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Solenoid Focusing

FNAL Solenoids

Solenoidal magnetic lens (Humphries, 1999).
Distribution of magnetic field in solenoid
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Hamiltonian in Cylindrical Coordinates
Hamiltonian of charged particle with charge q and mass m 
 

 
 

Relationship between Cartesian and 
cylindrical coordinates: 
 

x = r cosθ ,     y = r sinθ ,      
 

                              
 

                                          
 

                               
 

Hamiltonian of particle motion in cylindrical coordinates: 
 

 
 

Hamilton’s equations in cylindrical coordinates read 
 

,      ,          
 

      ,       ,   

H = c m2c 2 + (Px - qAx)
2 + (Py - qAy)

2 + (Pz - qAz)
2  + q U

z  = z 

Pr = Px cosθ + Py sinθ 

Pθ = r (-Px sinθ + Py cosθ)

Pz  = Pz

H = c (mc)2 + (Pθ
r

 - qAθ)2 + (Pr - qAr)2 + (Pz - qAz)2  + qU 

d r
dt

 = ∂H
∂Pr

dθ
dt

 = ∂H
∂Pθ

dz
dt

 = ∂H
∂Pz

dPr

dt
 = - ∂H

∂r
dPθ

dt
 = - ∂H

∂θ
dPz

dt
 = - ∂H

∂z 3
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Equation of Motion in Cylindrical Coordinates
Equations for particle position are 
 

                                      
d r
dt

 = Pr - qAr
mγ   

 

dθ
dt

 = 1
mγ  r

 (Pθ
r

 - qAθ)  
 

                                      dz
dt

 = Pz - qAz
mγ   

Instead of canonical momentum, it is more common to use 
mechanical momentum, components: 
 

pr = mγ  d r
dt

 = Pr - qAr
  

 

pθ = mγ  r d θ
dt

 = Pθ
r

 - qAθ
  

 

pz = mγ  d z
dt

 = Pz - qAz  
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Equation of Motions in Cylindrical Coordinates

Equations of motion in cylindrical coordinates are 
 
d r
dt

 = pr

mγ           dθdt
 = pθ

mγ  r            dz
dt

 = pz

mγ                      
 
d pr

dt
 = pθ2

mγ  r
 + q (Er + pθ

mγ  
 Bz - 

pz

mγ
 Bθ)                         

 
1
r  d (rpθ)

dt
 = q (Eθ + pz

mγ
 Br - 

pr

mγ
 Bz)                         

 
d pz

dt
 = q (Ez + pr

mγ
 Bθ - 

pθ

mγ  
 Br)                             
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Dynamics in Axial-Symmetric Magnetic Field

An area of special interest in beam dynamics is an axially-
symmetric static field, Eθ = 0, Bθ = 0, which is common in 
beam transport. In this case, all partial derivatives over the 
azimuth angle are equal to zero, , and the canonical 
angular momentum is a constant of motion: 
 

                 (1.87)                      
 

Equation of radial particle motion in axial-symmetric field:  
 

                               

∂/∂θ = 0

Pθ = mγ  r2  d θ
dt

 + r qAθ = const

 
!!r +

qEzβz
mcγ

!r −
Pθ
2

m2γ 2r3
+ r

2qBz
2mγ

⎛

⎝
⎜

⎞

⎠
⎟ −

qEr
mγ

= 0
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Magnetic Field and Vector-Potential
Vector	 potential	 of	 axial-symmetric	 magnetic	 field	 has	 only	 azimuthal	
component.	 Actually,	 components	 of	 magnetic	 field	 ∂ / ∂θ = 0 	are	
expressed	through	vector	potential	as		
	

Bz =
1
r
∂(rAθ magn )

∂r
		 	 	 	 	

	
Br = −

∂Aθ magn

∂z
			 	 	 	 	

	
From	 equation	 for	 Bz	 azimuthal	 component	 of	 vector-potential	 is	
expressed	via	flux	of	magnetic	field	through	circular	area	of	radius	r	as:	
	

Aθ = 1
2πr

Bz dS
o

r

∫ 	
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The	angular	component	of	the	vector	–	potential	is	given	by	
	

																																			Aθ =
Ψ
2πr

																																									(1.88)	

	
where	Ψ	is	the	magnetic	flux	
	

																																		 .																											(1.89)	

	
Substitution	of	Eq.	(1.88)	into	Eq.	(1.87)	gives:	
	

																																						 .																					(1.90)	

Ψ  = Bz 2π  r '  dr '
o

r

r2 d θ
dt

 +  q Ψ
2πmγ

 = const

Dynamics in Axial-Symmetric Magnetic Field
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If#we#denote#the#initial#conditions#as#θo,#ro,#Ψo,#Eq.#(1.90)#can#be#rewritten#as##
#

 
r2 !θ − ro

2 !θo = − q
2πmγ

(Ψ−Ψo ) ,#####################################(1.91)#
#
which# is# known# as# Busch's# theorem.# It# states# that# change# in# angular#
momentum#of#a#particle#in#a#static#magnetic#field#is#defined#by#the#change#in#
magnetic#flux#comprised#by#the#particle#trajectory.##
Busch's'theorem'can'be'represented'as'
'

θ = Pθ

mγ  r2
 - ω L','''''''''''''''''''''''''''''''''''''''''''''''''''''(1.93)'

'
where'wL'is'the'Larmor'frequency'of'particle'oscillations'in'a'longitudinal'
magnetic'field''
'

ωL = q B
2mγ '

.''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''(1.94)'

Busch’s Theorem
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Particle Trajectories in Magnetic Field
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Vector-Potential in Cartesian Coordinates
Consider	the	beam	propagating	in	a	focusing	channel	with	longitudinal	magnetic	
field	Bz	=	B(z).	This	field	can	be	created	by	solenoids	or	permanent	magnets.	Like	
in	quadrupole	channel,	we	assume	that	all	particles	have	the	same	value	of	
longitudinal	velocity	β,	which	is	not	affected	by	variation	of	magnetic	field.	
Vector	potential	has	only	azimuthal	field	component:	

Aθ magn = 1
2πr

 B 2πr '  dr '
o

r
 =  B r

2 	
.																											(2.210)	

	
Components	of	vector	potential	in	Cartesian	coordinates	are:	
	

Ax magn  = - Aθ magn sinθ  = - B y
2 ,	 																										(2.211)	

	
Ay magn  = Aθ magn cosθ = B  x

2
 	.																													(2.212)	
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Hamiltonian in Longitudinal Magnetic Field
Hamiltonian	of	particle	motion	in	presence	of	longitudinal	magnetic	field	is	
given	by	
	

K = c m2c 2+ (Px + qBy
2
)2 + (Py -  qB x

2
)2 + (Pz -  qβ Ub

c )
2  + qUb.												(2.213)	

	

Taking	 into	 account	 that,	 Pz >> q β Ub /c 	and	 repeating	 all	 derivations,	
resulted	in	Eq.	(2.27),	the	Hamiltonian	becomes	
	

H = 
(Px  +  qB  

y
2
)2

2mγ
 + 
(Py  -   qB  x

2
)2

2mγ
 + q

 Ub

γ 2 	.																							(2.214)	
	

In	 longitudinal	 magnetic	 field,	 the	 canonical	 -	 conjugate	 variables	 are	
position	and	canonical	momentum	(x,	Px),	(y,	Py),	where	
	

																		 ,																																																						(2.215)	
	

																	 .																																																						(2.216)	
	

Px = px  - qB 
y
2

Py = py  + qB x
2
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Emittances	of	the	beam	have	to	be	defined	at	the	phase	planes	of	canonical	variables	(x,	
Px),	(y,	Py),	 in	contrast	with	quadrupole	channel,	where	canonical	variables	are	(x,	px),	(y,	
py).	 Hamiltonian,	 Eq.	 (2.214),	 contains	 cross	 term	 (xPy	 -	 yPx).	 Equations	 of	 motion	 in	
longitudinal	magnetic	field	are	coupled:	equation	in	x	-direction	depends	on	Py	and	that	in	
y	 -	direction	depend	on	Px.	To	avoid	coupling,	 let	us	make	a	canonical	transformation	to	
new	variables	x, Px, y, Py	according	to	generating	function	

	 F2 (x,
⌢
Px, y,

⌢
Py, t) = (x

⌢
Px + y

⌢
Py )cosθ (z)+ (x

⌢
Py − y

⌢
Px )sinθ (z) ,						θ (z) = ω L (z)dz

zo

z

∫ 														(2.217)	

where	ω L (z) =
qBz (z)
2mγ 	 is	 the	Larmor	 frequency.	Transformation	 from	old	variables	 to	new	

variables	are	given	by	
													 ⌢x = xcosθ − ysinθ ,																																																																							(2.218)	
	

																																										 ⌢y = xsinθ + ycosθ ,																																																																							(2.219)	
	⌢

Px = Px cosθ − Py sinθ ,																																																																				(2.220)	
	⌢

Py = Py cos+ Px sinθ .																																																																								(2.221)	

Transformation to Larmor Frame
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New Hamiltonian, H = H + ∂F2
∂t

, is given by 

H = 
Px
2
 + Py

2

2mγ
 + mγ ωL

2 (x
2 + y 2)
2

 + q Ub

γ 2
 .                         (2.222) 

Hamiltonian, Eq. (2.222), is similar to that for quadrupole channel, Eq. (2.96). 
Analysis resulted in KV envelope equations, can be applied here as well. Because 
of the axial symmetry of the beam propagating in magnetic field, there will be 
only one envelope equation instead of two in quadrupole channel. Repeating the 
same derivations, which resulted in Eqs. (2.146), (2.147), we can obtain KV 
envelope equation for round beam in Larmor frame: 

R
''
 - ∍

2

R
3
 +  k (z) R  - 2 I

Ic β3γ 3R
  = 0 ,                              (2.223) 

 

where        k(z) = ( q B(z) 
2mc βγ

)
2
                                      (2.224) 

 

KV Envelope Equation in Larmor Frame
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In KV distribution, particles occupy surface of four-dimensional ellipsoid: 
 

F (x,  x ' ,y,y ' ) = γ ox2+ 2αox x '+βo x '
2
+γ oy 2  + 2αoy y '+βoy '

2
-Fo = 0 .              (2.225) 

 
Here parameters βo and γo are ellipse parameters, not the particle velocity and energy. 
Projections of the distribution at every phase plane are uniformly populated ellipses: 
 

γ ox2 + 2 αox x ' + βo x '
2
= ∍                                            (2.226) 

 

γ oy 2 + 2 αoy y ' + βo y '
2
= ∍                                            (2.227) 

 

where                x ' =  Px
mγ βzc

                                                            (2.228) 

 

y ' =  
Py

mγ βz c
                                                           (2.229) 

4D Ellipsoid in Larmor Frame
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Substitution)of)Eqs.) (2.218)) 3) (2.221)) into)Eq.) (2.225))gives) for) the)boundary)of)
the)four3dimensional)ellipsoid)occupied)by)the)beam)in)laboratory)frame:)
)
)

F (x, x ' ,y , y ' ) = γ ox2+ 2αox x '+βo x ' 2+γ oy 2+ 2αoy y '+βo y ' 2- Fo = 0.)))))))))))))))))))))))))))))))))))(2.230))
)
)
Boundaries) of) projections) of) the) four3dimensional) beam) ellipsoid) and) of) their)
projections) at) phase) planes) are) the) same) both) in) laboratory) frame,) and) in)
Larmor) frame.) From) Eqs.) (2.218)) 3) (2.221),) transformation) of) phase) space)
elements)and)area)element)in)real)space)are)
)

d x d Px = dx d Px ),))))))))))))))))))))))))))))))))))))))))))))))))))))))(2.231))
)

d y d Py = dy dPy ,)))))))))))))))))))))))))))))))))))))))))))))))))))))))(2.232))
)

d x d y = dx dy .))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(2.233))

4D Ellipsoid in Laboratory Frame
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Therefore, distribution of particles within projections in both frames are also the 
same, and uniformly populated ellipses in Larmor frame remain the uniformly 
populated in laboratory frame. Finally, beam emittance and beam radius are the 
same in both frames, , . Therefore, we can write KV envelope equation 
in the laboratory frame as well: 
 
 

            

∍ = ∍ R = R

d 2R
dz2

+ ω L
2 (z)

(βc)2
R − ∍2

R3
− 2I
IcR(βγ )

3 = 0

Typical particle trajectories in magnetic field with beam 
space charge (from G. Brewer, 1967).

KV Envelope Equation in Laboratory Frame
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Beam Equilibrium in Magnetic Field
Important	case	is	the	beam	transport	in	a	constant	magnetic	field	B(z)	=	B,	which	
is	 a	 uniform	 focusing	 structure.	Matched	 beam	 corresponds	 to	 transport	 with	
constant	envelope,	R ''  = 0:	

- ∍
2

Re
3
 +    ( q B

2mc βγ
)
2
Re - 2 I

Ic β3γ 3Re

  = 0
	.																															(2.235)	

	

where	 Re	 is	 the	 equilibrium	 beam	 radius.	 Acceptance	 of	 the	 channel,	 A,	 and	
normalized	 acceptance,	 εch,	 are	 obtained	 from	 Eq.	 (2.235)	 taking	 the	 value	 of	
beam	 current	 I	 =	 0,	 and	 equilibrium	 beam	 radius	 equal	 to	 aperture	 of	 the	
channel,	Re	=	a:	

A = ωL a2
βc 		,																		εch = qB a 2

2mc 																																				(2.236)	
	

Let	us	note,	that	normalize	acceptance	of	the	channel	with	constant	longitudinal	magnetic	
field	 is	 energy	 -	 independent.	 In	 the	equilibrium,	beam	envelope	does	not	perform	any	
oscillations	and	beam	occupies	the	smallest	possible	area.	From	Eq.	(2.235),	the	required	
magnetic	field	to	keep	in	equilibrium	the	beam	with	radius	Re,	emittance	 ∍ ,	and	current	I,	
is	

B = 2mc βγ  
qRe

 ( ∍
Re
)
2
 + 2 I

Ic β3γ 3 		.																																						(2.237)	
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Taking' Re# =# a,' and' expressing' explicitly' the' value' of' beam' current' from' the' last'
equation'gives'for'maximum'transported'beam'current:'
 

Imax  = Ic

2
 (βγ ) (qB a

2mc
)
2
 (1 - ∍

2

A 2
) .                                   (2.239) 

Maximum Transported Beam Current in Uniform Magnetic Field

Equation)(2.239))can)be)re4written)as))
 

Imax  = Ic

2
 (βγ ) (εch

a )
2
(1 - ε

2

εch
2
)  .                                      (2.240) 

I ≠ 0, ∍ < A I = 0, ∍ = A 
 

Matched beam in uniform magnetic field for zero current 
mode, and for space charge dominated mode.
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Important	specific	case	is	the	equilibrium	of	the	beam	with	negligible	emittance	∍	=		
0,	which	is	called	the	Brillouin	flow:		
	

BRe = 2 2  mc
q   I

βγ  Ic
	 .																																							(2.241)	

	
As	 far	 as	 beam	 with	 zero	 emittance	 cannot	 be	 achieved	 when	 particle	 source	 is	
inserted	 in	 magnetic	 field,	 Brillouin	 flow	 is	 realized	 for	 the	 beam	 born	 outside	
magnetic	 field.	 If	 particles	 are	 born	 with	 zero	 beam	 emittance,	 the	 transverse	
mechanical	 momentum	 of	 all	 particles	 at	 the	 source	 are	 equal	 to	 zero.	 Due	 to	
conservation	 of	 azimuthal	 canonical	 particle	 momentum,	 all	 particles	 obtain	
azimuthal	rotation	after	entering	magnetic	field	
	

	pθ = - q Bz r
2

	,	 	or											θ = - ωL	.																																				(2.242)	

	
	

Brillouin Flow
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Oscillations Around Equilibrium Radius
Realistic	beams	usually	are	not	in	equilibrium	with	focusing	magnetic	field.	Consider	small	
deviation	of	beam	radius	from	equilibrium	condition,	R	=	Re	+	x,	where	x	<<	Re.	In	this	case	
	

1
R

 ≈ 1
Re

 (1 - ξ
Re
)	,		 	 	 1

R3
 ≈ 1

Re
3
 (1 - 3 ξ

Re
)		 	 (2.243)	

	

Then,	envelope	equation	becomes	
	

d2ξ
dz 2

  -  ∍
2

Re
3
 (1 - 3 ξ

Re
) + (ωL

βc
)
2
(Re + ξ ) - 2 I 

Ic β3γ 3Re

 (1 - ξ
Re
)  =  0

.						(2.245)	
	

Taking	into	account	equilibrium	condition,	Eq	(2.235),	the	equation	for	small	deviation	of	
the	beam	from	equilibrium	is	

d2ξ
dz 2

 + 3 ∍
2

Re
4
 ξ + (ωL

βc
)
2
ξ  + 2 I 

Ic β3γ 3Re
2
 ξ = 0

		.																						(2.246)	
	

Beam	equilibrium	condition,	Eq.	(2.235),	can	be	written	as	
	

∍2

Re
4
 = (ωL

β c
)
2
  1
1 + b.																																												(2.247)	

	

where	b	is	the	dimensionless	beam	brightness:	
	

b = 2
(βγ )3

 I
Ic

 Re
2

∍2 		.																																												(2.248)	
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Oscillations Around Equilibrium Radius (cont.)
Last	term	in	Eq.	(2.246)	can	be	also	expressed	through	parameter	b:	
	

2 I 
Ic β3γ 3Re

2
 ξ  =  ∍

2

Re
4
 b ξ

	.	 																																					(2.249)	
	

Substitution	of	Eqs.	(2.247),	(2.249)	into	Eq.	(2.246)	gives	for	small	derivation:	
	

d2ξ
dz 2

 +  2 (ωL

β c
)
2
(2 +b
1 + b

) ξ  = 0
.																													(2.250)	

	

Solution	of	Eq.	(2.250)	can	be	written	as	
	

ξ = ξo cos ( 2 (2 + b
1 + b

)  ωL

β c
 z + Ψo).																						(2.251)	

From	Eq.	(2.251)	it	follows	that	in	emittance-dominated	regime,	b → 0,	envelope	oscillates	
with	double	Larmor	frequency:	
	

ξ = ξo cos (2 ωL

β c
 z + Ψ o)	 ,																																						(2.252)	

	

while	in	space-charge	dominated	regime,	b → ∞ ,	frequency	of	oscillation	is	 2 	smaller:	
	

ξ = ξo cos ( 2ωL

β c
 z + Ψo)

.																																								(2.253)	
22
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Required Transverse Focusing in Presence of RF field

Hamiltonian of particle motion in RF 
field with solenoid focusing

Transverse oscillation frequency in 
presence of RF field

Envelope equation

Beam equilibrium condition

Required magnetic field

23

H =
P̂x

2 + P̂y
2

2mγ
+mγ r

2

2
(ω L

2 − Ω2

2
sinϕ
sinϕ s

)+ qUb

γ 2

d 2R
dz2

− ∍2

R3
+ Ωr

2

(βc)2
R − 2I

Ic (βγ )
3R

= 0

Ωr
2 =ω L

2 − Ω2

2
sinϕ
sinϕ s

d 2Re
dz2

= 0 Ωr
2

(βc)2
Re +

∍2

Re
3 −

2I
Ic (βγ )

3Re
= 0

Ωr
2 = (βc

Re
)2 ( ∍

2

Re
2 +

2I
Ic (βγ )

3 )

B = 2mcβγ
qRe

( ∍
Re
)2 + 2I

Ic (βγ )
3 +π (

qEλ
mc2

) sinϕ
(βγ )3

(Re
λ
)2
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Beam Transport in Periodic Structure of Axial-Symmetric Lenses

Periodic( axial,symmetric( magnetic( field( is( often( used( in( focusing( of( particle(
beams.( Most( existing( ion( Low( Energy( Beam( Transport( lines( are( based( on(
solenoid(focusing.(Modern(accelerator(projects(utilize(superconducting(solenoids(
in( combination( with( superconducting( accelerating( cavities( for( acceleration( of(
high,intensity(particle(beams.(
(
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Coupled Equations of Motion 

dpx
dt

= q(
py
mγ

Bz −
pz
mγ

By )

dpy
dt

= q(− px
mγ

Bz +
pz
mγ

Bx )

Equations of motion of a single particle in Cartesian 
coordinates 

From                     connection between radial and 
longitudinal magnetic field components:

Component of magnetic field in Cartesian coordinates:

Equations of motion in Cartesian coordinates:

Where K(z) is the rigidity if solenoid:

Br = − r
2
dBz
dz

Bx = − x
2
dBz
dz

By = − y
2
dBz
dz

 div
!
B = 0

x ''− 2Ky '− yK ' = 0

y ''+ 2Kx '+ xK ' = 0

K (z) = qBz (z)
2mcβγ

= ω L (z)
cβ
25
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w ''+ 2iKw '+ iK 'w = 0

Transverse particle motion in magnetic field is coupled 
between x - and y - directions. Introducing new variable

the system of two equations of motion can be written as 

Introduce new variable (change to rotation system of 
coordinates)

New equation of motion in rotation system

Transfer matrix in 
rotation system of coordinates 

where angle 

w = we− iθ (z )

w"+ K 2w = 0

x̂
x̂ '
ŷ
ŷ '

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

cosθ sinθ /K
−sinθK cosθ

0 0
0 0

0 0
0 0

cosθ sinθ /K
−sinθK cosθ

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

x̂o
x̂o
'

ŷo
ŷo
'

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Linear Transfer Matrix of Solenoid 

w = x + iy

θ = KD

26
Y. Batygin - USPAS 2024



Matrix Method for Periodic Structure of Axial-
Symmetric Lenses 

Periodic structure of focusing solenoids. 

θ =
qBoD
2mcβγ

Rotational angle of particle trajectory in a solenoid 

The transformation matrix in a rotating frame through a period of the 
structure between centers of solenoids 

=
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Phase Advance and  Beta-Function
From the matrices, the value of betatron tune shift per period, , is determined by 

cosµo = cosθ −θ sinθ (S − D)
2D . Adopting the expansions  and 

, the value of betatron tune shift per period reads: 
 

µo = θ
S
D

1− θ
2

6
[1− 1

2
(D
S
+ S
D
)] .    (1.4) 

 
Thus, the maximum and minimum values of the beta-function  
in the channel are given by: 
 

βmin =
(S − D)cosθ − (S − D)

2θ
4D

sinθ + D sinθ
θ

sinµo
      

 

βmax =
S cos2 θ

2
[1− D

S
(1− tanθ / 2

(θ / 2)
)]

sinµo
       

µo

cosξ = 1−ξ2 / 2 + ξ4 / 24

sinξ = ξ − ξ3 / 6

βmax/min = m12 / sinµo

More info: Y.B., Nuclear 
Instruments and 
Methods in Physics 
Research A 772 (2015) 
93–102
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Equations for beta-functions determine the maximum  and minimum 

 Rmin = βminэ  matched envelope of the beam with unnormalized emittance, , and 
negligible beam current, I = 0. Acceptance of the channel with aperture radius, a, is 
given by A = a2 / βmax : 

A = a2 sinµo

S cos2 θ
2
[1− D

S
(1− tanθ / 2

(θ / 2)
)]

 

Rmax = βmax ∍

∍

Periodic Envelopes and Acceptance of the Channel 
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Focal Length of a Thin Solenoid
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M 2MSM1 =
1 0

− 1
2 f

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 S
0 1

⎛
⎝⎜

⎞
⎠⎟

1 0

− 1
2 f

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

1− S
2 f

S

− 1
f
+ S
4 f 2

1− S
2 f

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Transformation matrix 
between lens centers:

cosµo ≈1−
µo
2

2
= m11 +m22

2
= 1− S

2 f
Phase advance per 
period

µo =
S
f

Thin Lens Analysis of Periodic Focusing Circle Lenses

f = D
θ 2

= 4
D
(mcβγ
qBo

)2Focal length of thin 
solenoid lens 
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Thin Lens Analysis of Periodic Focusing Circle Lenses

Max value of beta-function βmax =
m12

sinµo
βmax =

S
sinµo

Transformation matrix 
between drift centers

MS
2

M fM S
2

= 1 S
2

0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 0

− 1
f

1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 S
2

0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

1− S
2 f

S
2
(2 − S

2 f
)

− 1
f

1− S
2 f

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Min value of beta-function βmin =
m12

sinµo

βmin =
S

sinµo

(1− µo
2

4
)βmin =

S
sinµo

(1− S
4 f
)
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A = a2

βmax
A = a

2

S
sinµo

cosµo ≤1

Acceptance of the channel

Single particle stability criteria: 0 ≤ S ≤ 4 f

Maximum acceptance µo =
π
2

Amax =
a2

S
cosµo = 0 S = 2 f

Acceptance and Stability Criteria

f
S
≥ 1
4
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Matching of the Beam with Negligible Current

 Rmax = βmaxэ
 
Rmax =

эS
sinµo

 

Rmax = эS  [
4( f
S
)2

4( f
S
)−1

]1/4

 Rmin = βminэ

Max beam radius

Min beam radius
Rmin = Rmax 1− S

4 f

Matched beam with zero current in periodic structure of axial-symmetric lenses.

For max acceptance S = 2f

Rmax
Rmin

= 2
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Dynamics of Space-Charge Dominated Beam in Periodic 
Solenoid  Structure

Envelope	Equation																																								
d 2R
dt2

+ω L
2R − э

2 (βc)2

R3
− 2I c2

IcRβγ
3 = 0 													

								

Fourier	Expansion	of	Magnetic	Field			B2 (z) = Bo
2[D
S
+ 2
π

1
nn=1

∞

∑ sin(πnD
S
)cos(2πnz

S
)]	

	
Envelope	Equation	with	Expansion	of	Magnetic	Field	
	
d 2R
dt 2

= − R
2π
(qBo
mγ

)2 1
nn=1

∞

∑ sin(πnD
S
)cos(2πnβct

S
)− RD
4S
(qBo
mγ

)2 + (∍ βc)
2

R3
+ 2Ic2

IcRβγ
3 	
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According	to	the	averaging	method,	such	motion	can	be	approximated	by	
combination	of	slow	variable	 	and	small	amplitude	fast	oscillations	 :	

		
																																	 R(t) = Raver (t)+ ξ(t) 	 	 	 	 	 (3.7)	

	
Averaging	 method	 gives	 the	 same	 value	 for	 betatron	 tune	 shift	 as	 matrix	
method.	Equation	for	slow	envelope	variable	
	

d 2Raver
dz2

− ∍2

Raver
3 +

µo
2

S2
Raver −

P2

Raver
= 0 		 	 	 	 (3.18)	

	
Fast	oscillation	component	of	the	beam	envelope	is	determined	by	
	

ξ(z) ≈ − q
mγ

F1(Raver )
ω1

2 cosω1t = Raver
θ 2

2π 3 (
S
D
)2 sin(π D

S
)cos(2π z

S
) 			 (3.20)	

Raver (t) ξ(t)

Averaged Beam Envelope
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Finally,	solution	of	envelope	equation	can	be	expressed	as		
	

R(z) = Raver (z)(1+  ϑmax cos2π
z
S
 ) ,		υmax =

θ 2

2π 3 (
S
D
)2 sin(π D

S
)
				 (3.21)	

	

Matched	beam	corresponds	to	constant	value	of	average	beam	envelope	
Raver (z) = Raver 	and	can	be	determined	from	envelope	equation	assuming	
Raver
'' (z) = 0 :	 	 	

Raver = Raver (0) bo + 1+ bo
2
		 																												(3.22)	

	
where	Raver (0) 	is	the	matched	average	beam	size	with	negligible	space	charge,								

Raver (0) =
∍ S
µo

	 																																(3.23)	

	and	bo	is	the	space	charge	parameter:					
bo =

1
(βγ )3

I
Ic
(Raver (0)

∍
)2
	

Matched  Beam in Periodic Channel 

37
Y. Batygin - USPAS 2024



The	 minimum	 and	 maximum	 matched	 beam	 envelope	 in	 presence	 of	 space	 charge	
forces	are	given	by:	

Rmax/min = Raver (1 ± ϑmax ) ,		 	 	 	 	(3.25)	
	

Maximum	beam	current	 is	achieved	when	maximum	beam	size	 is	equal	to	aperture	of	

the	channel	 Rmax = a ,	which	is	determined	from	Eqs.	(3.22)	-	(3.25)	as	
	

a = ∍ S
µo

bo + 1+ bo
2 (1+υmax )

	 	 	 (3.26)	

For	 negligible	 beam	 intensity,	bo	 =	 0,	 Eq.	 (3.26)	 determines	 the	 beam	with	maximum	
possible	 emittance	 (acceptance	 of	 the	 channel)	 approximated	 by	 envelope	 equation	
∍= Aenv :	

a = AenvS
µo

(1+υmax ) 	 	 	 	 	 	(3.27)	

Envelope	approximation	to	acceptance	of	the	channel												 Aenv =
a2µo

S (1+υmax )
2 			

	

The	maximum	beam	current	is:																												 Imax =
Ic
2
µo

S
Aenv (βγ )

3[1− ( ∍
Aenv

)2 ] 			

Maximum Beam Current
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Applicability of Smooth Approximation to Beam Dynamics

Minimum and maximum beam sizes in 
periodic solenoid structure with D/S=0.034 
(solid line) solution from matrix analysis, 
(dotted line) smooth approximation to beam 
envelope. 
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Maximum Transported Beam Current

Matched beam with maximum current in periodic structure of axial-symmetric lenses.

On maximum current transported through the tube 

Maximum beam current

Beam slope after lens 

Required focal length f ≈ S
4

I lim = 1.17Ic (βγ )
3(Rmax

S
)2

dR
dz

= 4 I lim
Ic (βγ )

3 ln(
Rmax
Rmin

) ≈ 2 Rmax
S
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Distortion of particle trajectories after crossing magnetic 
focusing lens with strong spherical aberration.

Spherical Aberration
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Higher-Order Components of Magnetic Field

Umagn (r.z) =Θo(z)−
1
4
r2Θo

'' (z)+ 1
64
r4Θo

(4 )(z)-....
Potential of axial-symmetric field

Components of magnetic field

Magnetic field components can be 
expressed through longitudinal field 
component at the axis                            
as 

Bz (r, z) = −
∂Umagn (r, z)

∂z

Br (r, z) = −
∂Umagn (r, z)

∂r

Bz =
(−1)n

(n!)2
( r
2
)2n B(2n) (z)

n=0

∞

∑ = B(z)- r
2

4
B"(z)+ r

4

64
B( IV ) (z)-...

B(z) = −dΘo(z) / dz

Br =
(−1)n+1

(n +1)(n!)2
( r
2
)2n+1B(2n+1)(z)

n=0

∞

∑ =− r
2
B '(z)+ r

3

16
B''' (z)− ...

42
Y. Batygin - USPAS 2024



Spherical Aberration (cont.)

 
!!r + r(

qBz
2mγ

)2 = 0

Bz (r, z) = B(z)−
r2

4
B ''(z)

B(z) = Bo
1+ ( z

d
)n

r ' = ro
' − r  ( q

2mcβγ
)2 Bz

2 dz
−∞

∞

∫
r ' = ro

' − r
f
(1+Cαr

2 )

Cα = − 1
2

B(z)B ''(z)dz
−∞

∞

∫

B2 (z)dz
−∞

∞

∫

Equation of motion in a magnetic field

Magnetic field along the structure 

Field distribution

Change in slope of particle trajectory 

Spherical aberration coefficient Cα = 1
4d 2

, n = 2

Cα = 5
12d 2

, n = 4
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Focal length of solenoid is given by

From step-function approximation of the field 
inside solenoid the focal length is 

Effective length of solenoid

f = 4
D
(mcβγ
qBo

)2

Focal Length of Solenoid 

44

1
f
= d( qBo

2mcβγ
)2 dξ

(1+ξ n )2−∞

∞

∫
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Scherzer Theorem (1936)

Spherical aberrations are unavoidable if

- the lens fields are rotationally symmetric
- the electromagnetic fields are static
- there are no space charges
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Beam Emittance Growth due to Spherical Aberrations

46

Initial	beam	distribution:		 	 	 	 																				
 
xo
2

R2
э+ xo

'2

э R2 = э 	
	
Transformation	through	the	lens																											x = xo 	

																																																																										
x ' = xo

' − x
f
(1+Cα x

2 )	

	

Change	variables	 (x, x ' ) 	to	action-angle	variables	 (J, ψ ) 			 x
R

∍  = 2J cos ψ 		
	

																																																																																															
(x' + x

f
 ) R

∍
 = 2J sinψ 	

	

Beam	ellipse	distortion:											T + T 2 2υ sinψ cos3ψ + T 3υ 2 cos6ψ = 1 	
where	 	 	 	 	 			

																																																																	T = 2J
ε 										 υ =

Cα R
4

f ∍ 	
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Beam Emittance Growth due to 
Spherical Aberrations

 

           
 

υ = 0 υ = 1.6

Distortion of beam emittance due to spherical aberration
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Beam Emittance Growth due to Spherical Aberrations

Let us denote the increase of effective beam emittance as a square of 
product of minimum and maximum values of T: 

 .     (3.22) 
 

Values Tmax, Tmin are determined numerically. Dependence of emittance 
growth versus parameter  is presented at figure below. Dependence can 
be approximated by the function: 
 

,                                      (3.23) 
 
where parameter K ≈ 0.4. Finally, effective beam emittance growth due to 
spherical aberrations: 
 

     (3.24) 

 

∍eff

∍
 = Tmax  Tmin

υ

∍eff

∍
 = 1 + K υ 2 υ =

Cα R
4

f ∍

∍eff
∍

= 1+ K (CαR
4

f ∍
)2
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Beam emittance growth after beam passing through axial-symmetric 
lens as a function of parameter ν: (sold line) Eq. (3.22), (dotted line) 
approximation by Eq.(3.23).

Beam Emittance Growth due to Spherical Aberrations
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Emittance Growth due to Spherical Aberrations in Round Beam

50

Expression*for*beam*emittance*growth*due*to*spherical*aberrations*
*

**************************************** *
*
was* tested* numerically* for* round* beam* with* different* particle*
distributions.*As*a*measure*of*effective*beam*emitance,* the* four<rms*
beam*emittance*was*used*and*2<rms*beam*size*was*used*as*a*measure*
of*beam*radius:*

** э = 4 < x2 >< x '2 > − < xx ' >2 ***************** R = 2 < x2 > ********************************
.*

Simulations*confirm,*that*dependence*is*valid*for*round*beam*as*well,*
while*coefficient*K*depends*on*beam*distribution*(see*Table*).*Value*of*
coefficient*K*is*mostly*smaller*than*that*determined*above,*except*that*
for*Gaussian*distribution.*
*

∍eff
∍

= 1+ K (CαR
4

f ∍
)2
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Redistribution of Beam Intensity due to Spherical Aberrations

Consider beam of particles parallel to the axis, entering lens. Particle radius after 
lens is given by:  

                                                     
where z is a drift distance from the lens. To find the beam density redistribution, 
let us take into account that the number of particles dN inside a thin ring (r, r + dr) 
is kept constant during the drift of the beam at certain distance unless particle 
trajectories cross each other. Hence, the particle density ρ(r) = dN/(2πrdr) at any z 
is connected with the initial density ρ(ro)  by the equation , or: 

 

    
where τ = z/f. 

r = ro[1−
z
f
(1+Cαro

2 )]

ρ (r) dr 2 = ρ (ro) dro2

ρ (r) =  ρ (ro)

[1-τ (1 + Cα ro2)]2+ η2- 2 ro2τ  Cα [1-τ (1 + Cα ro2)]

51
Y. Batygin - USPAS 2024



Beam cross sections and phase space 
distribution before and after crossing the
 lens with strong nonlinear field. 

(Left) conservation of beam profile in a 
lens with linear focusing, and (right) 
hollow beam formation on a lens with 
strong nonlinear field.

Redistribution of Beam Intensity due to Spherical Aberrations
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Electrostatic Focusing

Field distribution in electrostatic lens gap.

Field distribution and particle trajectories in 
Einzel (equipotential lens).
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Potential of axial-symmetric electrostatic lens is defined by Laplace’s equation:

1
r
∂
∂r
(r ∂U

∂r
)+ ∂2U

∂z2
= 0

(3.1
)

U(z,r) =U(z)− r
2

4
U ''(z)+ r4

64
U (4 ) (z)− r6

2304
U (6) (z)+ ... (3.2)Solution:

Field distribution inside each gap is given by near-axis approximation: 
 

Ez (r,z) = Ez (z) - r
2

4
 Ez
(2)  (z) + r 4

64
 Ez
(4)  (z) + .....+ (-1)

n Ez
(2n)

(n!)
 (r
2
)2n

 
,
         

(3.3) 

 

Er (r,z) =  - r
2

Ez
' (z)+ r 3

16
 Ez
(3)  (z)....+ (-1)

n Ez
(2n-1)

(n!) (n-1)!
 (r
2
)2n-1

  
.
         

(3.4) 

 

Potential of Axial-Symmetric Lens 
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Equation of particle motion
d 2x
dz2

=
q
mvz

2 x (−
1
2
∂Ez

∂z
+
r2

16
∂3Ez

∂z3
+ ....)

Let us neglect the change of particle position in x - direction while crossing the gap. Change of 
slope of particle trajectory at the entrance of the first gap is 
 

Δ(dx
dz

 )in = 1
vin
2

 q
m 

 x  (- 1
2

  
- ∞

d/2

 dEz
dz

 dz + r 2
16

  
- ∞

d/2

  d
3Ez

dz3
 dz ) = - q

m 
 Ez

2 vin
2

 x   (1 - r 2
8 Ez

 d
2Ez

dz 2
 )
 

 
where vin is an effective particle velocity at the entrances of the gap, and the values of the field are 
taken at the center of the gap. Analogously, the change of the slope of  the particle trajectory at the 
exit of the first gap is 
 

Δ(dx
dz

 )out = q
m 

 Ez 
2 vout

2
 x  (1 - r 2

8 Ez
 d
2Ez

dz 2
 )
 

 
where vout is an effective particle velocity at the exit of the first gap. Total change of slope of th e 
particle at the first gap is  
 

Δ(dx
dz

 ) = q
m c 2 

 Ez 
2

 x  ( 1
βout
2

  - 1
βin
2

 ) (1 - r 2
8 Ez

 d
2Ez

dz 2
 )
 

Particle Trajectory in Electrostatic Field

55
Y. Batygin - USPAS 2024



Ez =
Eo

1+ ( z
L
)2

To calculate term in brackets, let us approximate the field in the gap by function

where L is a half of an effective gap width L ≈ d + a
2

The second derivative d 2Ez

dz2
= − 2Eo

L2
[1− 3( z

L
)2 ]

[1+ ( z
L
)2 ]3

Particle Trajectory in Electrostatic Field

56
Approximation of the static field in the gap.
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1− r2

8Ez

d 2Ez

dz2
= 1+ r2

4L2
The term in bracket taken at the center of the gap:

Finally, the change of slope of particle trajectory at the gap is 

If the field in the gap accelerates particles, Ez > 0, then                  , and change of slope of

 particle trajectory is negative Δ(dx
dz
) < 0

βout >βin

Particle Trajectory in Electrostatic Field

If the field in the gap decelerates particles, Ez < 0, then , and change of slope 
of particle trajectory is also negative

βout <βin

Δ(dx
dz
) < 0

The gap with electrostatic field  focuses particles. Change of slope of particle 
trajectory can be written via focal length f and aberration coefficient Ca:

Δ(dx
dz
) = − x

f
[1+Cα x

2 ] Cα = 1
(2L)2

Δ(dx
dz
) = q

mc2
Ez

2
( 1
βout
2 − 1

βin
2 )(1+

x2

4L2
)x
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Reduction of Effect of Spherical Aberration in Einzel Lens

Focal length:

Ratio of potential 
difference of the lens U
 to particle energy W 

Aberration coefficient
(K = 4…30) 
 

1
f
= 3
8d
( χ 2

1+ χ
)

χ =U /W

Cα = K
R2

Δraberration = Cαr
3 = Cα (r + dr)

3 ≈ Cαr
3(1+ 3dr

r
)

Cα = Cα (1+ 3
dr
r
)

In accelerating gap particles are focusing at 
the entrance of the lens. Therefore, in lens 
with accelerating voltage increment of 
particles radius is negative dr < 0, while in 
lens with decelerating voltage  dr > 0. 
Coefficient of spherical aberration has to 
be corrected taking into account 
increment of particle radius inside the gap 

Aberration is stronger in decelerating 
lens than in accelerating lens at the 
same value of the focal length. 

58
Y. Batygin - USPAS 2024


