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Transition Energy

Angular Revolution frequency:

Define phase slip factor:

1 1 1

Ttr = — — Qp = —5 — —5~.
2 I 2 2

f}’ ﬁ]’ ﬁftr

at Ny =0, 1.e. when v =y, =

dp va,
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Transition Energy

dw dr dBs  dL dp

— == — - = Ntr —-

e Below transition energy, the change in frequency is

dp

dominated by the — term.
5
e The particles sort of behave more nonrelativistically.

e As energy increases past transition, velocities approach speed of light, so

that the T dominates.

e The particles sort of behave more ultrarelativistically.
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Accelerating Voltage

Voltage in the cavity as function of time:
Vie(t) = Vsin(wst 4+ ¢ ).

To understand stability, let us assume for the present that

2T Bc
Wrt = Wrev — .
L
(It makes the pictures easier.)
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Phase Stability (below transition)

Vie

e —
/ \ :+|d'r| /
;

s \ / ¢:,,-,+2n \ // W ONY)

- — — — =

1 1
Below transition energy v < Yir - e =5 — =5 > 0
/ ftr
_ _ dt dp
e Increasing energy — takes less time per turn: — = =Ny —.
T !

e Note: plot shows energy gain for synchronous particle on each turn.
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\ T+HdT]| / \ ’
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T : |
| / [ :
: T|dT| / ¢
| |
| l /
: =,.¢l
0, O 42T M
o 1 1
Above transition energy Y > Yir Nr=—7— 7 < 0.
Y Ttr
: : dt d
e Increasing energy — takes more time per turn: — = Nty —
T
E— gefgzon Lab s Thomas Jefferson National Accelerator Facility
Lecture 3 - Synchroton Motion USPAS, Knoxville, TN, Jan. 27 - Feb. 7, 2025 6

Operated by JSA for the U.S. Department of Energy



Standing Waves

A standing wave in a cavity can be considered as the superposition of traveling
waves in opposite directions:

v

Bl sin(kz + wyst) — Bl sin(kz — wyt) = [sin(kz) cos(wyet) + cos(kz) sin(w,¢t)]

o] = o] =

sin(kz) cos(wyt) — cos(kz) sin(wyet)]

= Veos(kz) sin(wyt).
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Longitudinal Motion - Assumptions

To quantify this a bit further, let’s make a few simplifying assumptions:

1) There is only one accelerating gap of length g, located at s = 0.

2) The accelerating gap is much shorter than the distance traveled by the beam
during one rf period, i. e., g < BA+.

3) The rf angular frequency is an integer multiple of the angular revolution
frequency, wg. i. e., wrf = hwg for some integer, h,
called the harmonic number.

4) The synchronous particle crosses the gap at time ¢t = 0, when the rf phase
is ¢4, and the voltage across the gap is V sin ¢s.

. - 2w e -
5) As energy increases the revolution frequency w, = =F— increases,

so we must increase the rf frequency as the energy is ramped.
e This requires feedback on wyt to keep L constant as B is ramped.

e Exception: when 3 ~ 1, such as high energy e® rings.
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Energy Gain (nonsynchronous particle)

The energy gained by the synchronous particle per revolution is
AU, = qV sin ¢,

and the effective electric field may be written as

E(s,t) = §E(s,t) = §V sin(wyt + &) Z O(s —nlL),

n=—od
1 [~
where L is the circumference 8z —a) = — f el ol gp .
21 J_
: . V | - 2mns
Fourier series: E(s, t) = — sin(wyit + o) E COS
L L
n——o<
oo
V _ n .-
= — E sin |ws | ht — —s | + ¢4
L v
n—=—0o0
. s . . st
where the synchronous particle’s velocity is v = -
m
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Energy Gain (nonsynchronous particle)

E(s, t) = % i sin [ws (ht - ES) + @S] :

v
n—=—o0

The time that the synchronous particle passes a point s may be written

and the time for a generic particle
t =t, + Ot

where the generic particle lags behind the synchronous particle by ot.
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Energy Gain (nonsynchronous particle)

o0

E(s.t) = ‘g Z sin [ws (ht - ES) + ci)s] :

SR

t=1t,1 0t tg

.

The longitudinal (energy /momentum) oscillations will typically much slower
than the revolution period.

So we can average over one revolution period:

v
(E(dt)) = 7 sin(wy Ot + o)

for the effective field seen by the generic particle with lag ot.
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Longitudinal Motion — Energy Gain

A generic particle will then gain

AU = ¢V sin(wydt + ¢s)

per turn which agrees with

AU; = qV sin ¢
for ot = 0.
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Perturbative Approach

Define generic values (d) relative to synchronoous values (subscript “s”):

total energy U = U, + oU.
momentum p = pg + Op.
angular frequency w = ws + dw.
revolution period 7 = 7,4+ 0T, with sign(dw) = —sign(47).

relative phase ¢ =00 = ¢ — 0.

Again, the rf frequency is wys = hw,.

Energy gains per turn

oU = qVsingp = Vsin(ops + @),
oUs = qV sin ¢s.

E— .geffergon Lab s Thomas Jefferson National Accelerator Facility
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Constructing a Difference Equation

STATL

Energy difference (generic — synchrounous) at beginning of n'" turn:
(0U),, =U — Us,.
At beginning of the n + 1" turn:
(0U )1 = (U + AU) — (Us + AUy).
Relative change in energy per turn:
A(0U) = AU — AU, = gV (sin ¢ — sin ¢).
Turn it into a differential equation (divide by 74):

d(oU A(OU v
(oU) ~ (0U) — Q_ws(sian} — sin ¢).
dt Ts 2’}T

E— ,geff/e:Zon Lab s Thomas Jefferson National Accelerator Facility
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Energy Difference Equation

Define the energy variable:

oU U—-U
W=——=— °
Wrf Wrf
dW V
= qz—ﬂ(sin Os — SIin o).

Want to change the canonical variables:

(5t, —0U) — (w0, W),

e Note that this preserves the phase-space areas.
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Phase Difference Equation

dc
A¢E£TS — oy O (1)
After one revolution the difference in arrival times (gen — sync)
d
AWt =7 — 7y = 07 = —npp7 L, (2)
p
since
dr dp
— =
- _
Combining (1) and (2) from previous page:
dy Ay ‘ d.
dt Ts Ts Ts P

U? =p?c? +m?ct = 2U AU = 2pc® Ap
Ap AU AU U? 1 AU

P _pzc2 o U p202 o 52 [y

1 '
= o (—wnW).
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Longitudinal Oscillation Equation

d_‘ro v w7

it B2, .

dQ_a,o B _wrz,f-mr dW
az | BrU, dt
wine qV
320, 27h

(sin ¢4 — sin ¢).

Equation of longitudinal phase oscillation relative to synchronous particle:

— hw?neeqV | .
D+ 2;32{1 (sin ¢s — sin @) = 0.

e However, if the energy steps from the cavity are large enough, then we
should consider using difference equations rather than the approximation of
the differential equations. (See further on.)

E— ,geff/e:Zon Lab s Thomas Jefferson National Accelerator Facility
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Small Oscillations

For small amplitudes: sin ¢ = sin(¢s + @) =~ @ cos ¢g + sin Ps.
hw?ni.qV hw? i cos o gV
0=p+ —2 sin g —sin ) ~ @ + £ '”
or R, SO p) =

2732y me2 ) T

Define the angular synchrotron oscillation frequency

hngr cos o gV

O, = wq .

) 2732y mc?
(), hner cos os gV

Synchrotron tune: Qs = — = — 5 -
Wi 2wBey  mc

e For oscillations motion about the synchronous phase
Mer COS O Must remain positive (or at least have the same sign as ¢V').

e Since 1, flips sign when the beam accelerates through transition,
the synchrounous phase must shift to maintain stability (e. g. ¢ — ™ — @5).

E— gefgzon Lab s Thomas Jefferson National Accelerator Facility
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Example

Qs and 1, vs v for RHIC with YTAu™™ beam; V¢ = 600 kV.

0.009 . . |
0.008 %s((“:’ ¢s)¢) —
O T=0g) —

0.007 - N, —— -
0.006 ) -
0,005 b, = 15.0 |
0.004 Yy = 228 -
0,003 qV = 47.4 MeV

U me” = 183 GeV
0.002 h= 360 T
0.001 -

0 —
_0.001 ] | |
10 15 20 25 30

e Notice how the synchrotron frequency drops to zero at transition.

e Longitudinal phase-space becomes almost frozen around transition.
e fiov =~ 78 kHz. Cavity filling is a few microseconds.
e Can shift ¢, in a few turns.
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Large Amplitude Oscillations

2

D Z__[sin(¢ he) — sin o = 0.
Pt o g (e + &) —sing)

e Mechanical analog: the biased pendulum.
e Weight M swings from pivoting cylinder.
e String wrapped around cylinder holds m.

- g ( o -ma.)
Z|smmo— = 0.
O \Pme = g
L ma
S111 = -_-_—,
IS VTA
Q2 g
cosps |

e o . 4 [Mma
e Equilibrium for ¢ = ¢, =sin~* ( ) :
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Large Amplitude Oscillations

.2 .
II S, s I II M I II g — 0. Of : h " — ) .
¢+ —y (sin ¢ — sin @) (Of course © = ¢.)
d(¢?) - do
Notice that - = 20 —. S
otice tha o o 0O
o) _ 208 Sy
d (@ ) = —(—singdo) + 20 tan ¢ do,
COS g

which after integration becomes

1 . 2(cos ¢ — cos op) - | 1 .
—¢ ==+ ————— +2(¢ — o) tan g5 + =505 .
g COS Qg $ bo) o Qﬁ'o'
where ¢ is the phase at t = 0.
E— .geffergon Lab s Thomas Jefferson National Accelerator Facility ——————
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Large Amplitude Oscillations

STATL

1 . 2(cos ® — cos ¢
: i\/ (cos ¢ — cos o)

o .1 | :
Q—s@: COS Qg +2(®_®0)t&n¢8+@@%’ ¢0=0=¢o
|
1
rjs :0 A G}
(¢,0) = (0,0)
® . ® > @
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sl

Large Amplitude Oscillations

STATL

f ] [ 1 ] ! :
+2(¢ = o) tan g5 + 5505, do =0 = o

Cos Qg s

1 . 2(cos ® — cos ¢
: i\/ (cos ¢ — cos o)

i - - i
-7 @S Ol m

__E}__

: . . N . ,}T
e Notice that the stable region shrinks to zero as ¢4 increases to 5

. | 0
For stability we must have |¢g| < 5

E— geff;Zon Lab s Thomas Jefferson National Accelerator Facility
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Large Amplitude Oscillations

e A second unstable fixed point (¢2,0) may be obtained from

1. 2(cos g — cos ¢y ) | | |
— 2 =& ———————— +2(¢2 — ¢1) tan ¢ + 507 .
Qg \/ COS Qg ( o) e 02 !
A (?_E—lj
— i @ @ . i > D
™ P2 Ps P T
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Large Amplitude Oscillations

Squaring gives and setting @1 = @2 =0,

2(cos g — cos ¢1)

0= ,.
COS Qg

+ 2(@2 - @1) tan @sa

and with ¢1 = ™ — ¢4, we find the transcendental equation:

2
( 02) = U =cos ®2 - cos C-DS + (@2 -+ @s - ﬂ-) S11) (;DS‘,'

Qs
It can be solved numerically. 2 '
In this example: br . N i
o0 —— — ¢—
@S — 300:| % L / ufp {¢'2~0) ufp (q?]-.oz
@1 — @83 i oL /// i
f /
(Do =~ —36.7°. N
_J f —
—4 | | | | | | ]
-3 -2 -1 0 o 1 2 3
¢
E— .geffer§on Lab s Thomas Jefferson National Accelerator Facility ——————
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Stationary buckets

o @520

1/Q, do/dt

e Scparatrix in red.

e LElliptical flow inside separatrix.

e Particles outside not contianed.

Accelerating buckets
o o, = 30°.
e Scparatrix in red.

e Elliptical flow inside separatrix.

e Particles outside not contained.
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0.2 | | 0.3 .
0.15 0.25 '_: s
0.1 0.2 :
— 005 — 015 —
3 0 3 01 |
005 Z 005
-0.1 ot
-0.15 ~0.05
-0.2 ' ' ' ' ' ' ' ~0.1
-300 -200 -100 O 100 200 300
& [degrees]
dw ¢V .. _ |
T = oo 5N @s —sin(p + o)),
d_(To — _wr_?f??tr I’V
dt 32U,

Integrated as difference equations:

Wie =W, + g—ﬂ[sin s — sin(ip; + s,

2
We Tl
rf'/tr
pil] = i — —o—— Wiy,
i+ ¥ 52 Us J+
E— .gefferfon Lab s Thomas Jefferson National Accelerator Facility ——————
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Wrong way to integrate

When we write simulation codes to integrate

do dW |
- = = alWV, and — = — B,
where a and /3 are constants. Making a 2”4 order differential equation:
d? o
F + Ocd CD = 0

we know that the solution is simple harmonic motion.
For numerical integration we might try the difference equations:

d)n—i—l — (,fjn + @I’{’rn Atﬁ
W1 =W, — Bo, At.
What'’s wrong with this?

E— ,geff/e:Zon Lab s Thomas Jefferson National Accelerator Facility ——————
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Large Amplitude Oscillations

It becomes obvious when we write the difference equations in matrix form:

O _ 1 aAt On — M On
W —sar 1 ) \w, w,

aAr=01 7 200 steps

We find B At=0.05
M| = 1+ ap(At)* £ 1. e
S
4 Hi— o
e [nstead of an ellipse in the (¢, W)-plane, "’-., _..,}
we get a spiral. e b e
e If o > 0, it spirals outward.

e if a3 < 0, it spirals inward to a point.

e In the limit of At — 0, we should get the correct answer.
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Better way: Leapfrog Integration

STATL

e Stagger the integration steps:
Pr — P11 —7  Pagl
W, — Wy — W

This is actually more like what we expect for a ring with a single cavity:
1. Go around the ring from downstream of cavity to upstream.
2. Then go through the cavity.

Puri ) _ L 0\ (1 aAt) (o,_1
Woe1 ) \—pBAt 1 0 1 W,
B 1 aAt Op_1\ ¢, _ 1
o (SAt 1 — @3 Atz) ( I"{frfn,g ) N M ( I’I’frﬂg ) j

E— .!Eff/Q’ZOH Lab s Thomas Jefferson National Accelerator Facility
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Hamiltonian Formalism

Simple method to concoct a Hamiltonian: Work backwards from equations of
motion.

AW  9H  qV
dt 8(,-9 " 2rh
dy OH  winy
dt 9w B2,

——[sin ¢5 — sin(os + )],

W.

An obvious solution to this pair of equations is

1 . V
W f77t II}Q _l_ q_

H =
2 32U 2mh

(psin s + cos(o + ¢s)].

For small amplitudes this becomes

1 V
Wlf?’?tr St g2 q COZ Os (,9 -+ constant,

H ~
2 32U, A7

which is just the Hamiltonian for a harmonic oscillator.
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Adiabatic Invariant

In the adiabatic approximation, the Poincaré-Cartan invariant gives:

d¢
I — jﬁ pdq = j{ W — j{ If’[’d—@ dt.

where the integral ¢ is over one cycle of the synchrotron oscillations.

d(?‘Q fntl II?

Recalling that — this becomes

dt 52U
Wenuws [
B<~yme
E— .!Eff/Q’ZOH Lab s Thomas Jefferson National Accelerator Facility ——————
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Invariant for Small Oscillations

Small amplitude oscillations:

©(t) = @ sin(Qst + o),
W(t) = W,, cos(Qst + 10).

with , ,
T O, B°U, _ W B=U.

Vin = ——— Pm., since V==
WrtTltr Wit Tltr

The invariant may now be written as

B hzwgmrj{ .,BQUS

T ol I B o
JTL — |,82U3 h2w§ntr @m“’l m COS (Qst + /L/{]) QS dt = ﬂ-tpmll .

We may also write this as

2,
T o
IL — {—ZI"{’,m.
0,320,
Squaring [; gives
L 22
Wt qV cos ¢s 37U 72
m ¢ 2 L:
273 hew S 1y
E— .!Eff/Q’ZOH Lab s Thomas Jefferson National Accelerator Facility ——————
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Stationary Bucket — Separatrix

Recalling

1 . 2(cos d — cos @ | | | 1 .
Oi\/ ( ' '0)+2(¢9_¢90)taﬂ@s+—‘@%a

9 COS (g 02

and with ¢s = 0 for an unaccelerated synchronous particle, we obtain
1. . . L do
Q_s O = :t\/ 2(cos ¢ — cos ¢y, ), o d

QN S

: T

where I have taken ¢ =0 at t = 0. '
For ¢,, =, /
\\R _

1. , ' | ¢
—@:i\/Q(CZOS@+1):2CZOSE. TN
Q. | 2 |
Small amplitudes: |
_q)m
h Dty V
QS = Wg |;?t1 | q .
2732~y mc?
E— gefgzon Lab s Thomas Jefferson National Accelerator Facility ——————
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Stationary Bucket Area

Reintroduce the canonical variable W:

L do QTTC\/ 2mh3 1, W

O, dt L U,qV cos ¢y

Equation of separatrix:

W =+ L \/ VU S 9

we \l 2mh3 | 1| €7

Area of stationary bucket:

Apk = 2 / Wido = oL

g e

qV U;
27h3 |

Phase oscillation equation becomes:

A N £ ) m.
W =+ o \/C:082 2 _ cos?2 v .
3 2 2

— geff;Zon Lab s
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=10 F | .
|
[
II II|
5 | -
VNG —
oy T I —
// lt
0 ] l l l l l 1 l l
10 20 30 40 50 60 70 80 90

On the other hand the bunch length gets short at transition, since

— geffggon Lab s
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Direction of phase space rotation

L 2f
= =2 n. W we find that:

1. Below transition with ny > 0, ¢ increases for W > 0, so a stable particle
will move in a clockwise direction about the stable fixed point (¢g,0).

Since )

2. Above transition with 7y, < 0, ¢ decreases for W > 0, so a stable particle
will move in a counterclockwise direction about the stable fixed point (¢4, 0).

Below ,PE Above FPK
[ ] ‘\\ ]
X
=Tt T (I) -7 T q)
N0 N<0
E— .!Eff/Q’ZOH Lab s Thomas Jefferson National Accelerator Facility ——————
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Summary

STATL

¥ In this lecture we have:

® Discussed the principle of longitudinal motion of particles in storage
rings, including a concept of transition energy.

® Derived expressions governing the longitudinal phase-space
oscillations (energy-phase); small and large amplitude, fixed points

® Discussed a concept of a stationary and accelerating bucket and
directionality of phase-space rotations.

E— .!Eff/Q’ZOH Lab s Thomas Jefferson National Accelerator Facility ——————
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