

Energy Recovery Linacs

Isurumali Neththikumara , Alex Bogacz, Geoff Krafft, Subashini De Silva Jefferson Lab and Old Dominion University

Operated by JSA for the U.S. Department of Energy

TA: Cannon Coats, Texas A&M

Thomas Jefferson National Accelerator Facility

Accelerator Physics

USPAS, Knoxville, TN, Jan. 27 - Feb. 7, 2025

Introductions and Outline

- Principle of Energy Recovery Linacs
- Historical overview
 - First ideas and tests
 - Projects and facilities worldwide and progress on ERLs
- Applications on ERLs
 - Colliders
 - Light sources
 - Electron Cooling of Ions
- Challenges
 - ERL Demos & Roadmap
 - Transverse/Longitudinal Optics
 - Multi-pass ERL topologies
 - Beam Breakup Instability
- Summary and Outlook

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Accelerator Physics

Accelerating Cavity

 \rightarrow Energy Storage in the beam (loss free)

→ Energy Recovery = **Deceleration**

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Mechanical Example:

- ERLs widen the applications of accelerators as:
- Provide (nearly) linac quality/brightness beam at (nearly) storage ring beam powers:
 - P_{beam} >> P_{RF}
 - beam quality source limited emittance: e_{beam} < e_{ring equilibrium}
- Radiation control as the beam dumps at low energy: (E_{max}/E_{inj})
 - can mitigate intractable (i.e. expensive) environmental/safety concerns
- High power beam with reduced RF drive ⇒ allows us to consider higher power applications than would otherwise be unaffordable = GW class beams
- ERLs apply wherever one needs a beam with simultaneous Superb Quality (small emittance, short bunches) and High Average Power

• Schematics of an ERL based light source:

For electrons to decelerate on second pass in the linac and deposit their energy back in to RF system:

$$\Delta L = \frac{1}{2} \lambda_{RF}$$

Storage Rings vs Linacs

- Beam parameters determined by equilibrium
- Many user stations
- · Limited flexibility due to recirculation
- High average beam current and power ('A', and multi GeV)
- Typically long bunches (20 ps 200 ps)

- Beam parameters depends on the source
- Lower number of user stations
- Higher flexibility due to single pass
- Shorter bunches
- Limited average beam current and power (<<mA)

Thomas Jefferson National Accelerator Facility

Jefferson Lab

USPAS, Knoxville, TN, Jan. 27 - Feb. 7, 2025 8

Storage Rings vs Linacs

Historical Overview of ERLs

 Maury Tigner, proposed a possibility of energy recovery in 1965, as a result of developing e⁺/e⁻ collider

A Possible Apparatus for Electron Clashing-Beam Experiments (*).

M. TIGNER

Laboratory of Nuclear Studies, Cornell University - Ithaca, N.Y.

(ricevuto il 2 Febbraio 1965)

Thomas Jefferson National Accelerator Facility

Maury Tigner

Operated by JSA for the U.S. Department of Energy

Historical Overview of ERLs

• First Test: The Chalk River Nuclear Laboratory: Two-pass reflexotron

Figure 1. The 25 MeV electron accelerator attached to its strongback.

mgri i

Thomas Jefferson National Accelerator Facility

First Demonstration:

• Stanford SCA/FEL, 07/1987 (sc-FEL driver)

- first demonstrated at SCA/FEL in 1986, with 5 MeV injected beam into a ~50 MeV linac
- Recirculation loop with path-length varying capability to demonstrate acceleration/deceleration of e⁻ in the second pass

Same cell Energy Recovery

Historical Overview of ERLs

Jefferson Lab FEL:

Neil, G. R., et. al, Physical Review Letters, 84, 622 (2000)

- IR demo: 5 mA, 41 MeV, exceeded the beam power x 10
- UV upgrade: 9 mA, 150 MeV, 10 kW: highest current that has been recirculated in an SRF ERL
 - kept same ERL efficiency
 - only about 300 kW of installed RF, thus demonstrating the most basic reason for building an ERL.

Thomas Jefferson National Accelerator Facility

ERL as a Next Generation Light Source:

• combines the features in linacs and storage rings

Advantages of ERL based light sources:

- Possibility of high operating beam power: 100mA @ many GeV possible
- Always "fresh" electrons (dumps energy recovered beam)
 - small emittance (~ 0.1 mm-rad norm. = 10 pm-rad at 6GeV)
 - high brilliance (x 100 1000 compared to storage rings)
 - short pulses (ps down to 10 100 fs)
- Not limited by Touschek intrateam scattering
- Flexible choice of polarization
- 100% coherence up to hard X-rays
- Real multi-user operation at many beam lines
- Tailored optics at each insertion device
- Flexible modes of operation (high brilliance, short pulse, different pulse patterns) adaptable to user requirements

Thomas Jefferson National Accelerator Facility

Electron Cooler for Ion Beams:

'Electrostatic', e.g. Van-de-Graaff, Peletron, ...

e.g. FermiLab recycler ring (Tevatron)

anti protons:E = 9 GeV $\rightarrow \beta = 0.994$ electrons:E = 4.9 MeV $\rightarrow U_{\text{Cooler}} = 4.39 \text{ MV}$ I = 0.5A (DC) $\rightarrow P = 2.2 \text{ MW}$

Applications of ERLs

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Applications of ERLs

Electron Cooler for Ion Beams: Strong Hadron Cooler for EIC

- 100 mA beam current with 1 nC bunch charge → High current
- Top energies:
 - Mode A: 150 MeV
 To cool 275 GeV hadron beam
 - Mode B: 55 MeV
 - To cool 100 GeV hadron beam
- RMS bunch lengths 9 mm & 7 mm
- Normalized emittance 2.8 mm-mrad

ERL Configurations

Two main ERL Configurations:

Recirculating linac with a single linac

Recirculating linac with two linacs (Race track)

- Accelerate beams into higher energy with "N" recirculation, energy recovery is feasible in the "N" passes
- Multiple linac passes increase the maximum beam energy
- Return arc share accelerating and decelerating beams, with nearly the same energy
- Required phase-shift/path-length change is achieved by a chicane or adjusting arc path length

Thomas Jefferson National Accelerator Facility

CEBAF-ER: 1up-1down ERL demo

- A successful energy recovery demonstration on CEBAF accelerator at Jefferson Lab in 2003
- 1-acceleration pass, 1-energy recovery pass, with maximum energy reach of 1055 MeV
- 55 MeV electron beam was injected into North and south Linacs, phase delay chicane provided 0.5 λ_{RF} , path length and decelerated in the next pass.
- Dumped energy recovered beam at ~ 55 MeV at the beam dump

Cbeta: Cornell-BNL ERL Test Accelerator

Successfully demonstrated multi-turn energy recovery in SRF cavities.

- Multiple energy beam transportation in arcs relies on FFAG (Fixed Field Alternating Gradient) Magnets
- Used DC photoinjector@ 300 kV; 4-accelerating & 4- decelerating passes
- Highest beam energy is 150 MeV (42, 78, 114, 150 MeV)
- MLC is custom designed for ERL applications
- Source Beam Main linac cryomodule Same cavity energy recovery stop Injector cryomodule Diagnostic Splitter B line Splitter A Arc B Transition E Straight Transition Jefferson Lab

Cbeta: Cornell-BNL ERL Test Accelerator

• Measured orbits within FFAG arcs

• More details: <u>Cebeta Article</u>

Thomas Jefferson National Accelerator Facility

ER@CEBAF: 5-pass, multi GeV ERL demo at CEBAF

- ER@CEBAF was a proposal on demonstrating energy recovery at CEBAF with 5accelerating and 5-decelerating passes
- 700-750 MeV energy gain per linac, to minimize Incoherent Synchrotron Radiation (ISR) losses & increase arc momentum acceptance
- Two new segments required:
 - Path length chicane
 - Low energy beam dump

ER@CEBAF: Multipass, multi GeV range ERL

Jefferson Lab

ER@CEBAF: Multipass, multi GeV range ERL

Beam recirculation within arcs require mirror-symmetric optics for two linacs

• Linac optics optimization used MOGA approach

Quadrupole Gradient:

$$G = \frac{dB}{dL} = \frac{k_1 pc}{e} \propto p$$

ER@CEBAF: Multipass, multi GeV range ERL

• The 10 pass ER@CEBAF beamline was created combining all the linac and arc lattice segments. $\beta(s)$ and D(s) are plotted

Jefferson Lab

ERL Roadmap

Thomas Jefferson National Accelerator Facility

- High Brightness Electron injectors:
 - As in linacs, electron source determines the important beam parameters (bunch charge, emittances, temporal structure)
 - Uses DC thermionic guns to state-of-art SRF photocathode guns
 - Buncher and booster: Chop the continuous beam and to compress the bunch to the desired length
 - Merger: transports the high current bunch exiting the injector to the recirculation line
- SRF cryomodules:
 - Field emission, multipacting. HOM damping
- Beam control and diagnostics:
 - Several R&D work is going on as new challenges arise different ERL designs

RLA Topologies

'Racetrack' vs 'Dogbone' RLA Topologies

Twice the acceleration efficiency – traversing the linac in both directions while accelerating

'Dogbone' vs 'Racetrack' RLA- Arc length

Net arc-length break even: if $\alpha = \pi/4$

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

USPAS, Knoxville, TN, Jan. 27 - Feb. 7, 2025 31

Net arc-length break even: if $\alpha = \pi/4$

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

USPAS, Knoxville, TN, Jan. 27 - Feb. 7, 2025 32

'Dogbone' ERL with Twin-axis cavities

Elliptical Twin Axis Cavity capable of accelerating, or decelerating beams in **two separate beam pipes**

Double-aperture quad - single layer coil design (CERN)

'Dogbone' ERL with Twin-axis cavities

Elliptical Twin Axis Cavity capable of accelerating, or decelerating beams in **two separate beam pipes**

Double-aperture quad - single layer coil design (CERN)

Bi-sected Linac Optics

Operated by JSA for the U.S. Department of Energy

Multipass Linac Optics

Thomas Jefferson National Accelerator Facility

Multipass Linac Optics

Thomas Jefferson National Accelerator Facility

Arc 1 & 3 Optics

Operated by JSA for the U.S. Department of Energy

USPAS, Knoxville, TN, Jan. 27 - Feb. 7, 2025 38

Arc 1 & 3 Configuration

Regenerative transverse BBU (single cavity, single turn, one mode):

- Bunch passes through cavity 'off axis' during accelerating passage → Induce HOM voltage & transverse kick due to Higher Order Modes (HOM)
- After recirculation kick transforms to an offset & HOM damp according to its Q
- Bunch passes through cavity with varies offset on decelerating passage → induce HOM voltage & transverse kick due to HOM
- BBU threshold: HOM excitation exceeds HOM damping \rightarrow kick strength growth \rightarrow beam loss

beam induced change of cavity energy:

$$\Delta U_1 = -q_b \frac{V_a}{\alpha} \cos(\varphi) \left(x_1 \cos(\alpha) + y_1 \sin(\alpha) \right)$$
$$\Delta U_2 = -q_b \frac{V_a}{\alpha} \cos(\varphi + \omega_\lambda T_{rec}) \left(x_2 \cos(\alpha) + y_2 \sin(\alpha) \right)$$

bunch offset at 2nd passage: $x_2 = m_{11}x_1 + m_{12}x_1' + m_{13}y_1 + m_{14}y_1' - \frac{qV_a}{\omega_\lambda a p}\sin(\varphi)(m_{12}\cos(\alpha) + m_{34}\sin(\alpha))$

ohmic losses \rightarrow damping of HOM: $P_c = \frac{V_a^2}{(\omega_\lambda / c)^2 a^2 (R/Q)_\lambda Q_\lambda}$

balanced HOM: $\left< \Delta U_1 + \Delta U_2 \right>_{\varphi} \cdot f_b = P_c$

→ threshold current: $I_{th} = -\frac{2pc^2}{e\omega_\lambda \left(\frac{R}{Q}\right)_\lambda Q_\lambda m^* \sin(\omega_\lambda T_{rec})} \qquad valid for:$ $- m^* \sin(\omega_\lambda T_{rec}) < 0$ $- ω_\lambda \neq n^* \omega_{rf}$ $m^* = m_{12} \cos^2(\alpha) + (m_{14} + m_{32}) \sin(\alpha) \cos(\alpha) + m_{34} \sin^2(\alpha)$

Countermeasures:

$$I_{th} = -\frac{2pc^2}{e\omega_{\lambda} \left(\frac{R}{Q}\right)_{\lambda} Q_{\lambda} m^* \sin(\omega_{\lambda} T_{rec})}$$

1. cavity design:

- HOMs: small R/Q, varying ω_{λ} at fixed $\omega_0 \rightarrow$ multi cavity BBU thresholds increase
- no HOM on a fundamental's harmonics: $\omega_{\lambda} \neq n^* \omega_{rf}$
- low Q for HOM \rightarrow HOM dampers (ferrites, waveguides, ...)

2. recirculator beam optics:

- for $\alpha = 0$ & uncoupled beam transport $\rightarrow m^* = m_{12} = (\beta_1 \beta_2)^{1/2} \sin(\Delta \phi_x)$ \rightarrow stable for $\Delta \phi = n\pi$
- adjust $sin(\omega_{\lambda} T_{rec}) = 0$ for the worst HOM

large path length change ightarrow inpractical

Thomas Jefferson National Accelerator Facility

Countermeasures:

$$I_{th} = -\frac{2pc^2}{e\omega_{\lambda} \left(\frac{R}{Q}\right)_{\lambda} Q_{\lambda} m^* \sin(\omega_{\lambda} T_{rec})}$$

- 2. recirculator beam optics (continued):
 - coupled beam transport: switching of planes $M=((M_x,0),(0,M_y)) \rightarrow M=((0,M_{yx},0),(0,M_{xy}))$ $m_{12}=0 \rightarrow$ horizontal HOM kick transforms to vertical offset \rightarrow HOM not further excited by the oscillatory part of x_2
 - \rightarrow two options: solenoid (low energy), rotator

Thomas Jefferson National Accelerator Facility

JLAB IR/UV FEL

Nonlinear Beam Optics

RF curvature: $E(t)=E_0 \cos(\omega t + \phi_0)$.

 $\Delta z mm$

Nonlinear Beam Optics

- RF curvature: $E(t)=E_0 \cos(\omega t + \phi_0)$
- aberrations: geometric & chromatic

caused and counteracted by nonlinear fields \rightarrow multipole magnets

Example: bunch compression

$$\begin{split} \mathsf{E}(\mathsf{s}_{\mathsf{i}}) &= \mathsf{E}_{0} \cos(\mathsf{s} \ 2\pi/\lambda - \varphi_{0}) \rightarrow \delta_{\mathsf{i}} = \mathsf{E}(\mathsf{s}_{\mathsf{i}})/\mathsf{E}_{0} \cos(-\varphi_{0}) \\ \Delta \mathsf{L}_{\mathsf{i}} &= \mathsf{R}_{56} \delta_{\mathsf{i}} + \mathsf{T}_{566} \delta_{\mathsf{i}}^{2} + \mathsf{U}_{5666} \delta_{\mathsf{i}}^{3} + \dots \end{split}$$

bERLinPro recirculator test: bunch compression with varying initial bunch length; linac phase, sextupole and octupole magnets optimized

PERLE (500 MeV) - Baseline Layout

Footprint: $29 \text{ m} \times 5.5 \text{ m} \times 0.9 \text{ m}$

Injection energy	MeV	7.0
Top energy	${ m MeV}$	500.0
Beam current	${ m mA}$	20.0
Bunch population	$10^{9}e^{-}$	3.1
Bunch charge	pC	500
Bunch spacing	\mathbf{ns}	25
Normalised emittance	mm.mrad	6.0
RMS bunch length	$\mathbf{m}\mathbf{m}$	3.0
Longitudinal emittance	$\rm keV.mm$	25.0
RF frequency	MHz	801.6

PERLE (500 MeV) - Baseline Layout

Footprint: $29 \text{ m} \times 5.5 \text{ m} \times 0.9 \text{ m}$

Thomas Jefferson National Accelerator Facility

pС

ns

mm.mrad

 $\mathbf{m}\mathbf{m}$

keV.mm

MHz

500

25

6.0

3.0

25.0

801.6

Bunch charge

Bunch spacing

RF frequency

Normalised emittance

Longitudinal emittance

RMS bunch length

Operated by JSA for the U.S. Department of Energy

USPAS, Knoxville, TN, Jan. 27 - Feb. 7, 2025 48

Summary & Ouutlook

- High energy (tens of GeV), high current (tens of mA) beams: (sub GW beam power) would require GW-class RF systems (klystrons) in conventional linacs.
- Invoking Energy Recovery alleviates extreme RF power demand (reduced by factor of: 1 - h_{ERL}). Required RF power becomes nearly independent of beam current.
- ERLs promise efficiencies of storage rings, while maintaining beam quality of linacs: superior emittance and energy spread and short bunches (sub-pico sec.)
- The next generation of high energy, high current, recirculating linear accelerators (RLAs) will rely on the energy recovery (ER) process to mitigate their extreme power demand.
- Maximizing number of passes is the key to a cost effective ERL scheme. However need to overcome multiple challenges in doing so
- Wide range of applications: Light Sources/FELs, Colliders, Ion 'Coolers', Isotope production...

