
Space Charge Induced Beam Emittance Growth 
and Halo Formation
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Space charge effect resulted in beam emittance growth are typically can 
be divided by two classes:

 (i) single particle dynamics in collective space charge field of “pseudo” 
multipoles (incoherent space charge effects):

-  Space charge aberrations
- “Free Energy” effect
-  Excitation of nonlinear resonances
-  Particle-core interaction

 (ii) instabilities and resonances of beam distribution (coherent space 
charge effects). 
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Effect of Space Charge Aberration on Beam Emittance 
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Effect of Space Charge Aberration on Beam Emittance 
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Experimental Observation of Effect of Nonlinear Space 
Charge Forces on Beam Emittance

I=15 mA

I=0

(Y.B. et al, Proc. of PAC2011, p. 64)
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Effect of Elliptical Cross Section on Beam Emittance Growth

(T.Wangler, P.Lapostolle, A.Lombardi, PAC 1993, p.3606) 
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Emittance growth of a 50 keV proton beam with current I = 20 mA and 
unnormalized emittance 4.64 π cm mrad in drift space and in FODO 
focusing channel for different beam distributions: (solid) simulations, 
(dotted) aberration approximation.

Drift                          FODO Channel

Space Charge Induced Beam Emittance Growth 
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Space Charge Induced Beam Emittance Growth in a 
Focusing Channel (“Free Energy” Effect)

z = 0

z = 30 cm

z = 104 cm

Fig. 3.7. Injection of 135 keV, 100 mA, 0.07  cm mr ad proton 
beam with Gaussian distribution in a focusing channel with linear 
field. It results in      (a) beam uniforming 

(b) beam emittance growth 
(c) halo formation. 
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Conservation of energy for electromagnetic field (Umov-Poynting’s theorem)

Expression on the left side is an integral of Poynting's vector over 
surface S surrounding volume V and is equal to the power of electromagnetic 
irradiation, or energy of electromagnetic field coming through the surface S per 
second. Because beam in propagating in conducting tube, no energy is 
transferred through it. The first integral in right side of Poynting theorem is a 
change of energy of electromagnetic field per second: 
 

     

 

Second term in right side of Poynting theorem is a change of kinetic energy of 
the beam per second: 
 

 

For non-relativistic case (no magnetic field): 
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Application of Poynting’s Theorem
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where E is the total electrostatic field in the structure, and Wkin is the kinetic energy of particle: 
 

                       (3.62) 

 
and summation is performed over all particles of the beam. Below consider only transverse 
particle motion and kinetic energy, associated with this motion. According to definition of rms 
beam values, kinetic energy of particles is: 
 

 .                                           (3.63) 
 

where rms value of transverse momentum  is                           .                       (3.64) 
 
In a round beam rms values in both transverse directions are the same, , therefore 
 

.                                                     (3.65) 
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Emittance Growth due to Charge Redistribution
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Finally, equation for conservation of total energy can be can be rewritten for matched beam  
(Rf ≈ Ro) as 

 
 
where initial, Wi, and final, Wf, energy stored in electrostatic field are 
 

                                            ,                            
 

and normalization constant is                                           

ε f
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Emittance Growth due to Charge Redistribution (cont.)
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Consider beam with initial Gaussian distribution. Initial total field Ei is given by: 
 

 .     (3.73) 
  

 

Ei = mc 2
qRγ

 2 I
βγ Ic

 {- r
R

 + Rr  [ 1 - exp ( - 2 r 2

R2
 )}

External focusing field Eext, space charge field of Gaussian beam Eb, and 
total field Eext + Eb at initial moment of time.

Emittance Growth due to Charge Redistribution (cont.)
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Final& beam& distribution& is& close& to& uniform& with& the& same& value& of& beam& radius& R.& It& is& a& general&
property& of& space:charge& dominated& regime,& that& self:field& of& the& beam& almost& compensates& for&
external&field&within&the&beam.&We&can&put&Ef$≈&0&within&the&beam&and&Ef$=$Eext$+$Eb&outside&the&beam&
&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Ef = {

0,   r ≤ R

mc2

qR
2I

βγ 2Ic
(−

r
R
+
R
r
),    r > R &&.&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&(3.74)&

External focusing field Eext, space charge field Eb, and total field Eext + Eb after 
beam uniforming.

Emittance Growth due to Charge Redistribution (cont.)
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4D                  2D  
Distribution    Projection
                  

KV 0

Water Bag 0.01126

Parabolic 0.02366

Gaussian 0.077

ρo

ρo(1−
r2

R2
)

ρo(1−
r2

R2
)2

ρo exp(−
r2

R2
)

Wi −Wf

Wo

Free energy parameter for different beam distributions

Emittance Growth due to Charge Redistribution (cont.)
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Calculation of “free energy” parameter for Gaussian beam gives:

Wf - Wi
Wo

  = [-ξ + 1
ξ

 (1 -e -2ξ
2
) ]
2
ξdξ

o

ξmax

 - (-ξ + 1
ξ
)
2
 ξdξ

1

ξmax

 ≈ 0.077
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Emittance Growth due to Charge Redistribution (cont.)
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Final emittance growth ratio versus space charge tune 
depression for an initial Gaussian beam. Typical space 
charge tune depression in linacs μ / μο > 0.4.

= μ/μο
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Excitation of Single Particle Space-Charge 
Induced Nonlinear Resonances

Resonance is excited when particle trajectory is perturbed integer number of 
times n per one complete oscillation by a nonlinear field component of the 
order n . The lowest-order resonance is the parametric resonance of a linear 
oscillator (n = 2) described by Mathie equation.
Beam space charge field contains components of the order n = 2, 4, 6,.. Beam 
envelope oscillates with the period of focusing structure and constitute 
periodic perturbation of single-particle trajectory. Resonance condition for 
excitation of single particle nonlinear resonances:

Nonlinear components of oscillating space charge field can excite nonlinear 
resonances. Particle dynamics in focusing channel in presence of oscillation 
nonlinear field is determined by equation

d 2x
dτ 2

+ µ2x +α n (τ )x
n−1 = 0

µ = 360
o

n
, n = 2, 3, 4,..
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Single Particle Nonlinear Resonance of the 4th Order (n = 4) 

Excitation of nonlinear resonance of the 4th order in 
accelerator channel with μs = 93o , μt  = 63o .

Space-charge induces single-particle resonance of the 4th order in channels 
with μ = 360o /4. Because phase advance in presence of space charge forces 
is μ = μs - Δ μ, this resonance of the 4th order can be excited only in channels 
with μs > 90o  and μt  < 90o . Accelerators are typically designed with μs < 90o to 
avoid envelope resonances, and this 4th order resonance is not excited when 
μs < 90o .
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Experimental Observation of Space-Charge Driven Resonance 
of 4th Order in Linac (L. Groening et al, LINAC2010)
Matched beam envelope

Radial electric field

Single-particle trajectory
                   or

Disturbed oscillator with σ⊥ as 
depressed phase advance

Resonance condition:

Phase advance of the matched envelope is 360◦, 
the resonance occurs at σ⊥ = 90◦
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Experimental Observation of Space-Charge Driven 
Resonances (cont.)
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Envelope oscillations of the beam with space charge parameter b=3, amplitude    = 0.2 and 
single particle trajectories with initial conditions (a) xo/Ro=0.8, (b) xo/Ro =1.071, (c) xo/Ro =1.728, 
(d) xo/Ro =1.082.

Halo Development in Particle-Core Interaction
a b

c d

xo
Ro

= 0.8 xo
Ro

= 1.071

xo
Ro

= 1.082xo
Ro

= 1.728

Δ
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Stroboscopic Particle Motion

(u, du / dτ )Stroboscopic particle trajectories at phase plane                   taken 
after each two envelope oscillation periods: (a) xo/Ro=0.8, (b) xo/Ro =1.071, 
(c) xo/Ro=1.728, (d) xo/Ro =1.082.
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I      beam current 
Ic = 4πεomc

3 / q    characteristic beam current 
ε      normalized beam emittance 
β     particles velocity,  
γ      particle energy 
Re   radius of the equilibrium envelope 

d 2r
dτ 2

+ r − 1
(1+ b)r3

−
b

(1+ b)r
= 0

 

Particle – Core Model
Dimensionless             beam envelope (core) equation:

Single particle equation of motion      d2u
dτ 2

+u={
b

(1+b)
u
r2
,  u ≤ r

b
(1+b)u ,    u > r

r = R
Re

b =
2
βγ

I
Ic

Re
2

ε 2Space charge parameter

Small intensity beam b ≈ 0  

High intensity beam b >> 1 
85

u = x
Re
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F =
b

(1+ b)
{

u
r2
,   u ≤ r

1
u
,    u > r

Approximation of Space Charge Field

(1) Field of uniformly charged beam (2)  Field approximation:

 

F =
b

(1+ b)
(− u
r2

+
u3

4
)
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d 2r
dτ 2

+ r − 1
(1+ b)r3

−
b

(1+ b)r
= 0

 

r = 1+ϑ  

1
r
≈ 1−ϑ

 

1
r 3

≈1− 3ϑ
 

d2ϑ
dτ 2

+ 2(
2 + b
1+ b

)ϑ = 0
 

Envelope equation  

For small intensity beam b ≈ 0 

r = 1+ Δ cos 2τ

r = 1+ Δ cos2τ

For high intensity beam b >>1 

Expansions  

Equation for small deviation from equilibrium 

Mismatched Envelope Oscillation

r = 1+ Δ cos(2Ωτ )

2Ω = 2(2 + b
1+ b

)

Envelope oscillation frequency  
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With field approximation, equation of particle motion is 
 

Using expansion 

Equation of particle motion  

Equation corresponds to Hamiltonian 

with the following notations α = b
4 (1 + b) 

Harmonic Oscillator with Parametric 
Excitation for Single Particle Motion 

ϖ 2 =
1

1+ b
h = −2bΔ

1
(1+ Δ cos2Ωτ )2

≈ 1− 2Δ cos2Ωτ

 
H =

!u2

2
+ϖ 2 u

2

2
(1− hcos2Ωτ ) +α u4

4

d2u
dτ 2

+u− ( b1+b)[
u

(1+Δcos2Ωτ )2
−u34 ]=0

d2u
dτ 2

+u( 11+b)(1+2bΔcos2Ωτ )+( b1+b)
u3
4 =0
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{
u = Q cos Ω  τ + P

ϖ
 sin Ω  τ   

  u = - ϖ  Q sin Ω  τ  + P cos  Ω  τ 
or  

Canonical Transformation of Hamiltonian

F2 (u,P,τ ) =
uP

cosΩτ
− ( P

2

2ϖ
+ϖ u2

2
)tgΩτ

Change the variables (u, u) to new variables (Q, P) using a 
generating function 

{ 
Q = ∂F2

∂P
 =  u

cos  Ω  τ
  +  P

ϖ
 tg Ω  τ

u = ∂F2
∂u

 = P
cos  Ω  τ

 -  ϖ  u tg Ω  τ
 Relationships between variables are given by: 
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Averaged Hamiltonian

New Hamiltonian  K = H + ∂F2
∂τ  

After averaging all time-dependent terms over period of 2π/Ω 
 

K =
P2

2
+ϖ 2 Q2

2
−
ϖ 2h
2
(QcosΩτ + P

ϖ
sinΩτ )2 cos2Ωτ + α

4
(QcosΩτ + P

ϖ
sinΩτ )4 − P

2Ω
2ϖ

−
Ωϖ
2
Q2

K = ϖ 2Q2

2
(1− Ω

ϖ
− h
4
)+ P

2

2
(1− Ω

ϖ
+ h
4
)+ 3
32

α (Q2 +
P2

ϖ 2 )
2
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Change variables (Q,P)  to action-angle variables (J, ) using generating function 

F1(Q,ψ ) =
ϖ Q2

2tgψ

Transformation is given by 

New Hamiltonian 

with the following notations 

Second Canonical Transformation

K = υJ +κ J 2 + 2χJ cos2ψ

{
Q =

2J
ϖ
sinψ

P = 2Jϖ cosψ

υ =ϖ −Ω =
2 − 2 + b
2(1+ b)

χ = −
1
4

bΔ
1+ b

κ =
3
32
b
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Nonlinear Parametric Resonance

K = υJ +κ J 2 + 2χJ cos2ψHamiltonian of averaged motion:

Jmax =
(−υ + 2χ)+ 8 υχ

2κ

xmax
Re

= 32
3

1+ b
2
−1+ b Δ

2
+ 2b Δ ( 1+ b

2
−1)

b

Maximum deviation of particle from the 
axis xmax

Re

= 2Jmax
ϖ
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Nonlinear Parametric Resonance
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Comparison of Analytical and Numerical Results

xmax
Ro
2

= A + B ln(µ)
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LANL Beam Halo Experiment (2002)

RFQ-
6.7 MeV

52 quadrupole FODO lattice
Beam-profile diagnostics in red

Matching/mismatching
 quads Q1 to Q4 Emittances obtained 

from measured profiles 
at  Q20 and Q45
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LANL Beam Halo Experiment Lattice
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Wire and Scraper Beam-Profile Diagnostic to 
Measure  Beam Profile

• 33-micron carbon wire (too thin 
to be visible in picture) measures 
density in beam core above 10-3 
level.

• Proton range=300 microns so 
protons pass through wire and 
make secondary electrons to 
measure high density in beam 
core. 

 
• Pair of 1.5mm graphite scraper 

plates in which protons stop. Can 
measure proton density outside 
beam core from 10-3 to 10-5.

• Data from wire and scraper 
plates were combined to produce

    a single distribution.

97Y. Batygin - USPAS 2024



Typical matched beam profile for 75 mA. (µ=1,matched) 
 Shows Gaussian-like core plus low-density halo input beam, observed 

out to 9 rms. 

Linear Plot Semilog Plot

Measured Beam Profile
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RMS EMITTANCE GROWTH AT SCANNER #20 - 75 mA - BREATHING 
MODE
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Measurements

Beam Emittance Growth
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Test of Particle-Core Model
Measurements at Different Fractional Intensity 

Levels  (10%, 1%, 0.1%) 
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Comparison of Measured Beam Widths With Maximum Amplitude 
From Particle-Core Model 

 Scanner 20 - 75 mA - Breathing Mode 

10% Level 

1.0% Level 

0.1% Level  

Max Resonant 
Amplitude Particle-
Core Model 
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Instability of Anisotropic KV Beam

Beam cross sections for second, third and fourth order even and odd 
modes ~schematic, with x horizontal and y vertical coordinates.

KV Beam with unequal emittances in a 
focusing channel with different focusing 
strength in x- and y- directions

Ratio of beam emittances:

101(I.Hofmann, 1998)
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Instability of Anisotropic KV Beam (cont.)

Perturbed distribution function

Vlasov’s equation for perturbed beam distribution function 

Poisson’s equation for perturbed electrostatic potential created by 
perturbed space charge density 
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Instability of Anisotropic KV Beam

Stability chart for εz/εx=0.5.                                  Stability chart for εz/εx=1.2.

Stability charts derived for KV beam with different transverse emittances in focusing 
channels with different focusing strengths in two transverse directions. Charts are 
applied to motion in RF field assuming one direction (x-) in transverse and another (z-) 
is longitudinal. 
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Instability of Anisotropic KV Beam

Stability chart for εz/εx=2.0.                                  Stability chart for εz/εx=3.0.
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Instability of Anisotropic KV Beam

Stability chart for εz/εx=2.0.                         Rms emittance evolution for SPL lattice.

Rms emittance evolution

Case 1

Case 2
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Experimental Verification of Stability Charts
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(C.Plostinar et al, IPAC2013)

Single-particle parametric resonances:
 kz / kx = 2/3, 1, 2.
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