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Beam Bunching in RF field
|-— Drift Space —-{
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Layout of klystron beam bunching scheme (from
http://en.wikipedia.org/wiki/Klystron)
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Beam Bunching in RF Field (cont.)
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Increase on fraction of the beam inside separatrix after beam bunching.

% Los Alamos
&2 \ATIONAL LABORATORY Y Batygin - USPAS 2024



Beam Bunching in RF Field (cont.)

i : : : 2qU,
Initial particle velocity after extraction voltage U, v, = ,/ -

. - . . dv_qU, .
Equation of motion in RF gap of width d and applied voltage U, 7 = stmwt
Longitudinal particle velocity in RF gap N +i% j sin ot dt

m ;
q Ul . (pin + qoout . goout B (pin
itudi i i v=v +———2sIn sin
Longitudinal particle velocity after RF gap ot od ( ) )sin( 5 )
. (pin + (pout _
RF phase in the center of the gap 5 - 1,
Transit time angle through the gap 0, = od Pow =P _ 61
v, 2 2
Longitudinal particle velocity after RF gap V=V +VSinwt,
Amplitude of modulation of longitudinal velocity v, =V Y, M,
2U,
. 6,
Sin—
Mo 2
e 1 0
Transit time factor of RF gap 51
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Beam Bunching in RF Field (cont.)

. . . B Z N Z v, .
Time of arrival of particle to the second gap L=, + , =1, +—(l-—sinwt,)
v, + Vv, sinwt, v, v,

: D Z v, .

Phase of arrival of particle into the second gap Wt, — 0 — = Of, — O —SinWr,
o o
wt, 8 7
e " | wt, —0 = wt, — Xsinwt,

Transit angle between gaps 0=

] Vo
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Phase of arrival of particle into second gap as a
function of phase of the same particle in the first gap.
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Beam Bunching in RF Field (cont.)

Conservation of charge Ldt, = i,drt,
| fopdn 1
Beam current in the second gap 2 ldtz dr,
dt,
Beam current in the second gap as a function of RF phase . )i
. . . 1, =
in the first gap and bunching parameter 2 1— X cosar,
L:ZJ
[-,0 = Sl S T e
- - -t X<l
s —¥:_J/'"\K
0 j/ X=1
e i I
Laf
1-0 —‘—JU ————— ‘k" X> 1
i —

Current in the second gap as a function of time.
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Beam Bunching in RF Field (cont.)

Phase of arrival of particle into second gap x=wt,—0=wt — Xsinwt,
Expansion of the current in the second gap in Fourier L(x)=A +iA COS 71X
series oo
: . 175, 27,
Fourier coefficients A = —Jzz (x)dx A = —Jzz (x)cosnxdx
7[ o n o
Differentiation of RF phase dx = wdt,
| N/
Constant in Fourier series A = —Jl—la)dt2 =1
T dt,
- : . : 21 % ,
Other coefficients in Fourier series A = —J.cos(na)t1 —nXsinwt,)dot, =21J (nX)
/8
Bessel function (integral representation) J (2)= —Jcos(nqo —zsinQ)do
/4
Beam current in the second gap L(x)=1+ 212 J (nX)cosnx
n=1
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Beam Bunching in RF Field (cont.)

Jp (nX)
0,50

0,25 +

<0.25

Bessel functions determine amplitude of the fist, third and tenth
harmonics of induced current in two-resonator buncher.
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Beam Bunching in RF Field (cont.)
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The first harmonic of the induced beam current in the second gap L —» J,(X)
as a function of z for different values of voltage at first gap.

The optimal value of bunching parameter is X,,,= 1.84.
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Beam Bunching in Presence of Space Charge Forces
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o,
Gauss theorem 2E. = 8_2Zp
o | E=P.
| E, 1D longitudinal space charge field T
2
Longitudinal oscillation in presence of % - (E —FE
. > =4q(E,, —E)
space charge field, E,, and external dt
field Eqy
—p £,
dZZP 2 _ q E
Substitution of space charge field gives: a1’ tT0,2,= e
o = gp 2c | 1
Plasma frequency p me, R\ IP
I
Space charge density of the beam p= nRzﬁc
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Space Charge Field of the Train of Cylindrical Bunches
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Space charge potential of the train of the bunches.

(Y.B., NIM-A 483 (2002), 611) 4,
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Reduced Plasma Frequency

Averaging of the field over radius 1
R’

f r 2
[1,0,,=)27rdr=
0 a (V)

om

a r
_J v —
R l( oma)

Additionally, consider only linear part

of the field assuming sin(2znl / L) =2nnl / L
0 R ol
Taking only first term in field ﬁ_l_wz{ 81 (U, a) Sin(2x L)}C ~0
expansion, the equation for dt? P w2 72 )[H(Uoﬁ’ 5)2] (2ni)
longitudinal beam oscillations is ol 7137l 2T a L
: [
sm(27z:z)
For most common beam bunching —7 =05
J2(24-)
Reduced plasma frequency due to F,= 2-561 5.7%
finite transverse beam size and T
. Y Wa
presence of conducting pipe w,=\t,0, ( Be )
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Longitudinal Bunched Beam Oscillations in
Presence of Conducting Tube

Longitudinal plasma oscillations in tube

LIS S PP IIII,
+ R SO dz z
| p 2 _
\ R |RtaR 7 e +w,z,=0
| _
Za b ASI———— T : I
l S LR RN NN Longitudinal particle oscillations under space charge forces
I Y .
z,=B,smo, (t—1t)
Longitudinal velocity of particle oscillations under dz
J yore Zr _B @ cosm (1—1,)
space charge forces: dt 0"q q
o - . dz, .
Constant B, is defined from initial conditions for E(tl) = B,0, =V sinwt,

particle velocity after first RF gap:

v,
B, = —smot,

@,
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Effect of Space Charge Repulsion on Beam Bunching
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Effect of Space Charge Repulsion on Beam Bunching

Finally, particle oscillations under space charge forces

in the moving system

Particle drift

Multiply by @

RF phase in the second gap

Modified bunching parameter in
presence of space charge
forces

Condition for maximum bunching:
UM, o
o2, o,

Il

X' <
7

~
1% Los Alamos

=27, (X'

v, . :

z, =——sinw,(t—t)sinwt,
w‘]

z=v, (2, —t1)+zp

v, . .
z=v,(t, —t1)+w—lsm(oq(t2 —1,)sinwt,
q

<
— =t,— ot +

o q o

sinw, (¢, —1,)SInWr,

ot, —0=wt, — X'sinwt,
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Hamiltonian of Particle Motion in RF Field

Equations of motion in 4z _ P
equivalent traveling wave: dr my

dp kr

==gEI (—)cos

5 4 o y ) cosp

dr _ D,

dt my

d E kr_ .

Pr — ((E — BeB,)=—q—1I (=) sing

dt Yy v
Traveling wave can be represented by an
effective potential of accelerating field U,=E ]O(kz "y sin (0t - k.2)

k:
Actually, equations for particle B
momentum dap _ _qgradU.
dt
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Hamiltonian of Particle Motion in RF Field (cont.)

Equations of particle motion around de kr
synchronous particle in presence of = — == qE[1,(=)cos(p, —k.()—cosp 1+qE (r,0)
space charge forces Y

d¢ _ P

dt my’
Space charge field is expressed through 10U,
potential of self-field of a bunch E (r,0)= T

2 .2
Potential of external focusing field U, - BcA _ ﬁcG(z)x Yy
e zmagn 2

Hamiltonian of particle motion in RF
field with quadrupole focusing:

2 2

2 2 2
+ E k . — U
H = PPy + P 5 +c] [ ( Zr)sm((ps—kZC)+kZCCOS(ps]+qﬁcG(z)x J +q ‘2’
2my  2my°  k, 94 2
N 17
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Hamiltonian of Small Amplitude Particle Motion in
RF Field

For small bunches sin(Qs - k:0) = sings - (k:O)cos@s - L(k-0)’sin;
kR <<l, kR <<, kR <<1 , 2
LTy~ 1+ L &

14 4 7

Hamiltonian describes particle dynamics in three-dimensional linear external field

2+ 2 2 2 2 .2 2442
BTy + i 5 +m}/3ﬂzg—+qﬁcG(z)x Y —my Q? & Ay) )+qU—’2’
2my  2my 2 2 4 94

H

Generalization of KV approach for 3-dimensional case is not possible.
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Bunched Beam in RF Field: Problems with

Ellipsoidal Bunch Model

1. There is no 6D distribution
function which results in 3D

uniformly charged ellipsoid in linear
field:

F. Sacherer, Thesis, 1968

P.M. Lapostolle, “Proton Linear
Accelerators: A Theoretical and
Historical Introduction”, LA-11601-
MS (1989).

P.M. Lapostolle, “Space Charge and
High Intensity Effects in
Radiofrequency Linacs”, GANIL
A.84-01 (1984)

2. RF fields across separatrix are
essentially non-linear.
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Potential of 3D Uniformly Charged Ellipsoid

While there is no complete 6D self-consistent treatment of bunched beam
dynamics in linear field, we can formally include linear space charge into
equations of motion.

Potential of 3D uniformly charge ellipsoid:

Z
rz Ub(x’y’g):_ﬁ[Mxxz_i_Myyz+sz2z_:2]
I ) — vy Coefficients:
r y :l“ R R YR ds
T 20 (R 4+ 9)(R2+ )R +5)(y 'R +5)
X 1% R.RYR.ds
. M == e L
Space charge density: Y9 ) (Ryz+s)\/(R§+s)(Ry2+s)(y2Rf+s)
po3 12 B R.RYR.ds
4w cR.R\R, M, = _.[ 2 2 2 2 2 2
” 25 (P R+ ) (R +5)(R” +5)(7*R* +5)
‘@ Los Alaomos 20
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3D Envelope Equations

3D envelope equations d’R. g’ I MA

— —+k R —3— =
dz*  (By)'R/’ v (R, I, B°Y’RR.

TR __& ok r -3l M
& PR} T L BPYRR

d’R, £ Q o I M2

— < -+ =
dz>  (By’Y'R. (Be) © I BY'RR,

Focusing functions in
presence of RF field:

gG(z) 1 Q. r (e 96@ 1 Q5
mc By 2(ﬁc) w () B¢’

_ 21
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Rms Beam Emittance of Ellipsoid Bunch

Introduce spherical coordinates

0<r<1, 0<@<2m, 0<0<7 ¥ =R, rcosgsin®

according to transformation: y=R rsingsin6
§ =R rcosO
Volume element is transformed as
dxdyd¢ = R R R r*sin@drdepd6

Rms beam size;

R3RR 1 2 T R2
<x’>=—2 er4drjcos2¢d¢Jsin39d9: £
‘/6 0 0 0 5

Ellipsoid size is related to rms size:

_ 2
Assuming elliptical beam distribution in R, =V5<x">
transverse momentum, the emittance of

uniform bunched beam : € =5¢,

22
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3D Envelope Equations

Similarly to beam envelopes averaging in continuous focusing
channel, solution for beam envelopes can be represented as

Rx (Z) = Ex (Z) + &x (Z)

Ry(2)=R, (2)+ &)
qG(z2) N (.uo )2

mcfPy S
Accordingly, the solutions to the envelope equations in smooth
approximation can be written as

After averaging, fast oscillating term is substituted as

R()=R (D[l +v__ sin(27z'§)]
R,(2)= R ()1~ sin<2n§>]

The slopes of beam envelopes are

R dR (z
R _ sy V. R, cos(2m =) (@)
dz S S dz

R Z
=-2nv,  —cos(2wr—=)
S S

_ 23
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3D Averaged Envelope Equations

3D averaged envelope
equations

Phase advance of
transverse particle
oscillations per focusing
period in presence of RF
field:

% Los Alamos
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25 2 2 ] M
dlgx_ 8;—34_#; R —3— 2 3{1— =0
dz’  (ByYR] S I. B°Y'RR.
d’R 2 2 M A
y 8)’ M _ 1 y —
2 2 3+ 2R 3 2.3 D =0
dz (By) Ry S 7 I BY'RR
dZI_eZ_ 822 +ILL§Z 3i MZA' —_
2 3\2 B3 2 Y 2. 3D
dz’  (BY’YR. S I, B°7°R.R,
2
U,
M, =U, 1—2—1113
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6D Matched Beam

Consider matched beam, 1_2; = 1_3; =R; =0, with equal transverse emittances
€, =€&,=¢€ and equal averaged transverse sizes R =I_€y = R. Such beam is a

uniformly charged spheroid. For such spheroid, coefficients in

M =y ="M
by y 2

Potential of the uniformly charged spheroid

1-M. ,
rel

U,(r.0)= —ﬁ[szzgz +

oo

R’R
Mz = z ; _[ 2 df 2 3/2
2 (R*+s)(Y*RZ +5)

where

4

> 25
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e

=

e

0.50

0.40

R/ YR,
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For prolate spheroid (R < yR,):

with eccentricity ¢ = \/1 —(R/YR.)

1— 1+
M. = f( In—=5 1)
¢’ 2 1-g
M ~K
3YR,
% Los Alamos
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For oblate spheroid (R > yR,):

00 01 02 03 04 05 06 07 08 09 1.0

with eccentricity ¢ = \/(R /YR.) -1
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1+g
Q
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Finding 6D Matched Beam

Equilibrium envelope equations

for R; :R; :R; —( are:

Equilibrium conditions can be
rewritten as

Depressed transverse and
longitudinal phase advances per
focusing period

% Los Alamos
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Depressed Transverse and Longitudinal
Phase Advances per Focusing Period

Depressed transverse and longitudinal , , p 1-M
phase advances per focusing period can M= ——( ) )
be re-written as P.
= -
P,
where the space charge density of the p= 3 IA
ellipsoid with semi axes R, R, 47 ¢ R°R,
o . [ ﬁ2y3
and characteristic space charge density p =<
Y T\
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Transverse and Longitudinal Space Charge Beam

Beam current limit: R=a R =4 i

Transverse current limit;

Longitudinal current limit:

Transverse normalized
acceptance

Longitudinal normalized
acceptance

AAAAAAAAAAAAAAAAAA

Current Limit

27T
I (,3 )( )? (1- 8—2)
max. s 3 S (1 M) e
2
8
maxz_ (
2
gchzﬂya K,
S
1 2..,3 Q 2
zz—ﬁy(—)%l
T 0

Y. Batygin - USPAS 2024
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Transverse and Longitudinal Beam Current Limit
(cont.)

Focusing period usually contains N

accelerating periods, S=NBA . The 4 mc? s o, ,uf a., e’

value of transverse limited beam Imax,t = —(—),37 2 (=) ( __2)
. 3 g/ (1-M )N A E

current can be re-written as 0 < ¢

Using the approximation for M, = R

ellipsoid parameter 3YR,

and expression for longitudinal ) > >
phase advance, the longitudinal ] _ 2,87E|s1ng0s p,a (1— S_Z)
beam current limit can be written | "~ Z, e
as

The impedance of free space Z =(ce,) =376.73Q

_ 30
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Equilibrium Transverse Beam Radius

Equation for equilibrium transverse beam R R,

. . (—)' -2b(—) -1=0
radius can be rewritten as . "R
where equilibrium radius of a beam with R - €S
vanishing current /=0 N\ By,

dt h t b= _Bayp Plya_m,
and transverse space charge parameter 21 gy e 2R 2

Equation for equilibrium transverse beam R=R, \/bt + . /1+bt2
radius is satisfied by

BA 1

where the effective bunched beam current = _( - M )( ) 1= E
beam bunching factor B 2R,
u =5
g B

31
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Equilibrium Longitudinal Beam Radius

Equation for equilibrium longitudinal beam ( R, Y — b ( R, P —1=0
radius can be rewritten as R "R
£ S
where equilibrium longitudinal radius of a R, = 3
beam with vanishing current /=0 Py i,
] 3

3 0z

and longitudinal space charge parameter b =3y"M, 1 R

% Los Alamos
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Simultaneous Solution of Equations for Equilibrium
Beam Radii R, R,

Together, equations for equilibrium radii determine matched beam sizes R, R, through given
normalized beam emittances, €, ¢€,, beam current 7, beam momentum By inalinear accelerator
with wavelength 2 and undepressed phase advances u,, u, per focusing period S. To this end,

it is important to understand that the solution for the transverse equilibrium beam size, R,
depends on longitudinal equilibrium beam size, R,, and the solution for R, in turn depends on R

. Thus, to find stationary matched beam conditions for a bunched beam in an RF field, equations
for equilibrium beam radii have to be solved together. Practically speaking, the search for a
solution should be performed until the sum of squares of equations

R 2 N2 R 4 R 3 2
x=(R——Jb,+\/1+b, P+l — b=y 1]

oz

reaches small value, typically ¥ =107. Crucially, we note that the solutions to equilibrium beam

radii equations exist for any combination of beam and structure parameters as long as depressed
phase advances are y, 20, u, =20.

_ 33
1% Los Alamos

Y. Batygin - USPAS 2024



Transverse Matching of the Beam

| &¥ R
S B I
Rotf\ /’// /\E B
\%\- -~ \/ 4
O _ > . K _
Je T
Quad 1 Quad 1

| | Quad 2 1 - | | I . | Quad ? §

<

>
S/4 z S/4 | |

Transverse matching of the beam: (left) with negligible
current, (right) with high-current.
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Envelope Modes of Mismatched Bunched Beam

Deviation from matched solution R, = Ex +8, R, = Ry + 5y R, = EZ + fz

results in excitation of envelope modes with eigenfrequencies [M.Pabst, K.Bongart,
A.Letchford, Proceedings EPAC98, p.146]:

ﬂenv,Q zzut
1
A= i+ g+ 240
U =A+B 2 2
1 3
w ., =A-B B=\/<u§ U] = g = HE (g = (g, = 1)
‘@ Los Alamos %
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Condition for Equal Tune Depression in
Transverse and Longitudinal Directions

Among infinitely large number of
matched beam solutions, there is a
solution corresponding to equal tune
depression in transverse and longitudinal
directions

Equal depressed tune in transverse and
longitudinal directions

2

M, =Ex

2,
uo 3 1 PBAS,
TS, =, — 1= ) 3( )( )
WU, 24, I.(By) R, R

Relationship between beam

emittances and beam sizes E

o\

3

3/2 R
2GR \/ 3YR,

for equal space charge depression

Equal space charge depression provides |/

equal current limit in transverse and
longitudinal directions

Another equilibrium: equipartitioning (equal beam
momentum spread in transverse and longitudinal

directions
"q Los Alamos )

NATIONAL LABOR

2 YR,
R, o 11— 2ﬁyE|Sin§Ds ¢, R
0 qu _ 7
=(—F——)" =1
T=(2 X Ky
36
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Various Beam Equilibria

2.0

1.8 /
1.6

1.4 /
1.2 /]
A Equal Emittances
S 1.0
i o
0.8 2O
b 0O /QQ‘6~
0.6 »Q\O(\\(\ /,0
0.4 (40})\ S
. <! o
L \%Q
0.2 O
2] T
0.0 . : - : . . . ,
00 02 04 06 08 10 12 14 16
R/(yRz)

Ratio of beam emittances versus ratio of beam sizes
for equipartitioning, equal space charge depression,
and equal emittances modes (Y.B. NIM-A 995
(2021) 165074).
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6D Beam Phase Space Growth for Various Beam

Equilibria
20 v - - . - - - - - - 1 - 0,6 T v T v T R T .1 T Y
18}  —* Equal Emittances ] > —&- Equal Emittances
16  —*— Equipartitioning 0-5_’ —e— Equipartitioning |
o 141 Equal SC ] 0.4+ Equal SC -
z 12 Depression 3 i ' Depression 3
o 101 ] ~ 03r -
> 8 ) SHNNN|
6 . 0.2 :
af : L
ol ] 0.1F .
o 1 1 . | | ,

: . : - . - . * . . 0 1 A ] i 1 A 1 i | i i
L 04 06 08 10 12 14 16
R/ (yRz)
R/(yRz)
(Left) numerical simulation of six-dimensional beam phase space growth,
(right) transverse space charge depression factor for various beam equilibria

with constant longitudinal space charge depression u, /u,, = 0.2.
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kx/kx0

Experimental Minimization of Beam Loss

— 1x/12=0.3 Unstable
— TX/T2=0.7 Previous best
1.0/ }— Norm.(T=1.0)
Tx/Tz=1.3 Comparison
o8l | T TX/12=0.3tank96% Stabilized
| ,:é ' Tx/Tz=0.3,tank94% | Stabilized
| % —— Tx/Tz=0.3,tank90% | Near z-accept.
Baseline | c 0.6
KoL
' ("]
E 0.4
[+s)
0.2
0.0 .
35 40 45 50 55
ACSO01 BLM# ACS21

Figure 8: Measured beam loss for the lattice settings.

Figure 7: Stability Diagram (Hofmann chart).

Minimization of beam loss versus equipartitioning parameter 7, in J-PARC
linac (Y.Liu, IPAC19, TUPTS027). Optimal value was found to be 7T, = 0.7.
Optimization included minimization of Intra-Beam Stripping of H- beam.
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Beam Loss Versus Initial Beam Mismatch

T T T T T T T 30 T T T
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Effect of beam mismatch at the entrance of LANL Drift Tube Linac on beam
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Beam Funneling

Beam funneling is a technique to combine two and more beams in one beam. According to
Liouville” s theorem, additional particles cannot be inserted into 6-dimensional (6D) phase-
space volume already occupied by other particles. However, 2D and 4D projections of
beams can be overlapped.

Figure 1: Principle of funneling.
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Beam Funneling Experiment at Frankfurt University

Parameters of the Two-Beam RFQ Funnel Experiment

Two-beam FRQ He ™
0 injections two-beam RFQ r.f. deflector  emittance scanner f() (MHz) 54
o Voltage (kV) 10.5
Tin (keV) 4
Tout (MeV) 0.16
Length (m) )
Figure 2: Scheme of the experimental setup. Angle between beam axes (mrad) 75

File Aeacure  tualuate  Lonkigure  uptisnc  brilities FRUEN!
s y1' [nrad] FILE: RFQ9S2.ENI

Multigap funneling deflector

: fo (MHz) 54
% Voltage (kV) 6
E Length (cm) 54

Single gap funneling deflector

Jfo (MHz) 54
*&" [rrad) FILE: D1.EN1 : VOltalge (kv) 23
Length (cm) 2.54

>}
=
=
Lrd
L
s,
o
N

Beam Funneling
Experiment at
Frankfurt University
(A. Schempp, NIM-A
464 (2001) p.395)

Fig. 6. Emittance of a beam with deflector off' (a) and with
single gap funnel (b). 42
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Beam Funneling (cont.)
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Fig. 3. Characteristic dimensions (in mm) of the LEBT section and
of the two-gap buncher.
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FOM-MEQUALAC Experiment
(R.W. Thomae et.al, AIP Conference

ig. 4. Th MEQALAC accel ti truct . All dimen- .
e e one are dn ame o SRS Proceedings 139 (1985), p. 95)
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Parameters of FOM-MEQUALAC Experiment

Parameter 1 2 3 4 Dim.
Particle He D N3 N -
Injection energy 40 80 80 40 keV
Exit energy 120 1000 2000 1000 keV
RF frequency 40 80 27 25 MHZ
Synchronous phase ~-38 -30 -20 -20 °
Gap electric field amplitude 2.6 12.0 14.2 12.0 MV/m
Width RF gaps 0.2 0.4 0.5 0.4 cm
Number of gaps 20 23 33 24 -
Number of channels 4 25 36 64 -
Overall beam dimensions 4 35 35 65 cmé
Length resonator 65 150 200 170 cm
Diameter resonator 40 40 100 80 cm
Quality factor 1800 2500 3700 2800 -
Parallel resonance resistance Rpo 16 28 110 38 MQ
Rgo eff 8.1 17 79 27 MQ
BA/2 first cell 1.75 1.95 1.60 1.81 cm
BA/2 last cell 2.80 6.10 6.50 7.40 cm
Quad spacing/length; g/l 0.75 0.95 1.30 0.81 -
Channel radius 0.30 0.30 0.25 0.30 cm
Quadrupole voltage +U 2.6 6.3 6.7 3.3 kV
Zero current ug,T 60 60 60 60 °
Zero current gy 19.8 27.6 30.5 35.8 °
Depressed ur 24.0 24.0 24,0 24,0 °
Depressed 7.9 11.0 12,2 14.3 °
Channel acceptance ag 108 n 97 = 95 104 = mm mrad
Channel acceptance aj 270 w M2 100 130 = mm mrad
Iy time averaged 2.9 7.7 3.1 1.6 mA
I; time averaged 3. 7.6 3.2 2.3 mA
Total current 11,6 190 110 102 mA
Acceleration efficiency 54 78 83 74 A
44
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Self-Consistent Bunched Beam in RF Field

1. Beam is accelerated in traveling wave with constant amplitude E

2. Beamis bunched at RF frequency ¢ = Z_ZC . Particles between bunches are

removed.
Focusing is provided by a continuous z-independent focusing structure

4. Beam is matched with the structure, i.e. there are no envelope oscillations
(both transverse and longitudinal)

What is the self-consistent particle distribution within the bunch and what is
the limited beam current?

Y
"m‘b; “““ e
< > >

Sequence of bunches in RF field.

(Y.B., NIM-A 483 (2002), 611)
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Equation for Field of Moving Bunch

The space charge density distribution of a moving bunched beam has the form p = p (x, y, z -vs?).
The moving bunch creates an electromagnetic field with a scalar potential U, = U, (x, y, z -vst)

—

and a vector potential A, = A, (x, y, z -vit), which obey the wave equations:

2
AU, - L 0 £, (5.50)
¢ ot 0
s GZX
AAp - LEEb =, j, (5.51)
c” ot

where ; = p;s is the current density of the beam. The current density has only longitudinal
component
jx=jy=0,  jz=vsp (x,y,2- vsl), (5.52)

and. therefore. the vector potential has only a longitudinal component 4 .

In a moving coordinate system where particles are static, the vector potential of the beam is zero,
A =0. According to the Lorentz transformation, the longitudinal component of the vector
potential in the laboratory system is A, = s U, / ¢ while transverse components 4, = 0, 4, = 0.
Therefore, to find solution of the problem it suffice to solve only equation for the scalar potential
(5.50). Substitution of the value 4_into the wave equation (5.51) gives the equation for the scalar

potential:

2 2 2
8U2b+8U2b+an2=_Lp(x,y’§). (5.53)
0x ay-  y2¢ €o
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Self - Consistent Problem for Bunched Beam

Equation (5.53) has to be solved together with the Vlasov equation for the beam distribution
function:

d_ 1 f LA L O . OF3U Of U Af U
i my axpx oy T yrac P T N ax Tap, ay  op, o

)=0 (5.54)

where U = Uy + v ~2U, is a total potential of the structure. Eqgs (5.53), (5.54) define the self-
consistent distribution of a stationary beam which acts on itself in such a way, that this
distribution is conserved.

The general approach to find a stationary, self-consistent beam distribution function is to

represent it as a function of Hamiltonian /= f(H) and then to solve Poisson's equation. Because
the Hamiltonian is a constant of motion for a stationary process, any function of Hamiltonian is

also a constant of motion which automatically obeys Vlasov's equation. A convenient way is to
use an exponential function £ = £, exp (- H/ H,):

2 2

px +p 2 Uet + Upy ™
f=foexp (-2 - Pr__ g ZenT WYy (5 55)

2myH, 2my3H, H,
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Hamiltonian of Averaged Particle Motion in RF Field

Particle motion is governed by the single-particle Hamiltonian (Kapchinsky, “Theory of resonance
linear accelerators”, Harwood, 1985):

H=p§+py2 + P +qUext+q%
2my  2my? y?
2
U,, = E[lo(kzr)sin((ps —k.0)—sing, +k{cosp 1+ m—ny .
k, Y q 2
Py> Py transverse momentum
p.=P,-P, longitudinal momentum deviation from synchronous particle
C=2-2 deviation from synchronous particle
o, synchronous phase
k. = Z—Z wave number
U, potential of external field
U, space charge potential of the beam
E amplitude of accelerating wave
Q. transverse oscillation frequency
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Beam Equipartitioning in RF field

Let us rewrite the distribution function, Eq. (5.55)

2 2
+ 2 -2
px 2py _ 2 pZ _ q Ue_x[ + Uby )’

f=Jfoexp (-2 >
)2 Pi H,

(5.56)

where p, =2 V<p?> =2 V<p?> and p;=2 Y <p2> are double root-mean-square (rms) beam sizes in
phase space. Transverse, &, and longitudinal, &, rms beam emittances are:

g=2 P V<x?> =2ﬂ’V<y7>, (5.57)
mc mc
e =2l <> (5.58)
mc

The value of H, can be expressed as a function of the beam parameters:

2 2 2 2 2 2
mc E mc E mc E

16H = = = e 5.59
Ty x>y <y'> y <> (559)

Equation (5.59) can be rewritten as

E
A 5.60
R 7R (5.60)
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Is Equipartitioning a Way to Reduce Beam
Emttance Growth and Beam Loss?

To avoid beam emittance growth and beam loss, the averaged beam distribution function has to
be stationary (time - independent). In this case, beam distribution needs to satisfy two equations:
1. Vlasov’s equation for beam distribution function:

of .of . of 9f U _9f U _3f U
my axp oy T o Tox op, oy op,

2. Poisson’s equation for self-consistent space charge potential of the beam:

a%@+aﬁg+e¥m,:_puyg)
x> dy> y’ol’ £
Equipartitioning condition e e

&%( )=0

PWM@WTTTﬂR%ﬂL

o

— <
R YR,
is a result of the selection of the distribution function as a function of Hamiltonian / = f(H), which
satisfies Vlasov’'s equation but does not necessarily satisfy the self-consistent Vlasov-Poisson’s
set of equations. Therefore, equipartitioning is necessary, but not sufficient condition to keep
beam averaged beam distribution function unchanged (Y.B., NIM-A, 483, 2002, p. 611). To find
the unique stationary beam distribution, which satisfies both Vlasov’s and Poisson’s equation, it is
necessary to solve nonlinear Poisson’s equation for the unknown space charge potential of the
beam.
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Self-Consistent Solution for Intense Beam

The first approximation to self-consistent space charge dominated beam potential is:

where parameter 0 = 1«

bk

2
Vp=-—1 Vo
1+6

and b, is a dimensionless beam brightness of the bunched beam:

2 I R
h =———

" By BI €

The Hamiltonian corresponding to the self-consistent bunch distribution is as follows:

H

_pxtpy . p?
2my  2my’ 1+6

+q (L) Uext.

Equation (5.88) indicates that in the presence of an intense, bright bunched beam (6 << I) the
stationary longitudinal phase space of the beam becomes narrow in momentum spread, while the
phase width of the distribution remains the same in the first approximation.

Low brightness beam, b <</

151073

1.5:1073 —TT— T
1.0-103 i 1.0-10°3
5.0104 i 50104
N0 0.]()(] - - :.\ (',()‘l()l)
50104 - i 50104
10103 - -1.01073
15103 P S S SR S -1.51073
-1.5 -1.0 0.5 0.0 0.5 1.0 -
k,C
~
¥® Los Alamos
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High brightness beam, b >> 1

—

1.5

-1.0 -0.5 0.0 0.5 1.0

k,C
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Total field within the bunch.
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Analogy with Plasma Physics: Debye Screening

screening. If a positive test charge of magnitude Ze is placed in a plasma, it
attracts clectons and repels ions in such a way that its Coulomb electrostatic
potential ¢, x Ze/dnz,r is attenuated at distances beyond a Debye length. To
calculate this effect, we solve for the potential ¢(r) gencrated by such a test
charge. Assuming the plasma to be in thermal equilibrium, the distribution
functions of electrons and ions are of the Maxwell - Boltzmann form

mu* " clcf))'
2k“r k""’,
and the densities are n,(r) = nyexp(e,@(r)/k,T). Here ¢(r) is the potential

generated by the test charge, which is as yet unknown. Since this potential must
satisfy Poisson’s equation

Slx,v) = n.,cxp(~ (1.8.1)

|
Vig = —plr), (1.8.2)

[ N

with the charge density p(r) = 3 e/n,(r), it follows that, assuming spherical

symmetry, ¢ satisfies the equation

1 d ,d¢ 2n,e’

e pl - (1.8.3
ridr dr eoky? ‘ )
here we have assumed that the potential is small enough that e¢/ky7T <« 1.

Taking the solution of Eq. (1.8.3) which vanishes as r — o, we obtain

A
O = rcxp(—r’}.[,l. (1.8.4)

where iy = (eokT/2nge?)''? is known as the Debye length, and A4 is not yet
determined. To evaluate the constant A4, we must match the potential to the ‘bare’
Coulomb potential of the test charge, ¢ = Ze/dne,r, at a distance r from the
charge which is small compared to the avcragc murpdrmle distance n, ''*. The
result is that A = Ze/dne,, provided that ng ' 3 « ip. Eq. (1.8.4) then shows that,

at distances greater than a Debye length, the potential of a testcharge ina plasmais
exponentially attenuated below the value it would have ina vacuum. This cutoffof

the potential has important implications for the collisional events in a plasma,
i% Los Alamos 52
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Space Charge Density and Potential of the Self-
Consistent Bunch

Space charge density of stationary bunch is p(r,0)=2y>—+ my 92[1 ( ) ]
close to constant q

p Q> 7’
Space charge of a short self-consistent U, = 5 (YC) +(——=)—1
stationary bunch: 2 ZQ 2Q 2
This potential is that of uniformly charged 0O? ,Uz
spheroid, where the coefficient of the M, = O - =
spheroid 280,24,
Q'Q Los Alamos >3
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Shape of Stationary Bunch

Shape of stationary self-consistent bunch is given by:

kr . .
[ (—)sin(¢ —k.$)+k {cosp + C(kzr)2 —sin(@. —k_R )—k R cosgp =0
where constant C C = ‘quos [( R )+ L]
2 TR 2y

For a short paraxial bunch, ! — N\
kR <<1, kR<<I, o o] (- [ H
shape of the bunch is transformed " oos| \\ /
into ellipsoid: o0 ~

(i)z + (1)2 — 1 _0:29{2 10 —08 06 —04 02 00 02 04 O_.6

R, R Matched self-consisteht beam profile for

various longitudinal beam sizes.
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Space Charge Field of Stationary Bunch
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Redistribution of the Bunch in RF Field
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Kapchinsky Model for Self-Consistent Bunched Beam

<< 1. Restricting ourselves in the expansion of a modified

Bessel function to the first two terms

1. \ ' 2
]0( wr ]z 1L 4(0 rz,

) 2,

Yos / Vg

we can write potential function (4.7) in the form

Vix,y, &)= e[‘mﬁ [sin ((ps— ﬂ ;)_}-m_ccos (p,]

o "."’2_7 [Q,’ + ——2;"’; = sm( i C)]

By ignoring the dependence of the defocusing force pro-
duced by the accelerating wave on the variable component of
the particle phase, we can represent the potential function
as a sum of two terms V(x, vy,

L) = Vy(Z) + Ve(x, y). The

With this simplifying assumption,

324 [. M. KAPCHINSKIY

first term

V.(Q)=

[sm( ——C)——COS%]: (4.13)

which depends only on the longitudinal coordinate of the

particle, coincides (to within a constant factor) with po-

tential function (1.41). The second term

V. (x, y) = (my v/2) |} —eaE [sin q,|/2my v° vl (4.14)

which depends only on the transverse coordinates, is the po-
tential function for the equilibrium particle in a "smoothed
external field.

out" In Section 3.1 we showed by using a

the Coulomb potential

of the bunch can be represented as a sum of two independent

functions U.(x, ¥,
axial symmetry of the fields,

of only the radius r.

z) = U,(g) + Up(x, y). Because of the

the potential U,is a function

The two independent integrals of mo-

tion can be separated by using the simplifying assumptions

discussed above;
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H -

2myy?

(4.15)

V, (2) 4 (eiy®) U, (0

H, =(pz+pj)2my v +V, (N (e vy U, (r). (4.16)

Y

Y. Batygin - USPAS 2024



Representation of the Bunch as a Uniformly-
Charged Cylinder with Variable Density Along z

B "

Transverse distribution Longitudinal distribution

. side the separatrix. Specifically, we assume that the phase
326 I. M. KAPCHINSKIY ¥ REer X2 ? 3

: . 2 : density on the y, py plane inside the separatrix is con-
The microcanonical phase-density distribution £1(Hy)

. stant. Since H, < Hy for the phase trajectories inside the
= 6(Hy - Hp) can be used in four-dimensional transverse-os-—

separatrix and H, > H. for the phase trajectories outside
cillation phase space. 1In this case, ) :
it, we can write

oo o

pir,=eny | fa(H)dp, | [ 8(H,—H)dpedp, fry=] L for Ges i
) ~e e 7 o for H,>H..

Although the space-charge density in each beam cruss

(4.26)

section is constant, it nonetheless depends on the longitu-
dinal coordinate. A bunch can be represented as a circu-
lar cylinder of finite length. Since the charge density in-
side the cylinder depends only on the longitudinal coordi-

nate, the cylindrical bunch has flat end-faces. The cyl-
The law governing the charge-density distribution along

the longitudinal axis of the bunch duplicates the behavior 58

of the separatrix. The maximum charge density of a cylin-
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Separatrix as a Function of Beam Current

Analysis based on Kapchinsky’ s model for beam distribution indicates that synchronous
phase is shifted in space charge dominated beam and phase width of the bunch decreases with
current but much slower than the vertical size of the separatrix.

$)

F

The potential function and separatrix The separatrix shape for different values of

of the beam with high space-charge space charge parameter (from Kapchinsky,
density (from Kapchinsky, 1985). 1985).
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