 - (2.102)
‘b 0, X<a, X>b,
fES(EX)dE={ 12f(X), X=a or X=b, (2.103)
Ja f(X), a<X<b '

In the selected distribution, Eq. (2.101), particles are placed at the surface of four-
dimensional ellipsoid:

Foox ) =00 0u0) + X2+ (y'oy - 0by) S

o2 o7 (2.104)

20
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Boundary of (x - y) Projection of KV Beam Distribution

Let us find boundary of projection of the surface F(x,x,y,y)=0 on the plane (x, y). Boundary of
projection of the four-dimensional surface F(x,x.y,y)=0 on arbitrary two-dimensional plane is

obtained by equating to zero the partial derivatives of function F(x,x,y,y ) over the rest of variables:

IFC 4 3 Y)
ox )

oF(x, X, v, V) _

' 0

oy : (2.105)

and substitution of the solutions of equations (2.105) into equation F(x, x,y,y")=0. Actually, for every
fixed value of x, the point at the boundary of projection corresponds to maximum possible value of y:

87}/:0
ox ’

or, according to differentiation of implicit functions,

which coincides with Eq. (2.105).

1% Los Alamos

NATIONAL LABORATORY

OF

dy _ ox

dx  OF
dy
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9% _p
P (2.106)
oF
dy _ 9y
dy  OF (2.107)
dy
21



Boundary of x-y Projection of KV Beam
Distribution (cont.)

Partial derivatives over variables x', y' in equation of four-dimensional ellipsoid are:

I _ 3 (x'o - Ox)0x =0

ox'

oF
ady'

=2 (y'0y - 6yy) 0y =0

Substitution of solution of equations 0F/dx =0, dF/dy'=0 into equation F(x,x,y,y)=0
gives the expression for the boundary of particle projection on plane (x, y):

ﬁ-l—ﬁ:FO

or  OF

Therefore, particles of KV beam distribution are surrounded by ellipse with semi-axes
Ri=o0\F, ,Ry= Gy\/F—o and the area of ellipse S=m 0ox O F,.
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Boundary of (x - y) Projection of KV Beam Distribution (cont.)

Boundary of projection of KV beam on (x,y).

23
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Space Charge Density of KV Beam

Space charge density of the beam is an integral of distribution function over the rest variables
x', y"

o OO o OO

2
P(x,y)=fol ’ SI(X Gy - Gox) + % +(y'oy - O'y'y)2+ y_2 -F,)dx'dy'. (2.111)
J-oo )0 Ox O-y

To find particle density, Eq.(2.111), let us make substitution of the new variables, ¢, €2, for
old variables, x', y', according to transformation:

(XOx - O D=0 cosQ2 , (2.112)

00, -G, =0t sin€d ° (2.113)

Inverse transformation is

x'= O'L (0 cosQ + x0) (2.114)
y' =L (a 5inQ + yoy) - (2.115)
O'y
ox oy
Phase-space element is transformed according to: dx dy = dodQ = aass () 116)
oy 9y oo
oo d€2

24
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Space Charge Density of KV Beam (cont.)

With introduced transformation, Eqgs. (2.112), (2.113), the space charge density of the
beam is

2 2 00 2 2
p(x, y)=—Jo S(a?+*+ X F)adadQ _ T, [62+5+ 2~ F) do?
ooy || or  OF 0.0, o o2 ¢
Let us use one more transformation: a’ = u, (2.118)
2
2
A=+ Yo o=-Uo
o OF 3 (2.119)

p(, N="Tlo | §(u-up)du
Gx Gy *

J O

With new transformation, space charge density is (2.120)

As far as the value of u, is always positive inside the ellipse, Eq. (2.110), the integral over
delta function in Eq. (2.120) is equal to unity and space charge density is equal to constant:

= Tfo —
px ) oo 1 (2.121)

KV distribution gives projection on plane (x, y) as uniformly populated ellipse, Eq. (2.110).

25
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Space Charge Density of KV Beam (cont.)

Space charge density of elliptical beam with current /, semi-axis R,, R, and longitudinal
velocity [is

— Il
Py = (2.122)
TBcRR

1.0}

-1.0}

Projection of KV beam on (x,y).

26
(<
(X Los Alamos Y. Batygin - USPAS 2024



Boundary of KV Beam Distribution at x-x’

Consider particle distribution at phase plane (x, x'). Follow the method described above and
put the following derivatives over variables y, y' to zero

aF(xa-xvay’y') =O a}7(')(:’ x’y’ )}) =O
dy ’ dy’ '

Substitution of the solution of Egs. (2.123) into Eq. (2.101) gives us the boundary of
particle distribution at phase plane (x, x'):

(2.123)

1 2
X0y -0 x) + X =F,

o2 ) (2.124)
which is also the ellipse. To find an area of ellipse, let us change the variables:
X = 0
{ o Iy COS
XG)'C-x' Oy =Fy sin6 - (2.125)
Transformation, Eq. (2.125), in explicit form 1s
X=ryx Oy cos 0
X =ry Oy cosO -1 sin@ - (2.126)
O_x 27
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Boundary of KV Beam Distribution at x-x’ (cont.)

Phase space element is transformed analogously to Eq. (2.116) as
dx dx =rc dry dO . (2.127)

With the new variables, equation for the ellipse boundary, Eq. (2.124), is 7 =Fo. Area of
the ellipse, occupied by the particles, is:

2n [ Fy
S=’ rydryd=mnF,
lo |

(2.128)

JO

Therefore, parameter F, =3, 1s equal to beam emittance at phase plane (x, x").
Xl

~

Boundary of KV beam projection on (x,x ).
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KV Beam Distribution at x-x’ (cont.)

Distribution of particles at phase plane, px (x,x), is obtained via integration of distribution
function, Eq. (2.101), over remaining variables y, y"

o OO .« OO

1 ! 2 x2 I ! 2 y 2 !
{(x Ox - Oxx) + 2~ 4+ (y 0y - 0yy) +~—-Foldydy
2 2 .
-00 -0 Gx Gy

p X )= (2.129)

Let us make transformation from variables y, y' to new variables 7T, ¥ in Eq. (2.129):
2
Y

(y'0y-0yy) =T cosy 2 I simy (2.130)
Phase space element dy dy’ is transformed analogously to (2.116):
dydy =TdT dy . (2.132)
Integration of Eq. (2.129) gives distribution in phase plane Ox(x, X) = 0 ?):
roo 25
Px(i’xz)=ﬂfo’ ’ Sr2+T?*-F,)TdT dy =mfo (2.133)
JO JO

Integral, Eq. (2.133), is evaluated in the same way as that in Eq. (2.117). Therefore, distribution
of particles at phase plane (x, x') is uniform inside the ellipse, Eq. (2.124).

> 29
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KV Beam Distribution on x-x’, y-y’

2109 T T T T 2.10-3
1103} . 11073 =
>
0F . 0k N
11073 - - -1-1073
_n.10-3 1 : 1 \ _2.10—3
il -1.0 0.0 1.0
X

Projection of KV beam on (x-x’) Projection of KV beam on (y-y’)

KV distribution provides two-dimensional elliptical projections at every
pair of phase-space coordinates with uniform particle distribution within
each ellipse.

>~ 30
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Space Charge Potential of Elliptical Beam

Potential of the beam, U,, is to be found from Poisson’s equation:
Uy , 9°Up __pl)

Ox2 dy? & (2.136)
where space charge density
. x>y ﬁ <1
e RxRy R? R}
p(z) =
0, 2 Y (2.137)
R? R}

Solution of Eq. (2.136) for potential of elliptical charged cylinder with current / and beam
envelopes R, R, is:

R:-R
Up(x, y, 9 =-——L 224 y2- 22 (2 -y2)]
Ame,fcReRy R: +R, ) (2.138)
and field components E =—gradU, are:
EX = 1 X E., = I y
TEPCRy (R + Ry) > Y e BcRy(Ry + Ry) (2.139)

Uniformly populated beam with elliptical cross section provides linear space charge forces.
Therefore, initial suggestion about linearity of particle equations of motion in presence of
space charge forces is correct.

31
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KV Envelope Equations

Hamiltonian of particle motion within the beam with elliptical cross
section is:
pi“‘pi P—y’ gl 2, 2 R-R,

(" —»7)
H=————+qpcG(z - Xty -
2my aPec(z) 2 47r80ﬁychny[ 4 R +R,

(x*=y*)]. (2.141)

Equations of particle motion in presence of space charge forces are:

d’X § [k (2)- 41 1x=0
dz? Icﬁ3y3Rx(Rx +Ry) s (2142)
d®y 41
——+ [ky(2) - ly=0
X 2.143
dz’ LB VR(R+R) — A4
Characteristic current: I, =4ne, . =3.13-10’ E[Amperel

Egs. (2.142), (2.143) are similar to that without space charge forces,

where instead of functions k.(z), ,(z) the modified functions k:(z), k,(z) are
used:

b =k -4 , (2.144)
I. B°7Y°R«(R: + Ry)
ky(2) = ky(2) - 41 (2.145)

I ﬁ373Ry(Rx + Ry)
32
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KV Envelope Equations (cont.)

Substitution of expressions (2.144), (2.145) instead of k«(z), ky(z) into envelope equations
(2.56), (2.57) gives us the KV envelope equations for the beam with space charge forces:

2 2
CR vy @R - AL =0 (2.146)
dz* R; I.BY (R +Ry)
d’Ry, >3
-t @Ry -— 41 =0, (2.147)
dz®  R; I. By (R + Ry)

Equations (2.146), (2.147) are non-linear differential equations of the second order. They
can be formally derived from Hamiltonian:

v 2 1 2 2 2
2 2
H=R) (R Lt s CREL)

22 Re+Ry  R2 2R

where parameter P is called the generalized perveance

P’ =2—313. (2.149)
By

33
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KV Envelope Equations (cont.)

In general case, solution of the set of envelope equations, Egs. (2.146), (2.147) are non-
periodic functions, which corresponds to envelopes of unmatched beam. However, if
functions k..(z), k,(z) are periodic, there is a periodic solution of envelope equations.
Envelope equations can be solved numerically at the p eriod of structure via varying the initial

conditions R,(0),Ry(0),Ry(0),R,(0) unless the solution at the end of period coinsides with
initial conditions Ry(L)=R.(0) Rx(L)=Rx(0), Ry(L)=Ry(0), Ry(L)=Ry(0). Again, as in case of
beam with negligible current, this beam is called the matched beam. It occupies the smallest
fraction of aperture of the channel.

The envelope of unmatched beam
in @ quadrupole channel

Effective beam emittance.

34
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Averaged Beam Envelopes

Consider  periodic  focusing  structure with  periodic focusing function
k(z)=k.(z)=—k,(2). For focusing channels, where phase advance , < 60°, one can

use smooth approximation to beam envelopes. Let us rewrite envelope equations as

dZRx _ qG(Z)R B aU(Rx’ Ry) dzRy _ QG(Z)R . aU(Rx, Ry)
dz’ mcfBy OR, dz?  mcfy oR,
where potential function
41 S
UR,,R)=————In(R,+ R )+ —2s + —2
g 1.(By) " 2R, 2R,

Analogously to particle trajectories in smoothed approximation, solution for beam
envelopes can be represented as

R:(2)=R: (2)+ &:(2) Ry(2)=Ry )+ &)
where Rx (Z), Ry (2) are smoothed envelopes, and éx (2) , ﬁy(z) are small fast oscillating

qG(2) H, (2
mc Py = S y

functions. After averaging, fast oscillating term is substituted as

35
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Averaged Beam Envelopes

Equations for smooth envelopes are

PR 41
d2_1_33+SZRX_I T=——=.=0
< X c(ﬁy) (Rx+Ry)

d°R 92+,f__ 4] "
dZ R’ S 7 I(By)(R,+R)

Small oscillating functions are determined by fast oscillating terms only.
Therefore, solution for small oscillating parts are are the same as that for
single-particle:

— . 27pct = .
& =v_ R _sin( n? < ) Sy =~V R, sin(

Solution of envelope equations in smooth approximations are
R.(2)=R.(2)[1+0,. sin(27r§)]

R(2)=R (2)[1-0,, sin(27r§)]

36
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Matched Beam with Negligible Current

In the limit of negligible current, I = 0, envelope equations are decoupled. Consider

—n —n

matched beam, Rx =Ry =0, with equal emittances in both planes 3x =3y =3:

2 2 2 2
3 — 3 —
___3+‘LLZRX=O, —_—3+‘LL(2)Ry=O
R S R° S
. . = = 38
Equations have the common solution, R, =R =R, : RO2 =—
u,

It defines the averaged beam radius in quadrupole channel for the beam with
negligible space charge forces. Beam envelopes for negligible current:

R(2)=R[1+v__ sin(27t§)] R,(2)=R,[1-v,, sin(27r§)]
where relative amplitude of envelope oscillation in FODO channel from averaging
method:
... D
) sIn(7T—)
v = =~ (.2026 for D << §
max ) 4 D 2 lu“o JLLO ( )
w-—= (T)
3s S

R =
Matrix method gave for FODO channel:  ° sing, , 4
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Matched Beam with Negligible Current (cont.)

1B i

1.4] L]
R(+v. ) 1

1.2 i 0 max

s NRX(/\ CINC

06/ A \\L/ / \ \ -
0.4 _ Ro(l B vma.x ) il
0.2
0.0- :

P T ) ) ] ) )
0O 25 50 75 100 125 150 175 200 225 250
Z
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Acceptance of the Channel from Envelope Equations

Aperture, a, 1s reached by the beam with maximum possible emittance in the points where

R (1+v_. )=a.Acceptance of the channel obtained from envelope equations:

2
Aenv - c ‘LLO 2
S(+v,_ )

max

max

Acceptance of FODO channel with thin lenses, D /S << 1, estimated from envelope equations, is:

P
S (1402034, )’

Normalized acceptance of the channels: €,=p8A 2077771771

Aperture a= R (1+v

max )

Compare with FODO acceptance
obtained from matrix method:

2

49 sinU, _
5 1+ sin&) 0'4__ 1
2 ooLb— 1 o0y 1
0 25 50 75 100 125 150 175 200 225 250
Z (cm)
0@ Los Alamos Y. Batygin - USPAS 2024 %



Beam Radius in Space-Charge Dominated Regime

When space charge forces are not negligible, smoothed KV equations

for matched beam, I?x” =13y” =0:

2 2 2 2
3 — 41 3 — 41
-2 +Le R - T=———=0, —=+2R - - A
R S I.(BY) (R, +R)) R, S I.(BY) (R, +R))
. .= = 3w 21
Equations have common solution R, =R =R,: ——+—-R, — —=0
R, S I.(BY)'R,

R! 2IR*
R, - (; - 30 2 0
Re Ic(ﬂ’}/) Re 3

Which can be rewritten as

From the last equation, the averaged beam radius in space — charge regime is
expressed via beam radius with negligible space charge forces as

R = RO\/bO +1+b’

1

I 1 1
b = = (Fey =
’ (ﬁyflc(

p=Lt LKy
E

, R
where b, is the space charge parameter -
J

40
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Matched Beam Envelopes Versus Beam Current

I=0 I #0
1.6 ————71— — 1 - 1 - T - T -~ T 1 1.6
1.4} ‘ 4 | I 1.4
12l R0(1+vmax) i 12
1.0 ) 1.0
0.8} " _____ ) 0.8
o6l 1 [ | J 0.6
0.4 _ | R0(1 N vmaX ) ‘ | | . | _ 0.4} -
0.2| | [ 02k :
00 I ] 1 | | 1 1 | |

1 1 1 1 1 1 1 1 1 1 1 1 1 1 || - 1 1 0.0 1 | 1 1 | 1 1 1 1 1 1 | 1
0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250
z z
Envelopes of the beam with negligible current and non-negligible current. While average beam

radius is different, relative amplitude of envelope oscillations is the same in smooth
approximation
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Matched Beam Versus Beam Current (cont.)

1=0

Acceptance

-

-210~4 |

~
%@ Los Alamos
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Ellipses of
matched beam
with non-zero
current no longer
coincide with
Floquet ellipses.

42



Depressed Transverse Oscillation Frequency

Eqgs. (2.142), (2.143) define particle trajectory in quadrupole channel in presence of space charge
field of the uniformly populated beam with elliptical cross-section. TakingR, = R = R, , equation

for single particle trajectory in smoothed approximation is
d’X U 21
> T | 2 3 p2
dz” ~S° L(BY)'R,

and similar for y - direction. It can be re-written as

1X=0,

d*X u?
> +‘u2X=O,
dz S

where U is the averaged betatron frequency in presence of space charge forces, which is also
called the depressed betaron tune:

Equation for depressed betatron tune indicates that space charge forces result in reduction of
frequency of transverse oscillations. It can be rewritten as

Au: Auo(\ll_i_bj _bo) :
Q'QLosAlamos

NATIONAL LABORATORY Y. Batygin - USPAS 2024
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Effect of Space Charge on Beam Size and Phase Advance

Transverse oscillation frequency drops with increase of beam current, but remains non-zero.
Therefore, beam stability can be provided at any value of beam current. However, increase of
beam current requires increase of aperture of the channel, and stability of transverse

oscillations can be provided at arbitrary high value of beam current, but in the channel with

infinitely large aperture.

Ratio of depressed to undepressed phase shift

u ; 1
—=4/1+b, —b, =
H, J1+b2 +b,

serves as an indication of space charge
dominance:

ulu,<0.7
regime,
W/, >0.7 emittance dominated regime.

space-charge-dominated

1% Los Alamos

NATIONAL LABORATORY

Averaged beam radius and transverse
oscillation frequency as functions of space

charge parameter b, 44

Y. Batygin - USPAS 2024



Beam Current Limit
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Beam current limit corresponds to the beam, which fills
in all available aperture.
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Beam Current Limit (cont.)

Maximum beam current in quadrupole focusing channel corresponds to the beam,
which fills in all available aperture, a = R(1+v

max)'

az\/‘auj\/bo +1+b> (1+v_ )

For b,= 0, this equation describes the beam with maximum possible emittance in
the channel, equal to acceptance of the channel, 3=A4, :

Aenv S

(1+v_)

max

a=

4

Ratio of equations gives us the relationship between acceptance of the channel and
the maximum emittance of the beam with non-zero current, which fills in all

aperture of the channel:
3=A, (J1+b’ b))

Substitution of the expression for space charge parameter b, gives for maximum
transported beam current:

_Ltuo (2
Imax_ 2 SAenv(ﬂy) [1 (A )]

eny

46
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Non-Uniform Beam Equilibrium in Linear Field

In general case, the Hamiltonian is not a constant of motion, because potentials can depend on time,

A = A(1), U=U(t)- Note that even if the potentials of the external field, A ext, Uext, are time-

independent, the beam field potentials, Ap, U,, might still depend on time, and the Hamiltonian
remains time-dependent. If an additional condition of matching the beam with the channel (where
the beam distribution remains stationary) is applied, explicit dependence on time disappears from the
beam potentials. In this case, the Hamiltonian becomes time-independent, and therefore, is an
integral of motion. The Hamiltonian, can then be used to find the unknown distribution function of
the beam via the expression f = f (H) and the subsequent solution of equation for space charge
potential (Kapchinsky, 1985).

Hamiltonian corresponding to the motion in averaged linear focusing field is given by

Up
+y2)+q=t
2my o) )/2 , (4.26)

H:px py +I7’l)/ Qr (.X2

where (2, 1s the frequency of smoothed particle oscillations. If the beam is matched

with the continuous channel, space charge potential U, 1s constant, and Hamiltonian
is a constant of motion.

_ 47
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Non-Uniform Beam Equilibrium in Linear Field (cont.)

Let us transform Hamiltonian, Eq. (4.26), to another one, multiplying Eq. (4.26)
by a constant:

Kk=_L> g
oy (6Y (4.39)

It corresponds to changing of independent time variable ¢ for dimensionless
time 7=tfc/ L. New Hamiltonian is given by

-2 -2 2 2
Y Mo (2 +y?2)+ qL" U

2 2 mc2y3/329

K

(4.40)

where x=dx/dv, y=dy/dt Let us use particle radius R*=x>+y? and total

transverse momentum P’ = %° +3° , where
x=Pcos 0, y=Psin0, (4.41)

Hamiltonian, Eq. (4.40), 1s now

K:ﬁ.pﬁRz.p qu U
2 2 me?y 3

(< _
@ Los Alamos Y. Batygin - USPAS 2024
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Non-Uniform Beam Equilibrium in Linear Field (cont.)

Consider the following distribution:

0> KSKO
r={’
0, K>K,

According to transformation, Eq. (4.41), space charge density of the beam is expressed as

(4.43)

- Pmax(R)

_ _ 2
p(R=2mqf, PdP =1 qf, Prax (R). (4.44)

J O
For each value of R, the maximum value of transverse momentum P,,,, (R) 1s achieved

for K = K,. From Eq. (4.40)

2
Plu (R)=2K, - u3R2- 295" U
me? )/3/32 : (4.45)
Therefore, space charge density, Eq. (4.44), 1s
2gL*U,
pP(RI=mqfo 2K, -u3R?- =120
mczy3/3’2 : (4.46)
Poisson’s equation for unknown space charge potential of the beam U, 1s
2
(R dd(;;):—”gfo (2K, - u2R? - 29- sz) 447)
0 m e 2 y 3b) . . 49

~
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Non-Uniform Beam Equilibrium in Linear Field (cont.)

Let us introduce notation:
R0=80m62ﬁ2y3 — R
27rq2f0L2 , Ry, (4.48)
Then, Poisson’s equation, Eq. (4.47) is

1d(sd(]b)_Ub=I’l’lC2ﬁ2V3 (M0252R02_K0)
s 20 S ,L 5 | (4.49)

Solution of differential equation (4.49) is a combination of general solution of the

: (u) : .

homogeneous equation U, * =Co lo(s) and of a particular solution of non-homogeneous
. (n)

equation U,  =C1s*+Cz :

2 3 2 2
Uy =B 12 u2R2 - Koy (s) - 1) - 408 °Ro 5 .
gL> 2 . (4.57)

Space charge density profile

L(s, £
psy K= B (1]
Rb [ 1 _M] IO(Sb) (4 74)
Sp Io(sb) ’ '
. . - _Rb
where the following notation is used: Sb TR 50
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Non-Uniform Beam Equilibrium in Linear Field (cont.)

2 .
T e I e e
1.5 S
50

= 1.0 =
a

05

0.0 i a .

0.0 0.2 0.4 0.6 08

R/R,

Density profile, Eq. (4.74), for different values of parameter s,
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Non-Uniform Beam Equilibrium in Linear Field (cont.)
Projection of the volume at the phase plane (x, x):
2

%L, X)=1
4M02RZ IO(Sb) Rb

(4.65)

Eq. (4.65) describes the boundary of phase space of the beam at the plane (x, x).

| el

Boundary phase space trajectories of particles, Eq.
(4.65), for different values of parameter s,.

(< _
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Non-Uniform Beam Equilibrium in Linear Field (cont.)

Similar results can be obtained ﬁ/ Po
for another di%r’ribution function

=1, exp(- E)

Space charge density for different distributions:
(solid)y f=/f,,H<H,
(dotted) f=f exp(-H /H )

Performed anlysis shows, that for small values of space charge
forces, particle phase space trajectories are close to elliptical, and
beam profile density is essentially nonlinear. With increase of space
charge forces, boundary particle trajectories become more close to
rectangular, and density beam profile becomes more uniform. In
space charge dominated regime, stationary beam profile tend to be
uniform, and space charge field of the beam compensates for external

field.

(< _
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Rms Beam Envelopes

Set of equations for the first and the second moments of distribution
function in x-direction

d < x>=<y,>
dt

i< vx>=L<Fx>
dt my

d . XV >=<V2> + 1 < xF, >
dt my

§<x2>=2< XVy >

dt my

where the Lorentz force in x-direction is Fy=q(Ex+vyB;-v;By)

54
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Rms Beam Envelopes (cont.)

Taking into account that Vx =V; X and introducing notation

fx = Fs 5
my (B:c)

the set of moment equations is

d < y>=<x'>
dz

d cx>=<f>
dz !

. 2
d ¢ xx'>=<x"> +< xfi >
z
d cx2>=2< xx' >
Z
<

d_ x'2>:2<x'fx>

. dz
@ Los Alamos Y. Batygin - USPAS 2024
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Conservation of RMS Beam Emittance in Linear

Field
Square of 4-rms beam P =16(< x> ><x? >—< xx'>)
emittance *
Derivative of square of 4-rms d3> 5 . .
beam emittance dzx =32(<X"> <X fi> -<x x> < xfx>)
If Lorentz force is linear with 5
coordinate, £, = - kx , the rms Br _3) f (<x2><x x>-<xx> <x2>)=0
beam emittance is a constant of dz
motion

In nonlinear field rms emittance is not conserved.

. 56
0@ Los Alamos Y. Batygin - USPAS 2024

NATIONAL LABORATORY



Rms Beam Envelopes (F.Sacherer, P.Lapostolle, PAC 1971)

_ >~ 2 ~
Rms envelope equations d’X x4 ()X - S
dz* X 1By (X+Y)

~ 2
d’Y 3 Y- AL g
dz? 3 By (X+7)

2-rms beam envelopes Ri=X=2|<x*> R, = Y =2 V <y 2>

| 3, =4J<x? >< x> —<xx'>]
4-rms beam emittances

— 2 12 12
3y—4\/<y >y >—<yy'>

RMS envelope equations are valid for arbitrary distribution, but rms
emiattnce is no longer constant. RMS envelope equations are not
closed.

Y
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Particle Distributions with Elliptical Symmetry in 4D Phase Space

Consider quadratic from of 4-dimensional phase space variables:
_ ' ) X 2 ' ' N2 Y \2
I=(0cx—-0x)+(—)+(0y—-0y)+(=)
o, o,

Consider different distributions f = f{1) in phase space which depend on
quadratic form:

2
Water Bag: 2F2’ I<F,
T=t ISk
6 1

Parabolic: f= 7’ F? ( _FO)

Gaussian: 1 1
aussian: f= o exp(— Fo)

Normalization: _[ J f f fdxdx'dydy'=1
58
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Characteristics of 4D Beam Distributions

Distribution Definition Distribution in Space charge Space charge field
p(x,x',y,y")=p(I) phase space density
I=r’+r? plx,x)=p(r;)
r’=y x*+2a xx'+ B x"”
=y,y’ +20,yy'+ B y"”
KV 1 1 I I .
’F, T3, R’ Bc 27e R’ Bc
Water Ba 2 3 : 2
g = B + (I_Zr_) 42 _2% 21 rz(l_ rz)
n°F, 3wy, 33, 37R°Bc” 3R 3me Bc R 3R
Parabolic 6 /4 3 r> 31 r 31 r r r
2 2(1__) (1— 3 )2 2 (1— 2)2 2(1— 2+ 4)
P oy 2m> 23 ° | 27R ﬁc 2R*" | 4me fcR*° 2R* 12R
caussian L e 2 exp(-25) 25 [1-exp(-22)]
exp(—— —exp(—2 -+ exp(— —exp(—2—
v 1y P F, T3, P ! Rzﬂ PR 2me Per ™

"Q Los Alamos

NATIONAL LABORATORY
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Projections of 4D Distributions on Phase Planes

Y.K Batygin |/ Nuclear Instruments and Methods in Physics Research A 539 (2005) 455-489
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0.003 0.003 -
0.002 0.002
0.00 0.06 ! -
KV a ¥ =
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(c) X (d) y
0.005 ¢ 0.005 ¢
0.004 E 0.004
0.003 0.003 £
0.002 0.002
" w«  0.00] U,Uul?
Parabolic a0 o L
-0.001 F -0.001 | = 8
-0.002 ——F -0.002 8max grms
-0.003 E -0.003 £
-0.004 -0.004 |
0,005 b + - . 0.005 bbb n b b iy
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(e) X ity y
0.005 ¢ 0.005 |
0.004 | 0.004 |
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Particle distributions with equal values of rms emittance.
Y. Batygin - USPAS 2024
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Projections of 4D Distributions on Phase Plane

Projections of 4D Distributions on phase plane (x-x’) is

the integral of distribution over remaining variables or (xx') =

l fx,x',y,y") dy dy

J-00o J-c0

Let us change the variables (¥, ¥ )for new variables T,y oyy'- oyy =T cos y

Phase space element dy dy’is transformed as é =Tsiny
y
dy Iy
dydy = T Vlaray=Tardy
gy 9y
aT oy

The quadratic formis [=r2 + T2 where the following notation is used:

2
12 = (o' + ox)”" + (X))

X

With new variables, the projection on phase space 1s

* 00

ox(x, V=m| fe2+T>dT?*

1% Los Alamos

NATIONAL LABORATORY
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Projections of 4D Distributions on Phase Plane (cont.)

2

——, I=r’+T* <F, is restricted by surface
Water Bag distribution F=g nF,
0, I>F r2+Ti=F,, Ti=F,-r?
Projection of Water Bag distribution on (x-x")  p, (x, ¥)=—2— dr%=_2 (1-73%)
7Z:F02 lo 7[F0 FO

For Parabolic distribution, projection on (x-x') is:

o (x, =6

7 F2

2 2 2 2
(LM)CJTZ: 3 (1-1%)
0 F, nF, F,

For Gaussian distribution projection on x, x' plane 1s

* CO
2 2 2
o6 H=—L | expEt Iy gr2= 1 oy 1)
ﬂFOZ lo FO ﬂFO FO
. 62
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Rms Emittance of 4D Beam Distributions

* 00

Four rms beam emittance 3 =47 13 0 (1) dr s

VF,

. 3—& r3(1—r—’“2)dr _;F
Water bag distribution: “*— X x="Fo
FO 0 FO 3
VF, :
L dicteihut 12 301 _T% F,
Parabolic distribution = x=-% rr(1-25) dry==2
o Jo o
- 2
Gaussian distribution: =2 rRexp (- dry=2F,
o Jo o
‘s hgaﬁ!gmgg Y. Batygin - USPAS 2024



Fraction of Particles Residing within a Specific Emittance

Fraction of particles within specific emittance % =T J p.(r}) dr’
Beam distribution Fraction of particles within

emittance >
(3 ,= 4rms emittance)

2
Water bag  p(r# -4 (1.-27% m=i(i)(1_Li)
37T 3 3 N, 3 3 3 3

X 2
Parabolic  pr? =L(1_F_X) N_(a)zi(i)[l_Li.FL(i)]
27Ty 29, N, 2 3 23 12 3

2

. r N (5

Gaussian ,Ox(r% =2 exp( -2-4) N©G) =1-exp(-22)

%) Los Al 64
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Fraction of Particles Residing within a Specific Emittance
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EIE, .
Fraction of particles versus rms emittacnes for different particle distributions.
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Coherent Beam Oscillations

)

Misalignments of the channel results in
oscillation of center of beam gravity

Potential of the beam shifted from axis

2 oo
Ub(”,9)=—£(r2—2xocos@)—pRc y L )'"(;0 )" cosmé

) 2e, 00 m R, .
Frequency of oscillations of ,UZ L= .U2 —( S )2 21
center of gravity “ ° "R, I(By)
66
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Envelope Instability

Averaging procedure (smooth approximation) was based on assumption that

solution of envelope equations are stable
d’R. > 2P’

~ 25 4 ()R, —————=0
Envelope Equations dz’ R (R, +R))
d°R. 2 P?
>~ ~k(R, - =0
dz R; (R, +R))

Let us represent solution as a combination of R (z)=R (2)+&.(z)
periodic solutions R (z), R (z)and deviations -
from that zg'x (2), gy (2) Y Ry (2)= Ry (2)+ gy (2)

Equations for deviations from periodic & +6a4(2)+6,a,(2)=0

solution: ..
éy + gyaZ (Z) + éxao (Z) = O
2P2 2 2P2 2 2
ao(z)= ~ ~ a :k +32x + — — - _ 3)’ 2P
(R.+R) 1(2) = k(2) RTRRY a,(z)=—k(z)+3 e + FRy

. 67
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Envelope Oscillations Modes

~ ~

In smooth approximation R, =R = R and E+&a + Ea,=0
equations for deviations from periodic
solution, where coefficients E+Ea+&a,=0
P’ u: o 32 p?
a":21_€2 al:aZ=L2+3E4+2E2
. : L
Taking into account expression for phase w=pu - Pz(E)Z

advances (depressed and undepressed),
as well as expression for unnormalized
beam emittance, we get equations for L
oscillations of two envelope modes

2
. o
Symmetric envelope mode (G, +S,)"+ %(éjx +5,)=0/ o0, = \/2(;102 +u’)
. : o’ _ [, 2 2
Anti-symmetric envelope mode (& —&)"+ L;id (£, —&)=0 0., =M +3U

Envelope Instability: o,,, =180° or o, =180°

68
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Envelope Instability (cont.)

210 ———
200 |
190 [
180}
170
160
150 -
140
130 F
120
110[

1 1
O pyen = zﬂO\/EJFE(“i)z <2u,

o

I 3
g dd — 2“0\/1—'_2(#)2 <21LL0

‘l,l even/odd (deg)

LT I No instability for )
0...1.........111.1.1.\1“1" ,LL0<90
20 110 100 90 80 70 60 50 40 30 20 10 O

‘u (deg) 1.8

Mismatching envelope (6]
modes for y,=104° as 14
functions of space-charge b
1.0

depressed phase advance, u. .

Latest studies suggest that Z:MMW;M{ : ‘“ﬁ' U{\ \(\

envelope instability is 027
0.0 AL e U A AL L Ayl e E e L S B

Superimposed by 4t order T 50 100 50 200 250 300 B0 400 430 500

Z (cm)

single particle space charge  Envelope instability in FODO channel with p,=104°, y=72o.
induced instability (Lecture 9).

rofile (cm)
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Multipole KV Beam Instability Modes
(.LHofmann, L.Laslett, L.Smith, 1983)

even modes odd modes

o~
— —

FIG. 1. Beam cross sections for second, third and fourth order
‘s NLOS AldMOS even and odd modes (schematic, with x horizontal and y vertical

AAAAAAAAAAAAAAAAA coordinates). .
Y. Batygin - USPAS 2024
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Multipole KV Beam Instability Modes

Eigenmode grequencies and amplitude growth

rates can be derived analytically from analysis of = TRANSPORT OF HIGHINTENSITY BEAMS

small perturbtion of 4D distribution function: o

J,pLy.p0=f(xpLy,p)+ [P, Y, D, 1) =
= ‘fO(HOx7HOy)+fi(xﬂpxﬁy7py7t)

d
/o

TTTTTT

—=
Poisson’s equation for perturbed electrostatic
potential created by perturbed space charge

density:

2 4 :_if
V-® eonl - Jf1dpydp,, .
The solution for perturbed distribution function and =
beam potential is being searched as

‘fil :t_fl ( (.P I)e_i‘”” (I) — (I) ( (10 ) e —iwf

ferent 6, : (a) “third-order”” modes and (b) “‘fourth-order™ modes.
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F1G. 19. Instability bands in the phase advance ¢ for a FODO channel (4 = 1) and dif-
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3rd Order KV Beam Instability in FODO Channel

0.05 ——————————1—
0.04[ N=0 -
0.03- ]
0.02| ]
0.01k
0.00[

-0.01}

_002 ~_ -

-0.03 ]

-0.04] ]

008 " 05 00 05 10 15 005 5505 00 05 10 15

x (cm) X (cm)

dx /dz

KV

dx/dz

Gaussian

-0.03 -
-0.04 |-

-0.05 1 1 1 1 1
-15 -1.0 -05 00 0.5 1.0 1.5

X (cm)

Third-order instability of KV beam in FODO structure with
Uo=900°, u=45° . Numbers indicate FODO period.
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4th Order KV Beam Instability in FODO Channel
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Fourth-order instability of KV beam in FODO structure with
U,=90°, y=30° . Numbers indicate FODO period.

73
(<
@ Los Alamos Y. Batygin - USPAS 2024



Experiments on Stability of Transport Beam at LBNL (1985 )

Figure 3.2: External view of the SBTE apparatus showing the vacuum chambers and diagnostic ports. |

i ) Figure 3.6: Interior of one of the SBTE vacuum tanks with quadrupole array
are on the opposite side. installed. The length of each quadrupole electrode is 4 inches, and the bore
radius is 1 inch.

Uik 831-845
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Stability Limit Summary

(M. Tiefenback, LBL-22465,1986) |

1. For low focusing strength (oo < 88°) we have observed no collective ] Data for 100% beam
- . : . C Data for 96% beam
limit to low-emittance beam transport in an A.G. lattice. Our source S Data from 180 ¥V
has an intrinsic minimum emittance, which places a lower bound on ¢g- bowac limid due te source %0 ° 5
O
the value of o accessible at a given lattice strength. The only increase O
Original Conjecture
in emittance we have observed in the SBTE for oo < 88° has been as- < gby Maschke
sociated with aberrations in the phase space distribution of the beam, ©
which were dependent on the matching section configuration. We be- 0.8 o
g O
2. For 0o > 88°, we observed intensity-dependent beam degradation. The Q
8

mechanism is not certain, and we have seen definite structure in the

phase space distribution of the beam to signal a particular mode of

instability only for oo = 98° and o¢ = 102°. In the unstable behavior

Stability limit summary
plotted as 0/0 vs. 0

h-order KV calculated

< Hi
0.4 ¢ instability limits

O

3. When we reach oo, = 88° without attenuating our beam, we find a OOD
small beam loss (~ 4%). Further increases in oy result in a dramatic 0.2 o
increase in the emittance of the beam and much greater loss of current. QQD
This threshold in oo for growth of the beam emittance corresponds |f----mmmemmmmmomoom™ ]
fairly closely to the threshold strength for envelope instability, but the
detailed beam behavior is not consistent with this as the limiting phe- 0 . 5.0 160 A
nomenon. The beam becomes unstable for parameters well outside the a, (degrees/period)

intensity band for the envelope instability and stabilizes while remain-

Structure resonances of 37 4t etc .
order were not observed in real beams.

<

Los Alamos

NATIONAL LABORATORY

Y. Batygin - USPAS 2024

) XBL 865-1838
Figure 5.31: Results of the stability measurements from the SBTE using the

parameters 0/0o and do. The early conjecture by Maschke (¢/00 > 0.7) un-
derestimates the beam intensity attainable in the SBTE. The late;wtimate
(0/00 > 0.4), based on results for K-V beams [20], is also somewhat conser-
vative for 0o < 88°. In this region, our lower limit on the attainable value of
o /0oy is given by the intrinsic emittance of the SBTE ion source, rather than
by collective effects. See the text for more discussion. 75



Beam Drift in Free Space

Important case is propagation of the beam in the area
without any external fields. Consider transport of a
— round beam R =R =R in drift space, described by

Adz
,,,,, envelope equation
d’R 3 P’
! — i~ =0 D-1
— - & R -1
[ | ! >
| Equation (D-1) has the first integral:
g 1 2 E % o 2
I .._/ J’I ‘ dR 2 dR 2 S 2 R 5 R )
‘ Ay o () 4+ (22 (1-22) + P In(—)* (D-2
. ) (dz) (dz)°+(R0)( R2)+ n(Ro) (D-2)

which determines divergence of the beam as a function of
Drift of the beam with finite value of phase space (a) initial beam parameters, beam current, and beam
beam envelope, (b) phase space deformation. emittance. Eq. (D-2) can be further integrated to
determine distance, where beam with initial radius of R

and initial divergence R, is evolved up the radius R

R> &Ry ds

14

T 25

Z (D-3)

J ,
\/[1 + (R”R” Vs + (PR” Yslns -1
E) B)

Eq. (D-3) can be integrated in case of negligible current,

P=0:
R_qfasRezy s 2922 (D-4)
" R() R() R{% 76
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Drift of Space-Charge Dominated Beam

Another case 1is drift of the beam with
negligible beam emittance, but non-zero beam

current. Eq. (D-2) has the form
dR, dR, _,. R
—) =(—), + P In(— D-5
(dz) (dz)o (Ro) (D-5)
To determine expansion of the beam from waist

point, let us put initial beam divergence R, =0,
then Eq. (D-5) becomes

dR., » £2 _
G =P (D-6)

Eq. (D-6) has an approximate solution

R£’~v1+0.2522—0.017Z3 (D-7)

w

z7=2= / ! . (D-8)
R, \1.(By)

where z is counted from the waist point. Eq.
(D-7) gives good results for for 0 < Z < 3.2 and
I<R/R, <3.

~ N
1% Los Alamos

ar

dz
1,2} 6

r_/ ,’0‘5
0,814
=
z 06}3
04t 2 4

DN

dR/dZ

=o\ \\

N

o2H1

Envelope of an axial-symmetric beam in drift space
(Molokovsky, Sushkov, 2005).
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Maximum Beam Current Transported Through the Tube

In practical applications, it is important to know the maximum beam current which can be transported through the
tube of length L and radius R,,,. From symmetry point, it is clear that beam should have a waist size R = R, and
zero divergence in the middle of the tube z = z,. Thus, equation (D-6) can be integrated in this case to determine
beam expansion from minimal size R = R,, to max size of R = R,

1 J dR__ p=%) R=R/R, (D-9)

Rmax 1 V]nR Rmax

The left hand side of Eq. (D-9) has a maximum value of 1.082 for R__ = R,,../ R,, = 2.35. The maximum radius is

achieved at z—z,=L/2, which in turn yields PmuxL/(x/ERmux)=l.082. From this expression, the maximum
transported current through the tube is

3 R 12
Ilim = 1171L(ﬁy) (%)- . (D'IO)

Required beam slope at the entrance of the tube can be determined from Eq. (D-6):

dR _ 4I|im . ln(R"’“‘ ) - 2 Rmax (D_] 1)
dz I1.(By) R, L

On maximum current transported through the tube
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Optimization of Beam Drift Space

12p
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Normalized Axial Distance, Z=174/K 1

Figure 11: The position of the minimum beam radius as a function of dRy/dZ. From A.S.
Gilmour, Jr.%

Beam radius at waist point, R = R,,, can be determined from Eq. (D-5) as a function of beam radius R, and initial beam

convergence R, assuming in waist point dR/dz = 0:
R, .,
R, =R exp[-(—=—)"] D-12)
RNGY: (

To determine distance, where the beam reaches it’s waist, let us rewrite Eq. (D-5) including notations, Eq. (D-8):

z=['— il (D-13)
' JInR+(dR, / dZ)’
Using substitution u = \/ InR+(dR, /dZ)* , Eq. (D-15) for waist point, where R= 1, is reduced to
(AR 1A\ |tl§,,/(lZ| 5
— (dR,/dZ) 2 _
@ Los Alamos Zan =267 [T explu’)di 0-14)
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Beam Current Measurement

FIGURE 6. Classical transformer circuit.

Torus radii r; = 70 mm, 7, = 90 mm

Torus thickness [ =16 mm

Torus material Vitrovac 6025: (CoFe)zq0, (MoSiB)3g9

Torus permeability pr =~ 10° for f < 100 kHz, p, < 1/f above
Number of windings 10

Sensitivity 4V/A at R =50 Q, 10* V/A with amplifier
Resolution for S/N =1 40 pA,n,s for full bandwidth

Tdroop = L/R 0.2 ms

Trise = VLsCs 1 ns

Bandwidth 2 kHz to 300 MHz

Table 2.1: Some basic specification of the GSI passive transformer.

LANL beam current monitor
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Faraday Cups

Used as a beam stop for low energy beam
and as a fast current monitor.

Beam Pipe

1 Faraday Cup

| g
Scope S

(IMQ Termination)

Leam = V(volts)/100 Q

(< .
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Harps (Profile Monitors)

= 1.3 mil carbon wires

= 76 wires

= 20 mil spacing

= Soldered on to g-10 board
= 1.5”7 aperture

_I_._.._l_l____...

6-JUN-94 12:47 STZE=2«SIGMA (RMS)
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Scintillation Screens and Steering Magnets

N ‘(“J\_

#0A_ Chromiux7(Licht) T ] P

View of a Chromolux screen with a Steering magnet
camera. The screen is illuminated by

an external light. The lines have a

separation of 5Smm (P.Forck, 2011).

LANSCE phosphor screens illuminated

by 800 MeV proton beam.
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Beam Position Monitors

A: area of plate

Scheme of pick-up electrode
(P.Forck, 2011).

1% Los Alamos
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LANSCE BPM

Parameter V'alue
Frequency of Measurement 201.25 MHz

System Response Time 50 ns

Averaging Window for System 100 ps

Resolution Specifications

Position Resolution (% of radius,

0.46% (0.1mm)

RMS)
Position Accuracy (% of radius) +4.6
Position Range (% of inner +60
electrode radius)
Phase Resolution (RMS) 0.25°
Phase Linearity +2°
Beam Current Resolution (RMS) 0.05 mA
Beam Current Accuracy N/A
Beam Current Range 0.9 to 21 mA
Timing Uncertainty +50 ns
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