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Magnetic Multipoles — Outline

STATE

= Solutions to Maxwell’'s equations for magneto static fields:

= In two dimensions (multipole fields)

= in three dimensions (fringe fields, end effects, insertion devices...)

= How to construct multipole fields in two dimensions, using
electric currents and magnetic materials, considering
Idealized situations.

= A. Wolski, University of Liverpool and the Cockcroft Institute, CAS Specialized
Course on Magnets, 2009, http://cas.web.cern.ch/cas/Belgium-
2009/Lectures/PDFs/Wolski-1.pdf
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Basis

STATE

= Vector calculus in Cartesian and polar coordinate systems;
» Stokes’ and Gauss’ theorems
= Maxwell’'s equations and their physical significance

= Types of magnets commonly used in accelerators.

= following notation used in: A. Chao and M. Tigner, “Handbook of Accelerator
Physics and Engineering,” World Scientific (1999).
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Maxwell's Equations

B MKS unit
D =p Gauss’s law for electric field
B =0 Gauss’s law for magnetic field
x B=-2 Faraday’s law
James Clerk Maxwell | V x [ = J+ 22 Ampere’s law
(1831-1879)
D electric displacement (C'/m?)
— — _; A FarE ] = 11 /7 L
- D = cE. g (,1{,(,Lr1(,.ﬂ(,[{d1((11 /Izn) ) 2
g d 0 = 3 magnetic field (177 or V' - s/m
V =\5 5 &1~ B — ,U-H. — = ) '( ' / )
ox "dy "0z H  magnetic field intensity (A/m)
V. (div) P volume charge density (C'/m?)
J current density (A/m?)
V x (curl)
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Maxwells Equations for Magnets

STATE

In these lectures, I shall consider only magnetostatic fields.

Maxwell's equations for the magnetic field become:

vV.-B = 0, (1)

— —

VvxH =T (2)

In this first lecture, we shall show that multipole fields provide
solutions to these equations in two dimensions, i.e. where the
fields and currents are independent of one coordinate (z). We
shall also deduce the current distributions and material property
and geometries that can generate fields with specified multipole
components.
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Physical Interpretation of v- B =0

Gauss’' theorem tells us that for any smooth vector field B:
/ v.Bdv ={4 B.d3
vV S

where the closed surface S bounds the region V.

Applied to Maxwell's equation V - B = 0, Gauss' theorem tells
us that the total flux entering a bounded region equals the
total flux leaving the same region.

(1777-1855)

E— .!Eff/Q’ZOH Lab s Thomas Jefferson National Accelerator Facility ——————

Operated by JSA for the U.S. Department of Energy Lecture 5 - Magnetic Multipoles USPAS, Knoxville, TN, Jan. 27 - Feb. 7, 2025 6



Physical Interpretation of vx g =17

STATE

Stokes’ theorem tells us that for any smooth vector field H:
[V xd-aS={ f-a. (4)

where the closed loop ' bounds the surface S.

Applied to Maxwell's equation i
VxH= f, Stokes’ theorem tells

us that the magnetic field H in-

tegrated around a closed loop

equals the total current passing

through that loop:

}i_Tﬁ-dE:/qf-d§:I. (5)
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Linearity and Superposition

STATE

Maxwell’s equations are linear:
and:

V’x(ﬁl—l—ﬁz):Vxﬁl—l—Vxﬁz. (7)

This means that if two fields El and §2 satisfy Maxwell's
equations, so does their sum §1 + §2.

As a result, we can apply the principle of superposition to
construct complicated magnetic fields just by adding together a

set of simpler fields.

E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————

Operated by JSA for the U.S. Department of Energy Lecture 5 - Magnetic Multipoles USPAS, Knoxville, TN, Jan. 27 - Feb. 7,2025 g



Multipole Fields

Let us first consider fields that satisfy Maxwell's equations in
free space, e.g. the interior of an accelerator vacuum chamber.
Here, we have J = 0, and B = poﬁ; hence, Maxwell’'s equations
(1) and (2) become:

V-B=0, and VxB=0. (8)

Consider the field given by B. = constant, and:

By 4 iBy = Cp (z +iy)" 1, (9)

where n is a positive integer, and ), is a complex number.

Note that the field components B, By and B. are all real; we
are only using complex numbers for convenience.
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Multipole Fields

Now consider the differential operator:

e, %,
dx dy
Applying this operator to the left hand side of (9) gives:

o . , 0B, 0By (OB, 0By
— — (B B;) = — 7 — : : ,
(é’x_l_z@y)( v+ iB) (ax 3y)+1(8$+3y)

(10)

= {Y7xd§124—ivfu§. (11)

In the final step, we have used the fact that B. is constant.
Also using this fact, and the fact that B, and By are
independent of z, we see that the  and y components of V x B
vanish.

Applying the operator (10) to the right hand side of (9) gives:

(d + zd) (x + iy)”_l = (n—1) (« + iy)n'_z—|—2'2(n—l) (x + iy)”_Q = 0.
ox Ay
(12)
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Multipole Fields

Hence, applying the operator (10) to both sides of equation
(9), we find that:

—_

V.-B=0, V x B=0. (13)

Therefore, the field (9) satisfies Maxwell’'s equations for a
magnetostatic system in free space.

Of course, this analysis simply tells us that the field (9):

By + iBy = Cp (v 4 iy)" 1

is a possible solution to Maxwell's equations in the situation we
have described: it does not tell us how to generate such a field.

Fields given by (9) are called multipole fields. Note that, since
Maxwell's equations are linear, we can superpose any number
of multipole fields, and obtain a valid solution to Maxwell's
equations.
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Multipole Fields

(5 =real, normal quadrupole > =imaginary, skew quadrupole
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Multipole Fields

For C,, = O for all n, we have:

B,y = B, =0, B. = constant. (14)

This is a solenoid field, and is not generally regarded as a
multipole field.

In the conventional notation (see Chao and Tigner), we rewrite
the field (9) as:

o0 - _|_ i n—1

n=1 ref

The b, are the “normal multipole coefficients”, and the a,, are
the “'skew multipole coefficients”. B, and R,ef are a reference
field strength and a reference radius, whose values may be
chosen arbitrarily; however their values will affect the values of
the multipole coefficients for a given field.
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Multipole Fields

The interpretation of the multipole coefficients is probably best
understood by considering the field behaviour in the plane
y = 0:

00 . n—1 = T n—1
By — Bref Z b-n, (R f) ) al'ld Bg; — Bref Z ) (R f) .
re re

n=1 n=1
(16)

A single multipole component with n = 1 is a dipole field:
By = b1 Byer is constant, and B; = a1 Byer IS also constant.

A single multipole component with n = 2 is a quadrupole field:

T €T
ref Ryef

Both B, and B, vary linearly with .

For n = 3 (sextupole), the field components vary as x2, etc.
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Multipole Fields from a Current Distribution

STATE

To see how to generate a multipole field, we start with the
magnetic field around a thin wire carrying a current Ij.
Generally, the magnetic field in the presence of a current
density T is given by Maxwell’'s equation (2):

V x H="..

Consider a thin straight wire of infinite length, oriented along
the 2 axis. Let us integrate Maxwell's equation (2) over a
circular disc of radius r centered on the wire, and normal to the
wire:

fvaﬁ-dS*‘: J-dS =1, (18)
where we have used the fact that the integral of the current
density over the cross section of the wire equals the total
current flowing in the wire.
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Multipole Fields from a Current Distribution

STATE

Now we apply Stokes’ theorem, which tells us that for any
smooth vector field F':

/;TVXF*-d&?:jéwﬁ-da (19)

where C' is the closed curve bounding the surface S.

Applied to equation (18), Stokes' theorem gives us:

H.dl = In. 20
A 0 (20)

By symmetry, the magnetic field must be the same magnitude
at equal distances from the wire. We also know, from Gauss’

theorem applied to V- B = 0, that there can be no radial
component to the magnetic field.
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Multipole Fields from a Current Distribution

STATE

Hence, the magnetic field at any point is tangential to a circle
centered on the wire and passing through that point. We also
find, by performing the integral in (20), that the magnitude of
the magnetic field at distance » from the wire is given by:

- I
=92 (21)
2mr
H
If there are no magnetic materials
present, p = ug, SO: !
= = _ polo
B=poH = . (22)
2mr
E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Multipole Fields from a Current Distribution

STATE

Now, let us work out the field at a point 7= (z.,y,z) from a
current parallel to the 2z axis, but displaced from it. The line of

current is defined by = = xzq, ¥y = yo.

The magnitude of the field is given, from (22) by:

_ rolo
27 |7 — 'Fb\?

where the vector 7y has components 7o = (xg.y0, 2).

Since the field at 7 is perpendicular to ¥ — 7y, the field vector is
given by:

7 — Holo(y —yo. —= + 20,0)
2n 7 — 7|
E— .geffe?son Lab s Thomas Jefferson National Accelerator Facility ——————
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Multipole Fields from a Current Distribution

STATE

rolo (y — yo, —x + 20, 0)

B =
2m i — |

(24)

It is convenient to express the field (24) in complex notatio

Writing:
S 1/ . _ 10g
r+iy=re”, and x4+ iyg = roe 0, (25)
we find that:
,—16g —16
' !U“OIO (Tot — Tre )
By +iB; = _ — (26)
27 ‘?"06390 — rei?
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Multipole Fields from a Current Distribution

STATE

HOID_(TDE 100 = —?,,E,—zf)-j

By +iB, = . (26)
27 ‘?"Ot ?"6‘39"
Using the fact that for any complex number ¢, we have
[¢]? = (¢
M N *
[rof,_z{-}g _ TE@Q]
. rolo 1
B B, = : :
y ¥ 1B 271 rgeifo — pet?
PLOIO 5_3.90 (27)
; _ o _i(0—6g))
27ro (1 Togﬁ( 0))
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Multipole Fields from a Current Distribution

STATE

Using the Taylor series expansion:

(1-¢) 1= Z ¢, (28)

(valid for || < 1) we can express the magnetic field (27) as:

n—1
By +iB, = rolo -—i60 Z ( ) ¢(n=1)(0-6o) (29)
0

27rg =1 ‘
1 i(m—1)6

which is valid for r» < rg. By + iBy = Crr™ L
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Multipole Fields from a Current Distribution

STATE

The advantage of writing the field in the form (29) is that by
comparing with equation (15) we immediately see that the field
is a sum over an infinite number of multipoles, with coefficients

given by:
B ‘ }u'OIO e—’énn‘f’o
?ffl (bn +ian) = 2 n—1" (30)
ref o g
If we choose:
rolo
Byef = Sy and  Ryrer = 710, (31)
T™ro
we see that:
b-n_ —l_ ?:a-n_ — f_‘?_éﬂ-go. (32)
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Multipole Fields from a Current Distribution

Now, let us consider the total field generated by a set of wires
distributed around a cylinder of radius rg, such that the current
flowing in a region at angle 85 and subtending angle dfy at the
origin is:

IO —_— I'ﬂl CcOS 7]’1(90 — 9-}71) d@o. (33)

where m is an integer.

The total field is found by integrating over all 85. From (29):

/ n—1 | ot )
By +iB; = HoZm Z (T) e@(n_l)(%f e~""% cos m(0o — 0m) dbg
27ro 0 0

n=1

1ol , m—1 .
— mof ez(m—l)@' Tre—zmﬁm‘
27ro

ro
We see that the cosine current distribution (33) generates a

pure 2m-pole field within the cylinder on which the current
flows.

E— .geffe?son Lab s Thomas Jefferson National Accelerator Facility ——————

Operated by JSA for the U.S. Department of Energy Lecture 5 - Magnetic Multipoles USPAS, Knoxville, TN, Jan. 27 - Feb. 7, 2025 25



Multipole Fields from a Current Distribution

STATE

Choosing the reference field and radius (31) as we did above:

Byref = , and  Ryef = 10,

we find that the multipole coefficients for the field generated
by the cosine current distribution (33) are:

bm + iy, = e imOm, (35)

For 6#,,, = 0 or 6,, = 7, we have a normal 2m-pole field.

For 6,, = £7/2, we have a skew 2m-pole field.
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Multipole Fields from a Current Distribution

STATL
Dipole Quadrupole
?Fﬁ’ ix“x
/
, //
N
\\.
b“‘“\:h __J/'/
Sextupole
E— .geff/e:Zon Lab s Thomas Jefferson National Accelerator Facility
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STATE

Second layer of a six-layer superconducting quadrupole devel-
oped by Brookhaven National Laboratory for a linear collider.
The design goal is a gradient of 140 T/m.
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Multipole Fields in an Iron-core Magnet

STATE

To generate magnetic fields of the strengths often required in
accelerators using only a current distribution, the size of the
current needs to be large. Usually, this means using
superconductors to carry the current.

Magnetic fields of reasonable strength can also be generated
using resistive conductors to drive magnetic flux in
high-permeability materials.

We shall finish this lecture with a discussion of the required
geometry for an iron-cored magnet to generate a pure 2m-pole
field, and the relationship between current and field strength.
To keep things simple, we assume that the magnet is infinitely
long in the z direction, and that the core has infinite
permeability.
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Multipole Fields in an Iron-core Magnet

STATE

First of all, we note that the magnetic flux lines in free space
must meet a material with infinite permeability normal to the
surface. T his we shall now show.

Consider a thin rectangular loop spanning
the surface of the material. If we integrate
Maxwell's equation:

oD
VxH=17] + — (36)
ot
across the surface bounded by the loop, and i
apply Stokes’ theorem, we obtain: //
/Vxﬂds ngdé’—/JdS—l—ﬁ—dS
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Multipole Fields in an Iron-core Magnet ‘

STATE

Now, if we take the limit where the width of the loop tends to
zero, then assuming there is no surface current, and that the
time derivative of the electric displacement remain finite, we
obtain:

Hot — H1y = 0, (38)
where Hg; is the tangential component of the magnetic field

just outside the boundary to the material, and Hq; is the
tangential component of the magnetic field just inside the

boundary.

We see that the tangential component of the magnetic field H
is continuous across the boundary. Writing B = uH:

Bot _ Bt (39)
HO M1
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Multipole Fields in an Iron-core Magnet

STATE

For a material with infinite permeability, assuming that the
magnetic field B remains finite within the material, we see that:

BOt — O (40)

Thus, the tangential component of the field at the surface of
the material vanishes; in other words, the magnetic field at the
surface must be normal to the surface.

If we can shape a material (with infinite permeability) such that
its surface is everywhere normal to a given 2m-pole field, then
the only field that can exist around the material will be the
2m-~pole field.
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Multipole Fields in an Iron-core Magnet

STATE

To derive an explicit expression for the shape of the magnetic
material in a pure 2m-pole magnetic field, it is helpful to
introduce the magnetic scalar potential, ®. This is defined so
that:

B=_-Vo.
For static fields in free space, Maxwell's equation:

VxB=0 VxVxda=V(V-d) - Vi

is satisfied for any scalar field ®; and the other Maxwell
equation:

—

V-B=0

gives, in terms of the potential, Laplace’s equation:

VP = 0. Pierre-Simon, Marquis de
Laplace (1749-1827)
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Multipole Fields in an Iron-core Magnet

STATE

Since the vector V& is always normal to a surface of constant
@, the surface of the magnetic material of infinite permeability
is always a surface of constant magnetic scalar potential.

To find the geometry for the magnetic material in a pure
2m-pole field, we simply have to determine the appropriate
magnetic scalar potential ®, and then the equation

&d = constant

determines the geometry.
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Multipole Fields in an Iron-core Magnet

Let us hazard a guess at the potential:

T'ﬁl
b = —|Cp|—sin(mb — om).
m

Taking the gradient in cylindrical polar coordinates:

0P 6o
—VCD' - E—
ar r 06
= 7 ‘th,m—l sin(mf — pm) + 6 |Cm\?’*m_1 cos(mb — pm).
Using:
Fr=27cosh#+7gsingd, and #= —7sinf -+ cosé,
we find:

Vb =172 \C.m\'r‘m_l sin[(m — 1)0 — om]+7y |C-m\'rm_1 cos[(m —1)8 — pm] .
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Multipole Fields in an Iron-core Magnet

STATE

For a pure 2m-pole field:

By + iBy = Cppr™ Lt (m=1)0 (49)

SO.
B. = |Culr™ tsin[(m = 1)8 — o] . (50)
By = |Cwm|r™ tcos[(m —1)0 — om]. (51)

Comparing with equation (48), we conclude that the scalar
potential (45):

tars

D = —|Cm|r—Siﬂ(TTlQ — i,;.’?m.) (52)
T

generates the pure 2m-pole field:

By +iBy = —V® = Cpp(x +iy)™ L. (53)
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Multipole Fields in an Iron-core Magnet

STATE

Since the surface of the magnetic material must be surface of
constant potential (assuming infinite permeability), we see that
the surface of the material in a pure 2m-pole field must be
given by:

r'"sin(m6 — ¢,,) = constant, (54)
or:
constant
r= "— : (55)
sin(mb — ©om)

©m is the phase angle of C}. . If ¢, = 0, then ), is real, and
we generate a normal 2m-pole field. If ¢,, = 7/2, then C), is
imaginary, and we generate a skew 2m-pole field.
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Pole Shape — Quadrupole

- Tr. H —_
m=2 r''sin(mb — om) = C Om =0
A y
r
0] | >
X
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Pole Shape — Dipole

= M _
m=1 r''sin(mb — om) = C Om =0
A y
r
0] | >
X
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Multipole Fields in an Iron-core Magnet

Normal Quadrupole Skew Quadrupole
Normal Sextupole Skew Sextupole
E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Multipole Fields in an Iron-core Magnet

Our final task is to calculate the field strength in an iron-cored
magnet for a given number of ampere-turns around each pole.
To do this, we can consider just a normal 2m-pole, since skew
2m-poles are simply rotations of normal 2m-poles.

We assume that the magnetic field is generated by wires
carrying currents between the poles, with the wires parallel to
the z axis, and positioned a large distance from the axis. Since
the distance from the centre of the magnet to the currents is
large, we can neglect the field arising ‘‘directly” from the
current, and consider only the field arising from magnetisation
of the iron.

Furthermore, we maintain symmetry by placing equal currents
between each pair of poles, alternating in direction from one
set of wires to the next.
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Generating Multipole Fields in an Iron-core Magnet

We again use Maxwell's equation:
0D
Now we integrate across a surface
in the z-y plane, bounded by the
contour C' defined by the lines:

VxH=J7+ (56)

™

f =0, and 6=

57
2m (57)

and closed at »r — oc.

Again applying Stokes' theorem, we obtain:
jg-*ﬁ .df' = NI, (58)
where there are 2N wires carrying current I between each pair

of poles.

Note that conventionally, the current is supplied by a coil of N
turns around each pole; thus the total number of wires between
each adjacent pair of poles is 2.
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Generating Multipole Fields in an Iron-core Magnet

We can break the path integral into two segments: C in
vacuum with permeability pg, and 1 inside the magnetic
material with permeability p:

— —

B - B
/—-dé’—l— - Dai= N1 (59)
Co 10 Cr p

In the limit p — oo, the segment of the integral inside the
magnetic material vanishes. Furthermore along the segment
¢ = 0, the field is perpendicular to the path, so makes no
contribution to the path integral.

We are left with:
,
/ ° B, dr = ugNT, (60)
0

where rg is the radius of the largest circle that can be inscribed
within the pole tips of the magnet.
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Generating Multipole Fields in an Iron-core Magnet '

STATE

The radial field component along 8 = =« /2m is given by:

o\ 1
Ryef

Let us choose Ryof = rg, and Byef = Br(rg,7/2m) = Bg. Then,
by, = 1:

0

m—1
B, = B (T) (62)

and we obtain:

o BOTO
/ By dr = — uoNT. (63)
0 (g
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Generating Multipole Fields in an Iron-core Magnet '

STATE

Therefore, the field is given by:

_ NT .ym—1
By 1B, = Lo (m + zy) | (64)
rQ o)
The multipole gradient is given by:
8'”1'_lBy . 'TTI,!}_LOJ\TI' (65)

a9-.m—1 m
Jdx o

For example, for a quadrupole magnet (m = 2), the gradient is

given by:
0B 2uoN1
Y = 21O (66)
Ox r5
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Re-cap on Magnetic Multipoles

STATE

We have shown that:
e Mmultipole fields satisfy Maxwell's equations in free space;

e a2 pure 2m-pole field can be generated by a cos(m#) current
distribution on the surface of a cylinder;

e 2 pure 2m-pole field can be generated by an iron-cored
magnet, whose pole tips follow surfaces of constant
magnetic scalar potential.

Of course, the expressions we have derived here are only
exactly correct with ideal (and rather impractical) conditions on
the geometry and material properties.
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Re-cap on Multipole Fields

STATE

By _I_ ZB’I‘ — Cn,(x ‘I‘ Z'y)n—l = Cn?,.'?fl-—lei(n—l)ﬁ? (1)

with B. = constant, provided valid solutions to Maxwell's
equations in free space.

We also saw that such a field could be generated by a current
flowing parallel to the z-axis, on a cylinder of radius rg, with

distribution:
I1(0) = 1I,,cosn(f —6,). (2)
In this case, the field is given by:
I _ , n—1
By + iB: = HOTn —intn (—) ein—1)6 (3)
QTO TO
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Re-cap on Multipole Fields

Multipole fields can also be generated by currents flowing in
wires wound around iron poles. For a pure 2n-pole field, the
shape of the surface of the iron pole must match a surface of
constant scalar potential, ®, given by:

T

b = —\C’n\r—sin n(0 — 6,). (4)
n

The field is given by:
B=-Vob. (5)

If each pole in an “ideal’ 2n-pole magnet is wound with N
turns of wire carrying current I, then the multipole gradient of

the field is:
O"~1B, nlugNI
axn—l — TS. ? (6)
where rg is the radius of the largest cylinder that can be
» inscribed between the poles.
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Magnetic Multipoles — Application to Magnets

STATL

= Deduce that the symmetry of a magnet imposes constraints on
the possible multipole field components, even if we relax the
constraints on the material properties and other geometrical
properties;

= Consider different techniques for deriving the multipole field
components from measurements of the fields within a magnet;

= Discuss the solutions to Maxwell’ s equations that may be used
for describing fields in three dimensions.
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Allowed and Forbidden Harmonics

STATE

In general, from equation (1), a pure 2n-pole field can be
written:

By +1iB; = ‘Cn.\e_i”ﬁ”r”_lef”:(n_l)a: (7)

where r and 6 are the polar coordinates within the magnet, and
6, is the angle by which the magnet is rolled around the z axis.

We cannot design a realistic magnet to produce a pure 2n-pole
field. The materials will have finite permeability and finite
dimensions, and may saturate.

More generally, a field consists of a superposition of 2n-pole

fields:
m . .
By+iBy= Y |Colemin0nyn=1ei(n=1)0 (8)
n=1
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Allowed and Forbidden Harmonics

STATE

However, in the design of a 2n-pole magnet, we can impose a
perfect symmetry under rotations through 27 /n about the =
axis.

In fact, we see from equation (7):
By _|_ ?;B;;g — |On“E—iﬂ-g-n?,,?l—lei(ﬂ—1)9? (9)

that under a rotation by n/n, i.e. 8, — 6, + ©/n, the field
changes sign:

B +— —B. (10)
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sl

Allowed and Forbidden Harmonics

STATL

Since this symmetry is imposed by the geometry of the
magnet, any multipole field within the magnet must obey this

symmetry. This restricts the multipole components that may
be present, at least in the design.
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Allowed and Forbidden Harmonics

Consider a field given by:

By + iBs = |On‘E—inﬁ?nrn—163'(-?1—1)9 4+ |Cm|e—imé’mrm—lei(m—l)ﬂ"
(11)
If the geometry of the magnet is such that the field simply
changes sign under a rotation through =/n, then the “extra”

harmonic must satisfy:
e = —1, (12)
therefore:

—=1,3,5,7... (13)

We see that only higher harmonics are allowed; and the indices
of the higher harmonics must be an odd integer multiple of the
main harmonic.
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Allowed and Forbidden Harmonics

For a dipole, n =1, so the allowed harmonics are m = 3,5,7 ...
For a quadrupole, n = 2, and the allowed harmonics are
m = 6,10,14 ...

Of course, this argument cannot tell us the strengths of the
allowed harmonics: those depend on the details of the design.

It is also a fact that a magnet, when fabricated, will never
exhibit perfectly the symmetry with which it was designed.
Therefore, a real physical magnet will generally include all
harmonics to some extent, not just the harmonics allowed by
the ideal symmetry.

However, for a carefully fabricated magnet, the harmonics

forbidden by the ideal symmetry should be small in comparison
to the allowed harmonics; and it should be possible to predict
the sizes of the allowed harmonics accurately from the design.
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Measuring Multipoles

STATE

Knowing the multipole components of magnets in an
accelerator is important for understanding the beam dynamics.

Construction tolerances will mean that the strengths of the
multipoles present in the magnet will differ from those in the
design.

T his leads us to consider how to determine the multipole
components from measurements of the magnetic field.

There are many possible approaches to the problem: we shall
consider two, for illustration, and only go as far as necessary to
understand some of the pros and cons.
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Measuring Multipoles in Cartesian Basis

STATE

The field may be represented as:

By+iBy =Y Cp(x +iy)" L, (14)
T

where the real parts of the coefficients ), give the normal

multipole strengths, and the imaginary parts give the skew
multipole strengths.

If we take a set of measurements of By and B, along the =
axis, then y = 0 at each measurement point, and the normal
multipoles can be found by fitting a polynomial to By vs x, and

the skew multipoles can be found by fitting a polynomial to B,
VS .
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Measuring Multipoles in Cartesian Basis

STATE

The real problem is that mathematically, the basis functions
that we use to fit the data (monomials in x and, possibly, y)
are not orthogonal. This means that data constructed from
one monomial can be fitted, with non-zero strength, with a
completely different monomial.

Although this does not invalidate the technique altogether, it
does make it a little difficult to apply accurately. Ideally, we
need to know in advance which multipole components are
present.

However, there is a more robust technique...
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Measuring Multipoles in Polar Basis

Instead of expressing the field in Cartesian coordinates, let us
write the same field in polar coordinates:

By _|_ ?»B:}: — Z cn?,,'n.—lei(n—l)a. (15)
T

Now suppose that we take a set of measurements of B, and B,
at fixed » = rg, but at M equally spaced steps in 6§ = 27am /M,
where m = 1... M.

We then notice that:

M _ . M
Z (By i ?;Bm)me—%m(n’—l)ﬂ — Z Z Cn?“n_l __273(?1 n') % e

m=1 m=1 N

= MC, 2T (16)
Hence:
O??,. —_— Tl—l Z (ny _I_ ?,B'r)nsz’_ 'TZ(?’I )TIUr (17)
:‘[T’O nl_l
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Measuring Multipoles in Polar Basis

STATE

The advantage of using polar coordinates, over Cartesian
coordinates, is that the basis functions, ei('”'_l)‘?, are
orthogonal. Mathematically, we have:

M _ . o 0 if nz*n
Z eQﬂz(-n-—l)He—Qﬂ'z(n _1)F — (18)
m=1 M if n=n

T he orthogonality means that the value we determine for one
Mmultipole component is completely unaffected by the presence
of other multipole components.

Determining the multipole coefficients )}, amounts to carrying
out a discrete Fourier transform on the field data measured on
a cylinder inscribed through the magnet.
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Measuring Multipoles in Polar Basis

STATE

A further advantage of the polar basis comes from the fact
that the radius of the cylinder on which the field data are
collected appears as 1/?"8_1 in the expression for the
coefficients Cy, equation (17).

Suppose that there is some error in the field measurements.

T his will lead to some error in the values of (', that we
determine. If we reconstruct the field (e.g. for particle
tracking), then there will be some error in the calculated field.
However, this error will decrease as v~ 1, as we go towards the
centre of the magnet (where the beam is).

Of course, if we try to extrapolate the field outside the cylinder
of radius rg, then any errors will increase as some power of the
distance from the centre.
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Advantages of Mode Decompositions

There are some important advantages to describing a field in
terms of a mode decomposition, instead of a set of numerical
field values on a grid:

e A description of the field in terms of mode coefficients is
very much more compact than a description in terms of
numerical field data.

e A field constructed from mode coefficients is guaranteed to
satisfy Maxwell's equations: numerical field data are not.

e Measurement noise can be “smoothed” by suppressing
higher-order modes.

e Errors can be represented in a realistic way by introducing
higher-order modes.

e A number of beam dynamics analysis tools require mode
decompositions.
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Three-dimensional Fields

STATE

T he polar basis for fitting multipole field components
generalises nicely to three-dimensional fields. But, since we
have not so far discussed such fields at all, before showing how
the field fitting works, we need to discuss solutions to
Maxwell's equations for three-dimensional magnets.

As before, the relevant equations are:

V.-B=0, and VxB=0. (19)

Any field that satisfies these equations is a possible magnetic
field in free space. So far, we have considered only multipole
fields, that are independent of one coordinate; but this is not
very realistic.
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Three-dimensional Fields

STATE

A field that satisfies Maxwell's equations (19) is given by:

B: = —Boj,:m Sin kzx sinh kyy sin kz, (20)
By, = Bp Cng‘maz cosh kyy sin k. z, (21)
B. = BOZ COS kyx Sinh kyy COS k2 z, (22)
where:
ki = k2 + kZ. (23)

There are a number of variations on this field, for example, with
the hyperbolic function appearing in the « or z coordinates; or,
with different phases in = and/or z. However, the above
representation is particularly convenient for describing insertion
devices (wigglers and undulators), as we shall now discuss.
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Three-dimensional Fields

By = —Bg—sinkyx sinhkyy sink.z,
Y

By = DBgcoskzxr coshkyy sink.z,

B, = Bg-=coskgz sinhkyy cosk,z,

ky

Normal-conducting electromagnetic wiggler at the KEK Accelerator Test

Facility.
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Three-dimensional Fields

STATE

If we take k; = 0O, then the field becomes:

B, = DBgcoshk.y sink.,z, (25)
B. = Bgsinhk.y cosk:z. (26)

The above equations describe a field that varies sinusoidally in
z, and has no horizontal (z) component at all. This is a field
that could only occur in an insertion device with infinite length,
and infinite width.
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Three-dimensional Fields

STATE

A better description would take account of the fact that the
longitudinal variation of the field will not be perfectly
sinusoidal. We can account for this by superposing fields with
different values of k..

B, = O, (27)
B, = /E(kz)coshkzy sin oz dk. (28)
B, = /E(kz)sinhkzy oS ks . (29)

We see that if we take measurements of B, as a function of z
in the plane y = yg (for fixed yg), then we can obtain the mode
coefficients B(k.) by a (discrete) Fourier transform.

This allows us to reconstruct all field components, at all
locations within the field.
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Magnet Design — Summary

STATL

=  Symmetries in multipole magnets restrict the multipole components that can be
present in the field.

= [tis useful to be able to find the multipole components in a given field from
numerical field data: but this must be done carefully, if the results are to be
accurate.

= Usually, it is advisable to calculate multipole components using field data on a
surface enclosing the region of interest: any errors or residuals will decrease
exponentially within that region, away from the boundary. Outside the
boundary, residuals will increase exponentially.

= Techniques for finding multipole components in two dimensional fields can be
generalized to three dimensions, allowing analysis of fringe fields and insertion
devices.

= Intwo or three dimensions, it is possible to use a Cartesian basis for the field
modes; but a polar basis is sometimes more convenient.
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Appendix A - Field Error Tolerances

= Focusing ‘point’ error perturbs the betatron motion leading to the Courant-Snyder invariant
change:

A OF
F+AF
\4
=
0 S
\ AB(s)/By(s)
X 7Y,
|
N\
Beam envelope and beta-function oscillate at double the betatron frequency
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Appendix A - Field Error Tolerances

E— .geffe?son Lab s Thomas Jefferson National Accelerator Facility

Single point mismatch as measured by the Courant-Snyder invariant change:

&' = (0 +56)* + 20(0 + 50) X + y X
:g+2(,86?+ax)56?+,8592 , X =./gB sinpu, H:J%siny(cos/;-asiny)

Each source of field error (magnet) contributes the following Courant-Snyder
variation

j BY=dd|
Bp

Se = 2\J&f COS 1 50 + BS6* 560 = =Y 54 x" ,where 54, = [ok,dI
m=1

here, m =1 quadrupole, m =2 sextupole, m=3 octupole, etc

Se=2JeB Y (JeB) o4, cosusin" i +p (Z(@)m 5, sinm,uT,

m=1
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Appendix A - Field Error Tolerances

= multipole expansion coefficients of the azimuthal magnetic field, By - Fourier series

representation in polar coordinates at a given point along the trajectory):

B, (r,0)= Z(ij-l(sm cosm+ A, sinmo)

m=2 r-o

» multipole gradient and integrated geometric gradient:

1 - G [G.d
G,=—0B,., | kGauss cm™" k =—n [cm D _ 5o “n
m rom m+1 [ :| n Bp I: ] ¢n = Bp [cm :I
E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————

Operated by JSA for the U.S. Department of Energy Lecture 5 - Magnetc Multipoles USPAS, Knoxville, TN, Jan. 27 - Feb. 7, 2025 70



Appendix A - Field Error Tolerances

= Cumulative mismatch along the lattice (N sources):

gN =51ﬁ[(1+2ﬁ S (JeB)" 6y cosp sin"p + (Z(@)M&ﬁm Sin"‘uﬂ ,

m=1

= Standard deviation of the Courant-Snyder invariant is given by:

o AT lon ) o o) (S o0 |

& & i=1 m= m=1

= Assuming weakly focusing lattice (uniform beta modulation) the following averaging
(over the betatron phase) can by applied:
1
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Appendix A - Field Error Tolerances '

= Some useful integrals .... :

<cosu sin™ ,u>:O :

m?l@in“ #)=< (m-1)1

(sin" u) =

will reduce the coherent contribution to the C-S variance as follows:

o §on T ) o [T o))

\ .

= Including the first five multipoles yields:

% \/EN:{ B [5¢f (sin® )+ 2B, (58,” + 25408, ) (sin* 1) +(&B,)" (54,° + 2545¢; + 254,54, ) (sin® ,u>+}}

| | '
1 13 135
2 24 2 46
E— JEff? Son Lab s Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Ene ISPAS, Knoxville, TN, Jan. 27 - Feb. 7, 2025 72



= Beamradius ata given magnetis: @ =—./&0,

= One can define a ‘good fileld radius’ for a given type of magnetas: a = Max(a,)

=  Assuming the same multipole content for all magnets in the class one gets:

O'g N 1 2 2 3 2 2 S 4 2
- /2115 B2 % \/5¢1 +2a (59, +25¢15¢3)+§a (8057 + 204505 + 256,54, )+ ..

g

= Thefirst factor purely depends on the beamline optics (focusing), while the second one
describes field tolerance (nonlinearities) of the magnets:

AD = \/5¢f + g a* (5, + 254,54, )+ g a* (04, + 254,64, + 254,04, )+ .
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Appendix B - The vector potential

STATE

= A scalar potential description of the magnetic field has been very useful to
derive the shape for the pole face of a multipole magnet.

T he scalar potential ®© is defined such that:

B=-V®. (49)

With this definition, the equation V x B=0is automatically
satisfied. The equation V - B = 0 leads to Laplace’s equation
for the scalar potential:

V2P = 0. (50)
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Appendix B - The Vector Potential

STATE

However, the scalar potential is only defined in the absence of
currents. More generally, we need to use a vector potential A,
In fact, in the most general case of time-dependent electric and
magnetic fields, we need both a scalar potential ¢, and a vector
potential A

OA

B=VxA, and E=-V¢——.
| T ot

(51)

Some important methods for beam dynamics analysis use the
potentials ¢ and fT, rather than the fields. It is therefore useful
to have expressions for the potentials corresponding to the
expressions for the fields we have derived in the main part of
these lectures.

E— .geffgon Lab s Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy Lecture 5 - Magnetic Multipoles USPAS, Knoxville, TN, Jan. 27 - Feb. 7, 2025 75



Appendix B - The vector potential

STATE

For the case of interest here (a magnetostatic field, and zero
electric field), we can assume that ¢ is independent of position,
and A is independent of time.

If we allow the presence of nonmagnetic materials (= ug)
carrying an electric current density f, then substituting from
(51) into Maxwell’s equations gives:

V- B=V-VxA=0, (52)
and:
VXB=VXxVxA=V(V-A) - V24 = ugl. (53)
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Appendix B - The vector potential

STATE

—

Maxwell’'s equation V - B = 0 is automatically satisfied by any
vector potential E, by virtue of a vector identity (the
divergence of the curl of any vector field is zero).

Maxwell's equation V X H=J (assuming static fields) is
satisfied, if the vector potential A satisfies:

V2A —V(V-A) = —uolJ. (54)

Now, we observe that since B=V x f—T, and V x Vu is
identically zero for any scalar field ¢, we can define a new
potential Al = E—l— Vi that gives exactly the same field as A,
We can use this property of the fields and potentials, known as
gauge invariance, to simplify equation (54).
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Appendix B - The vector potential

STATE

Suppose that we have a vector potential A for which:
V-A=f, (55)
where [ is some function of position. Then, if we define:
A= A+ Vi, (56)
where 1) satisfies Poisson’'s equation:
V3 = —f, (57)
then A’ gives the same field B as A, and:
V- A=V.-A4 V% =0. (58)

In other words, if we can solve Poisson’s equation (57) for 1,
then we can make a gauge transformation to a vector potential
that has vanishing divergence.
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Appendix B - The vector potential

STATE

Let us suppose that we find a vector potential that has
vanishing divergence:

V-A=0. (59)

Equation (59) amounts to a condition that specifies a
particular choice of gauge: this particular choice (i.e. with zero
divergence) is known as the Coulomb gauge. It is useful,
because equation (54) for the vector potential then takes the
simpler form:

—

V2A = —pgld. (60)

This is Poisson’s equation, which has the standard solution:

HO f(“”_ﬂ) 3 7

AP = — 33 (61)
Ar ) |7 — 71"
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Appendix B - The vector potential

STATE

Now, consider the potential given by:

o Chn (x4 ay)"

(e

Ay =0, Ay,=0, A, =-R (62)

‘Taking derivatives, we find that:

OA 0A
2= _ReCh(a+iy)" L, and 2 =ImCp(z+iy)" L. (63)
ox dy
Hence:
B = Vx ff,
_ (94 04
o Oy~ Ox ’
— (Im Cp(z +iy)" L Re Cp(a +iy)" 1, 0) . (64)
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Appendix B - The vector potential

T herefore, we have:

By + iBy = Cp(a + iy)" 1
which is just the multipole field (1).

We have shown that the potential:

Re(x + iu)”

Ar =0, Ay=0, A.= —DBrer Y (bn+ian)

, (65)
n=1 R;?éf
gives the multipole field (1):
. n—1
, T+ iy
By + 15, = ref Z (bn + 3(1?1) ( ) .
n=1 Rref
Note also that:
- 0A;  0Ay | 0A.
V-A= _ — =0, 66
ox + dy t dz " (66)
so this potential satisfies the Coulomb gauge condition.
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Appendix B - The vector potential

STATE

Note that the longitudinal field component derived from the
multipole potential (65) is:
8.{4’;{)‘ 814:1:

B. =
- dx dy

= 0. (67)

In order to generate a solenoidal field, with B, = constant = 0O,
we need to introduce non-zero components in A;, Ay, or both.
For example:

1 1

While it is convenient, for beam dynamics, to work in a gauge
with only the z component of the vector potential non-zero,
this is not possible for solenoidal fields.
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Appendix B - The vector potential

Finally, we give the vector potentials corresponding to 3D
fields. In the Cartesian basis (20)-(22):

_ ke
By = —B(km,kz)k—msin kyx Sinh kyy sin k. z,
Y

By = DB(kg, k.)coskgyz coshkyy sink.z,

_ k
B. = B(ka, kz)k—z oS ki Sinh kyy cosk.z,
Yy

a possible vector potential is:

- k. . .
Ay = B(ks. k) sin kzx sinh kyy cosk.z, (70)
ok
- 1
A, = —B(kg, kz)k—sin krx cosh kyy sin k. z. (71)
i
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Appendix B - The vector potential

STATE

In the Polar basis (36)-(38):

By, = DBu(k:)I,(k=p)sinmb cosk:z,

BQ — B-nl(kz) m I-nl(f]fzf)) CcOS TTI,Q COS kzz.:
kz{)
BZ — _an(kz)fnz(kzp) Slﬂ TTLQ Slﬂ kzz.:
a possible vector potential is:
A, = —LI,(kop) cosmb sink.z, (72)
Tr
l’-’lg — O (73)
A, = —ﬁf;,'n_(kzp) cosmb cosk.z. (74)
T
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