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Beam Bunching in RF field

Layout of klystron beam bunching scheme (from 
http://en.wikipedia.org/wiki/Klystron)
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Increase on fraction of the beam inside separatrix after beam bunching.

Beam Bunching in RF Field (cont.)
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Equation of motion in RF gap of width d and applied voltage U1

Longitudinal particle velocity in RF gap

Longitudinal particle velocity after RF gap

Initial particle velocity after extraction voltage Uo

RF phase in the center of the gap

Transit time angle through the gap

Longitudinal particle velocity after RF gap

Amplitude of modulation of longitudinal velocity 

Transit time factor of RF gap

Beam Bunching in RF Field (cont.)

4
Y. Batygin - USPAS 2024



t2 = t1 +
z
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≈ t1 +

z
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vo
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θ =ω z
vo

Phase of arrival of particle into second gap as a 
function of phase of the same particle in the first gap.
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vo
2 = U1M1

2Uo

ωz
vo

ωt2 −θ =ωt1 − X sinωt1

Time of arrival of particle to the second gap

Phase of arrival of particle into the second gap 

Transit angle between gaps

Bunching parameter

Beam Bunching in RF Field (cont.)

5
Y. Batygin - USPAS 2024



i2 =
I

1− X cosωt1

Current in the second gap as a function of time.

X < 1

X = 1

X > 1

i1dt1 = i2dt2

i2 = i1
dt1
dt2

= I
dt2
dt1

Conservation of charge

Beam current in the second gap

Beam current in the second gap as a function of RF phase 
in the first gap and bunching parameter

Beam Bunching in RF Field (cont.)
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Phase of arrival of particle into second gap

i2 (x) = Ao + An cosnx
n=1

∞

∑
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1
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π

∫ )dϕ
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o
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∫ )dωt1 = 2IJn (nX)

x =ωt2 −θ =ωt1 − X sinωt1

i2 (x) = I + 2I Jn (nX)cosnx
n=1

∞

∑

Expansion of the current in the second gap in Fourier 
series

Fourier coefficients

Differentiation of RF phase

Constant in Fourier series

Other coefficients in Fourier series

Bessel function (integral representation)

Beam current in the second gap

Beam Bunching in RF Field (cont.)
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Bessel functions determine amplitude of the fist, third and tenth 
harmonics of induced current in two-resonator buncher.

Beam Bunching in RF Field (cont.)
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The first harmonic of the induced beam current in the second gap             
as a function of z for different values of voltage at first gap.

The optimal value of bunching parameter is Xopt = 1.84. 

I1
I
= 2J1(X)

Beam Bunching in RF Field (cont.)
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Beam Bunching in Presence of Space Charge Forces

2Ez =
ρ
εo
2zp

Ez =
ρ
εo
zp

Gauss theorem

m
d 2zp
dt 2

= q(Eext − Ez )

d 2zp
dt 2

+ω p
2zp =

q
m
Eext

ω p =
qρ
mεo

= 2c
R

I
Icβ

ρ = I
πR2βc

1D longitudinal space charge field

Space charge density of the beam

Substitution of space charge field gives:

Plasma frequency

Longitudinal oscillation in presence of  
space charge field, Ez, and external 
field Eext
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Ub(r, ζ) = ∑
n=1

∞ 4 ρo

εo υom[(2πn
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L
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L
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L
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Space Charge Field of the Train of Cylindrical Bunches 

Space charge potential of the train of the bunches.

11(Y.B., NIM-A 483 (2002), 611)
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a
)

Averaging of the field over radius

Additionally, consider only linear part 
of the field assuming

Taking only first term in field 
expansion, the equation for 
longitudinal beam oscillations is

For most common beam bunching

Reduced plasma frequency due to 
finite transverse beam size and 
presence of conducting pipe   

sin(2πnζ / L) ≈ 2πnζ / L

d 2ζ
dt 2
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Reduced Plasma Frequency
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Longitudinal Bunched Beam Oscillations in 
Presence of Conducting Tube

d 2zp
dt 2

+ωq
2zp = 0

zp = Bo sinωq (t − t1)

dzp
dt

= Boωq cosωq (t − t1)

dzp
dt
(t1) = Boωq = v1 sinωt1

Bo =
v1
ωq

sinωt1

Longitudinal plasma oscillations in tube

Longitudinal particle oscillations under space charge forces

Longitudinal velocity of particle oscillations under 
space charge forces:

Constant Bo is defined from initial conditions for 
particle velocity after first RF gap:
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Effect of Space Charge Repulsion on Beam Bunching
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Finally, particle oscillations under space charge forces 
in the moving system

Particle drift

Multiply by 

RF phase in the second gap

Modified bunching parameter in 
presence of space charge 

forces

sin(ωq
z
vo
) = 1 ωq

z
vo

= π
2Condition for maximum bunching:

X 'opt =
U1M1

2Uo

( ω
ωq

)
I1
I
= 2J1(X 'opt )

ω

Effect of Space Charge Repulsion on Beam Bunching
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Hamiltonian of Particle Motion in RF FieldHamiltonian of Particle Motion in RF Field

dz
dt

=
pz
mγ

dpz
dt

= qE Io(
kzr
γ
) cosϕ

dr
dt

= pr
mγ

dpr
dt

= q(Er − βcBθ ) = −q E
γ
I1(
kzr
γ
) sinϕ

Traveling wave can be represented by an 
effective potential of accelerating field

Actually, equations for particle 
momentum

Ua = E 
kz

 Io(kz r
γ
) sin (ω t - kzz)

 

d!p
dt

= −qgradUa

Equations of motion in
equivalent traveling wave:

16
Y. Batygin - USPAS 2024



Hamiltonian of Particle Motion in RF Field (cont.)

dpζ
dt

= qE[Io(
kzr
γ
)cos(ϕ s − kzζ )− cosϕ s ]+ qEc (r,ζ )

Equations of particle motion around 
synchronous particle in presence of 
space charge forces

Space charge field is expressed through 
potential of self-field of a bunch

Potential of external focusing field

Hamiltonian of particle motion in RF 
field with quadrupole focusing:

dζ
dt

=
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mγ 3
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2
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Hamiltonian of Small Amplitude Particle Motion in 
RF Field

sin(ϕs - kzζ) ≈  sinϕs - (kzζ)cosϕs - 1
2
(kzζ)2sinϕs

Io(kzr
γ
) ≈ 1 + 1

4
 (kzr
γ
)
2
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2

2mγ
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2mγ 3 +mγ
3Ω2 ζ 2

2
+ qβcG(z) x

2 − y2

2
−mγ Ω2 (x2 + y2 )

4
+ qUb

γ 2

For small bunches 

kzRx <<1, kzRy <<1, kzRz <<1

Hamiltonian describes particle dynamics in three-dimensional linear external field 

Generalization of KV approach for 3-dimensional case is not possible.
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APPENDICES

The Nonexistence of Uniformly ChargedA.

Three-Dimensional Beams

We are given an ensemble of three-dimensional harmonic

oscillators with the Hamiltonian

H(p, <1), =
2 2
P + q , O~H<l (Al)

Because of the inequality, the accessible region in phase space is a

six-dimensional unit sphere; in configuration space it is a 3-sphere.

Does there exist a spherically symmetric distribution
2 2

f(p + q ) that

has a uniform projection onto the 3-sphere? The following necessary

condition for the existence of such a distribution has been found by

Maurice Neuman.

Theorem: The spherically symmetric distribution
2 2

f(p + q ) does not

exist if its projection
2

p(q ) = 223
Jf(p + q )d P violates any of the

following inequalities:

~ 42(
3

)

3/2

:n: 4T '

3
0~T~4'

n_~ -----------

peT)

- 8
~--2-Vl - T'

:n:

,
3
4~T~1 (A2)

The maximum permissible value of peT), which corresponds to the equal

sign, is shown in Fig. (AI). An immediate consequence of this theorem

is the nonexistence of a spherically symmetric distribution
2 2

f(p + q )

with a uniform projection,
2

p(q ) = constant.

Bunched Beam in RF Field: Problems with 
Ellipsoidal Bunch Model

1. There is no 6D distribution 
function which results in 3D 
uniformly charged ellipsoid in linear 
field:

F. Sacherer,  Thesis, 1968

P.M. Lapostolle, “Proton Linear 
Accelerators: A Theoretical and 
Historical Introduction”, LA-11601-
MS (1989). 

P.M. Lapostolle, “Space Charge and 
High Intensity Effects in 
Radiofrequency Linacs”, GANIL 
A.84-01 (1984)

2. RF fields across separatrix are 
essentially non-linear.
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While there is no complete 6D self-consistent treatment of bunched beam 
dynamics in linear field, we can formally include linear space charge into 
equations of motion. 

Potential of 3D uniformly charge ellipsoid:

Mx =
1
2

RxRyγ Rz ds

(Rx
2 + s) (Rx

2 + s)(Ry
2 + s)(γ 2Rz

2 + s)0

∞

∫

My =
1
2

RxRyγ Rz ds

(Ry
2 + s) (Rx

2 + s)(Ry
2 + s)(γ 2Rz

2 + s)0

∞

∫

Mz =
1
2

RxRyγ Rz ds

(γ 2Rz
2 + s) (Rx

2 + s)(Ry
2 + s)(γ 2Rz

2 + s)0

∞

∫

Potential of 3D Uniformly Charged Ellipsoid

ρ = 3
4π

Iλ
cRxRyRz

Ub (x, y,ζ ) = − ρ
2εo

[Mxx
2 +Myy

2 +Mzγ
2ζ 2 ]

Coefficients:

Space charge density:
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d 2Rx

dz2
− ε x

2

(βγ )2Rx
3 + kxψ (z)Rx − 3

I
Ic

M xλ
β 2γ 3RyRz

= 0

d 2Ry

dz2
−

ε y
2

(βγ )2Ry
3 + kyψ (z)Ry − 3

I
Ic

M yλ
β 2γ 3RxRz

= 0

d 2Rz
dz2

−
ε z
2

(βγ 3)2Rz
3 +

Ω2

(βc)2
Rz − 3

I
Ic

Mzλ
β 2γ 3RxRy

= 0

kxψ (z) =
qG(z)
mcβγ

− 1
2
( Ω
βc
)2 kyψ (z) = − qG(z)

mcβγ
− 1
2
( Ω
βc
)2

3D envelope equations

Focusing functions in 
presence of RF field: 

3D Envelope Equations
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22

.	

x = Rx r cosϕ sinθ

y = Ry r sinϕ sinθ

ζ = Rz r cosθ

Introduce spherical coordinates

according to transformation:

Volume element is transformed as

Rms beam size:

Ellipsoid size is related to rms size:

Assuming elliptical beam distribution in 
transverse momentum, the emittance of 
uniform bunched beam :

dxdydζ = RxRyRz r
2 sinθ dr dϕ dθ

0 ≤ r ≤1, 0 ≤ϕ ≤ 2π , 0 ≤θ ≤ π

< x2 > =
Rx
3RyRz
Ve

r4 dr
0

1

∫ cos2ϕ dϕ
0

2π

∫ sin3θ dθ
0

π

∫ = Rx
2

5

Rx = 5 < x2 >

ε = 5ε rms

Rms Beam Emittance of Ellipsoid Bunch
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3D Envelope Equations

23

Rx(z) = Rx (z) + ξx(z)

Ry(z) = Ry (z) + ξy(z)
qG(z)
mcβγ

→ (µo

S
)2After averaging, fast oscillating term is substituted as 

Similarly to beam envelopes averaging in continuous focusing 
channel, solution for beam envelopes can be represented as 

Accordingly, the solutions to the envelope equations in smooth 
approximation can be written as 

Rx (z) = Rx (z)[1+υmax sin(2π
z
S
)]

Ry (z) = Ry (z)[1−υmax sin(2π
z
S
)]

The slopes of beam envelopes are
dRx (z)
dz

= 2πυmax
Rx

S
cos(2π z

S
)

dRy (z)
dz

= −2πυmax
Ry

S
cos(2π z

S
)
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3D averaged envelope 
equations 

Phase advance of 
transverse particle 
oscillations per focusing 
period in presence of RF 
field: 

3D Averaged Envelope Equations

d 2Rx

dz2
− ε x

2

(βγ )2Rx
3 +

µs
2

S2
Rx − 3

I
Ic

M xλ
β 2γ 3RyRz

= 0

d 2Ry

dz2
−

ε y
2

(βγ )2Ry
3 +

µs
2

S2
Ry − 3

I
Ic

M yλ
β 2γ 3RxRz

= 0

d 2Rz
dz2

−
ε z
2

(βγ 3)2Rz
3 +

µoz
2

S2
Rz − 3

I
Ic

Mzλ
β 2γ 3RxRy

= 0

µs = µo 1− µol
2

2µo
2
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Consider matched beam, , with equal transverse emittances 
	and	 equal	 averaged	 transverse	 sizes	 .	 Such	 beam	 is	 a	

uniformly	charged	spheroid.	For	such	spheroid,	coefficients	in		
	

	
	

Potential	of	the	uniformly	charged	spheroid	
	

																																													
	

	

where																																			 		

Rx
" = Ry

" = Rz
" = 0

ε x = ε y = ε Rx = Ry = R

Mx = My =
(1−Mz )
2

Ub (r,ζ ) = − ρ
2εo

[Mzγ
2ζ 2 +

1−Mz

2
r2 ]

Mz =
γ R2Rz
2

ds
(R2 + s)(γ 2Rz

2 + s)3/2o

∞

∫

6D Matched Beam
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Uniformly Charged Spheroid

26
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Mz ≈
R
3γ Rz

For prolate spheroid (R < γRz):

Mz =
1−ς 2

ς 2
( 1
2ς
ln1+ς
1−ς

−1)

with eccentricity 
For oblate  spheroid (R > γRz):

Mz =
1+ς 2

ς 2
(1− arctgς

ς
)

with eccentricity ς = (R /γ Rz )
2 −1ς = 1− (R /γ Rz )

2
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Finding 6D Matched Beam

− ε 2

(βγ )2R 3 +
µs
2

S2
R − 3

2
I

Ic (βγ )
3R

(βλ
Rz
)(1−Mz ) = 0

−
ε z
2

(βγ 3)2Rz
3 +

µoz
2

S2
Rz − 3

I
Ic

βλ
(βγ )3R2

Mz = 0

ε = βγ µt R
2

S

ε z = βγ 3 µzRz
2

S

µt
2 = µs

2[1− 3
2

I
Ic (βγ )

3 (
βλ
Rz
)( S
R
)2 (1−Mz )

µs
2 ]

µz
2 = µoz

2 [1− 3I
Ic (βγ )

3 (
βλ
Rz
)( S
R
)2 Mz

µoz
2 ]

Equilibrium envelope equations
for                                 are:

Equilibrium conditions can be 
rewritten as

Depressed transverse and 
longitudinal phase advances per 
focusing period

Rmax = R (1+υmax )

Rmin = R (1−υmax )

27

Rx
" = Ry

" = Rz
" = 0
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Depressed Transverse and Longitudinal 
Phase Advances per Focusing Period

28

Depressed transverse and longitudinal 
phase advances per focusing period can 
be re-written as

where the space charge density of the 
ellipsoid with semi axes R, Rz

and characteristic space charge density 

µt
2 = µs

2 − ρ
ρc
(
1− Mz

2
)

µz
2 = µoz

2 − ρ
ρc
Mz

ρ = 3
4π

I λ
cR2Rz

ρc =
Ic β

2γ 3

4πcS 2
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Transverse and Longitudinal Space Charge Beam 
Current Limit

Imax,  t =
Ic
3π
(βγ )3(a

S
)2

µs
2 ϕs

(1−Mz )
 (1− ε 2

εch
2 )

εch ≈
βγ a2µs

S

Imax,z =
Ic
6π
(βγ )3(a

S
)2
µoz
2 ϕ s

Mz

 (1− ε z
2

εacc
2 )

εacc ≈
1
2π

β 2γ 3(Ω
ω
)ϕ s

2 λ

Beam current limit:

Transverse current limit:

Longitudinal current limit:

Transverse normalized 
acceptance

Longitudinal normalized 
acceptance

29

R = a Rz = βλ
ϕ s

2π
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Transverse and Longitudinal Beam Current Limit 
(cont.)

Focusing period usually contains N
accelerating periods, S=Nβλ . The 
value of transverse limited beam 
current can be re-written as

Using the approximation for 
ellipsoid parameter

and expression for longitudinal 
phase advance, the longitudinal 
beam current limit  can be written 
as 

Τhe impedance of free space

Imax,  t =
4
3
(mc

2

qZo

)βγ 3 ϕ s µs
2

(1−Mz )N
2 (
a
λ
)2 (1− ε 2

εch
2 )

Zo = (cεo )
−1 = 376.73Ω

Imax,z =
2βγ E sinϕ s ϕ s

2a
Zo

(1− ε z
2

εacc
2 )

30

Mz ≈
R
3γ Rz
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Equilibrium Transverse Beam Radius

31

Equation for equilibrium transverse beam 
radius can be rewritten as

where equilibrium radius of a beam with 
vanishing current   I = 0

and transverse space charge parameter

Equation for equilibrium transverse beam 
radius is satisfied by

where the effective bunched beam current

beam bunching factor 

Rot =
ε S

βγ µs

( R
Rot
)4 − 2bt (

R
Rot
)2 −1= 0

bt =
3
2

I
Ic βγ

(Rot
ε
)2 ( βλ
2Rz

)(1−Mz )

R = Rot bt + 1+ bt
2

Ieff =
3
2
(1− Mz )(

βλ
2Rz

) I ≈ I
B

B =
2Rz
βλ
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Equilibrium Longitudinal Beam Radius

32

(
Rz
Roz
)4 − bz (

Rz
Roz
)3 −1= 0Equation for equilibrium longitudinal beam 

radius can be rewritten as

where equilibrium longitudinal  radius of a 
beam with vanishing current I = 0

and longitudinal space charge parameter

Roz =
ε z S

βγ 3 µoz

bz = 3γ
3Mz

I
Ic

λRoz
3

R2ε z
2

Y. Batygin - USPAS 2024



Simultaneous Solution of Equations for Equilibrium 
Beam Radii R, Rz
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S / 4

Rot

dRo / d
z

- dRo / dz

Rmax

Rmin

z

Quad 1

Quad 2

Transverse matching of the beam: (left) with negligible 
current, (right) with high-current.

Transverse Matching of the Beam
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Deviation from matched solution

results in excitation of envelope modes with eigenfrequencies [M.Pabst, K.Bongart, 
A.Letchford, Proceedings EPAC98, p.146]: 

µenv,Q = 2µt

µ
env , H

2 = A + B

µ
env , L

2 = A − B

A = µo
2 + µt

2 + 1
2
µoz
2 + 3

2
µz
2

B = (µo
2 + µt

2 − 1
2
µoz
2 − 3

2
µz
2 )2 + (µo

2 − µt
2 )(µoz

2 − µz
2 )

Envelope Modes of Mismatched Bunched Beam

Rx = Rx +ξx Ry = Ry +ξy Rz = Rz +ξz
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Condition for Equal Tune Depression in 
Transverse and Longitudinal Directions

Among infinitely large number of 
matched beam solutions, there is a 
solution corresponding to equal tune 
depression in transverse and longitudinal 
directions

Equal depressed tune in transverse and 
longitudinal directions

Relationship between beam
emittances and beam sizes 
for equal space charge depression

Equal space charge depression provides 
equal current limit in transverse and 
longitudinal directions

Mz =
µoz
2

2µo
2

36

µt
2

µs
2 =

µz
2

µoz
2 = 1− 3

2µo
2

I
Ic (βγ )

3 (
βλ
Rz
)( S
R
)2

Imax =
Ic
3π
(βγ )3(R

S
)2µo

2 ϕ s =
2βγ E sinϕ s ϕ s

2R
Zo

Te = (
ε z
ε

R
γ Rz

)2 = 1Another equilibrium: equipartitioning (equal beam 
momentum spread in transverse and longitudinal 
directions) 

ε
ε z

= ( R
γ Rz

)2 1−Mz

2Mz

≈ 3
2
( R
γ Rz

)3/2 1− R
3γ Rz
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Various Beam Equilibria
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Ratio of beam emittances versus ratio of beam sizes 
for equipartitioning, equal space charge depression, 
and equal emittances modes (Y.B. NIM-A 995 
(2021) 165074).
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6D Beam Phase Space Growth for Various Beam 
Equilibria 

38

(Left) numerical simulation of six-dimensional beam phase space growth, 
(right) transverse space charge depression factor for various beam equilibria 
with constant longitudinal space charge depression μz /μzo = 0.2.
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Experimental Minimization of Beam Loss
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Minimization of beam loss versus equipartitioning parameter Te in J-PARC 
linac (Y.Liu, IPAC19, TUPTS027).  Optimal value was found to be Te = 0.7. 
Optimization included minimization of Intra-Beam Stripping of H- beam.
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Beam Loss Versus Initial Beam Mismatch

40

Effect of beam mismatch at the entrance of LANL Drift Tube Linac on beam 
loss in (left) 100 MeV Transition Region and (right) along Coupled-Cavity 
Linac.
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Beam Funneling
Beam funneling is a technique to combine two and more beams in one beam. According to 
Liouville’s theorem, additional particles cannot be inserted into 6-dimensional (6D) phase-
space volume already occupied by other particles. However, 2D and 4D projections of 
beams can be overlapped.

41
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Beam Funneling Experiment at Frankfurt University

Beam Funneling 
Experiment at 
Frankfurt University 
(A. Schempp, NIM-A 
464 (2001) p.395)
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FOM-MEQUALAC Experiment
(R.W. Thomae et.al, AIP Conference 
Proceedings 139 (1985), p. 95)

Beam Funneling (cont.)
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Parameters of FOM-MEQUALAC Experiment
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Self-Consistent Bunched Beam in RF Field

Sequence of bunches in RF field.

1. Beam is accelerated in traveling wave with constant amplitude E

2 .    Beam is bunched at RF frequency . Particles between bunches are 
removed.

3.     Focusing is provided by a continuous z-independent focusing structure

4. Beam is matched with the structure, i.e. there are no envelope oscillations 
(both transverse and longitudinal) 

What is the self-consistent particle distribution within the bunch and what is 
the limited beam current?       

ω = 2πc
λ

(Y.B., NIM-A 483 (2002), 611)
45

Y. Batygin - USPAS 2024



Equation for Field of Moving Bunch

46
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Self - Consistent Problem for Bunched Beam 
Equation (5.53) has to be solved together with the Vlasov equation for the beam distribution 
function: 
 

          
(5.54) 

	
where  is a total potential of the structure. Eqs (5.53), (5.54) define the self-
consistent distribution of a stationary beam which acts on itself in such a way, that this 
distribution is conserved. 

df
dt

= 1
mγ

(∂ f
∂x

px +
∂ f
∂y

py +
∂ f

γ 2 ∂ζ
pζ )− q(

∂ f
∂px

∂U
∂x

+ ∂ f
∂py

∂U
∂y

+ ∂ f
∂pζ

∂U
∂ζ
) = 0

U = Uext + γ  - 2Ub
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Hamiltonian of Averaged Particle Motion in RF Field

Particle motion is governed by the single-particle Hamiltonian (Kapchinsky, “Theory of resonance 
linear accelerators”, Harwood, 1985):  

 

 

 

 

 
    transverse momentum 

      longitudinal momentum deviation from synchronous particle 
  deviation from synchronous particle  

    synchronous phase 

     wave number 

Uext       potential of external field 
Ub         space charge potential of the beam 
E      amplitude of accelerating wave  

  transverse oscillation frequency 

H = 
px
2 + py

2

2 m γ
  + pz

2

2 m γ 3
 + q Uext + q Ub

γ 2

Uext =
E
kz
[Io(

kzr
γ
)sin(ϕs − kzζ )− sinϕs + kzζ cosϕs ]+

mγ
q

Ωr
2 r2

2

px ,  py
pz = Pz - Ps
ζ = z - zs
ϕ s

kz =
2π
βλ

Ωr
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Let us rewrite the distribution function, Eq. (5.55) 
 

,                   (5.56) 

 
where  and  are double root-mean-square (rms) beam sizes in 
phase space. Transverse, et, and longitudinal, el, rms beam emittances are: 
 

,                                      (5.57) 

 

.                                                   (5.58) 

The value of Ho can be expressed as a function of the beam parameters: 
 

.                               (5.59) 

 
Equation (5.59) can be rewritten as 

,     (5.60) 

f  = fo exp (- 2 
px
2 + py

2

pt
2

  - 2 pz
2

pl
2
  - q Uext + Ubγ  -2

Ho
)

pt = 2 <px
2>  = 2 <py

2> pl = 2 <pz2>

ε t = 2 pt
mc

 <x 2>  = 2 pt
mc

 <y 2>

ε z = 2
pl
mc

<ζ 2 >

16Ho =
mc2

γ
ε 2

< x2 >
=
mc2

γ
ε 2

< y2 >
=
mc2

γ 3

ε z
2

<ζ 2 >

ε
R
=

ε z
γ Rz

Beam Equipartitioning in RF field
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Is Equipartitioning a Way to Reduce Beam 
Emttance Growth and Beam Loss? 

50
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To avoid beam emittance growth and beam loss, the averaged beam distribution function has to
be stationary (time - independent). In this case, beam distribution needs to satisfy two equations:
1. Vlasov’s equation for beam distribution function:

2. Poisson’s equation for self-consistent space charge potential of the beam:

∂2Ub

∂x2
+ ∂2Ub

∂y2
+ ∂2Ub

γ 2 ∂ζ 2 = − ρ(x, y,ζ )
εo

ρ(x, y, z,t) = q
-∞

∞

∫
-∞

∞

∫
-∞

∞

∫ f dPx dPy dPz

1
mγ

(∂ f
∂x

px +
∂ f
∂y

py +
∂ f

γ 2 ∂ζ
pζ )− q(

∂ f
∂px

∂U
∂x

+ ∂ f
∂py

∂U
∂y

+ ∂ f
∂pζ

∂U
∂ζ
) = 0

Equipartitioning condition

is a result of the selection of the distribution function as a function of Hamiltonian f = f(H), which
satisfies Vlasov’s equation but does not necessarily satisfy the self-consistent Vlasov-Poisson’s
set of equations. Therefore, equipartitioning is necessary, but not sufficient condition to keep
beam averaged beam distribution function unchanged (Y.B., NIM-A, 483, 2002, p. 611). To find
the unique stationary beam distribution, which satisfies both Vlasov’s and Poisson’s equation, it is
necessary to solve nonlinear Poisson’s equation for the unknown space charge potential of the
beam.

ε
R
=

ε z
γ Rz



Self-Consistent Solution for Intense Beam

Total field within the bunch.
51
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Analogy with Plasma Physics: Debye Screening
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Space Charge Density and Potential of the Self-
Consistent Bunch

Space charge density of stationary bunch is 
close to constant

Space charge of a short self-consistent 
stationary bunch:

This potential is that of uniformly charged 
spheroid, where the coefficient of the 
spheroid

53

ρ(r,ζ ) ≈ 2γ 2 mγ
q

Ωr
2[1− (µt

µs

)2 ]

Ub = − ρ
2εo

[ Ω
2

2Ωr
2 (γζ )

2 + (1− Ω2

2Ωr
2 )
r2

2
]

Mze =
Ω2

2Ωr
2 =

µoz
2

2µo
2
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Shape of Stationary Bunch
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Matched self-consistent beam profile for 
various longitudinal beam sizes.

Io(
kzr
γ
)sin(ϕs − kzζ )+ kzζ cosϕs +C(kzr)

2 − sin(ϕs − kzRz )− kzRz cosϕs = 0

C =
sinϕs
2

[(
Rz
R
)2 + 1

2γ 2
]

Shape of stationary self-consistent bunch is given by:

where constant C

kzRz <<1

( ζ
Rz
)2 + ( r

R
)2 = 1

For a short paraxial bunch, 
,                ,                          

shape of the bunch is transformed 
into ellipsoid:

kzR <<1
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Space Charge Field of Stationary Bunch
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Redistribution of the Bunch in RF Field
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Dynamics of the beam: (left) with initial 
ellipsoidal shape, (right) with initial self-
consistent profile, versus number of focusing 
periods N. 

Six-dimensional phase space 
volume growth of the beam: 
(dotted line) with initial ellipsoidal 
shape, (solid line) with initial self-
consistent profile. 
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Kapchinsky Model for Self-Consistent Bunched Beam
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Representation of the Bunch as a Uniformly-
Charged Cylinder with Variable Density Along z

Transverse distribution Longitudinal distribution
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Analysis based on Kapchinsky’s model for beam distribution indicates that synchronous 
phase is shifted in space charge dominated beam and phase width of the bunch decreases with 
current but much slower than the vertical size of the separatrix.

The separatrix shape for different values of 
space charge parameter (from Kapchinsky, 
1985).

The potential function and separatrix 
of the beam with high space-charge 
density (from Kapchinsky, 1985).

Separatrix as a Function of Beam Current
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