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STATE
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= Equations of Motion, Symplecticity and Eigen-vectors
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Introduction

STATE

= Courant-Snyder representation for one-dimensional
betatron motion

= Simple relations between Twiss parameters, eigen-vectors and
bilinear form for the particle ellipsoid

= Symplecticity = 2x2 — 1 = 3 parameters
= From uncoupled to strongly coupled motion by design
= “Moebius Twist Accelerator” to create round beams (Cornell)

= |onization cooling channel for Neutrino Factory and Muon Collider

= Vertex to plane adapter for electron cooling (Fermilab)
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Two dimensional coupled betatron motion

STATL

= Symplecticity = 4x4 — 6 = 10 parameters
» Effective parameterization in terms of generalized Twiss functions

= Shortcomings of the existing representations

= Edwards and Teng, Fermilab (1973)

= Ambiguity of the rotation angle

» Physical meaning of the betatron phase advance?

= G. Ripken, et al., DESY (1987)

= Qriented for circular accelerators

» Incomplete parametrization (one needs 10 independent parameters to
fully describe 2D betatron motion)
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Unresolved issues for both parametrizations

STATL

= Quest for versatile representation conveniently
describing both storage rings and transfer lines

= 2D emittances - how are they related to the 4D
beam emittance?

= How to determine the beam emittances and the
generalized Twiss parameters from the particle
beam ellipsoid (bilinear form), and from the second-
order moments of the particle distribution?
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Equations of Motion and Symplecticity Condition

STATE

<*Two-dimensional linear motion
" 2 1 ' '
X +(KX +k)x+(N —ERjy—Ry =0 ,

Y +(K,? —k)y+(N +% R’jx+ RX' =0

K., =eB,,/Pc -dipole

k=eG/Pc - guadrupole
N =eG, / Pc - skew-quadrupole
R=eB,/Pc - longitudinal magnetic field
E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Hamiltonian formulation - equations of motion

STATE

dx .
— = UHX
ds
i ) ]
¢ Hamiltonian matrix: K +k+— 0 N ~-R/2
4
H 0 1 R/2 - 0
N R/2 |<y2—k+T 0
| —R/2 0 0 1
¢ Unit symplectic matrix : 3 _
01 0 0 U
y_|"1 0 00 o |
|0 0 0 1 UU:'
0 0 -1 0 vu- =1

E— .geffgon Lab s Thomas Jefferson National Accelerator Facility
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Hamiltonian formulation - equations of motion

STATE

¢ Canonical variables

., R
px =X — E y,
o R=eB,/Pc - longitudinal magnetic field
p,=Yy + Ex.
+ Relation between geometrical and canonical variables
X=Rx |,
where
X | [ X | 1 0 0 0]
0 0 1 -R/2 0
X = Px . x=| |, R= /
y y 0 0 1 0]
Py 10, | 'R/2 0 0 1

A ‘cap’ denotes transfer matrices and vectors related to the canonical variables.
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Hamiltonian formulation - equations of motion

STATE

**Lagrange invariant

d+ o\ dx' . o odk, .
E(XlTUXZ): d; UX2+X1TUd—SZ=X1THTUTUx2+x1TUUHx2:0 |

%, UK, =inv

¢ Transfer matrix for canonical variables
% = M(0, s)&,

¢ Symplecticity condition
%, UK, = %,' M(0,s)" UM(0,5)%, =inv

¢ The above equation is satisfied for any %

E— .geffe?son Lab s Thomas Jefferson National Accelerator Facility ——————
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Hamiltonian formulation - Sympecticity

STATE

M(0,s)" UM(0,s) = U

¢ Six independent equations - matrix M(0,s)" UM(O,s) s
antisymmetric = only 10 out of 16 elements of the transfer matrix

are independent

E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Eigen-vectors

STATL

MU, = 1,9, , i=1,2,3,4

¢ For any two eigen-vectors the symplecticity condition yields

0=4,v. UMV, - 4,9,)= My, ] UNIY, - 2,9,"U4,9, = (- 4,4,)v,"Uy,

¢ The eigen-values always appear in two reciprocal pairs

» For stable betatron motion

e the four eigen-values split into two complex conjugate pairs:
A0, 1=1,2

+ Four eigen-vectors — two complex conjugate pairs: ¢,,9,, /=1, 2.

E— ..!effe?son Lab s Thomas Jefferson National Accelerator Facility
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CHI

Eigen-vectors =

STATE

+ Orthogonality conditions:

L)

LUV, 20,
, UV, =0,
-0,

T

L@

L@

if i j,

=<
-

\7]
» Top two expressions are purely imaginary

(\7|+U\7| )* = (0|+UV|) — \7|+U+\7| - —V|+UV| . 1=1, 2.

E— .geffe?son Lab s Thomas Jefferson National Accelerator Facility ——————
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Eigen-vectors

» Eigen-vector normalization

0, U0, ==2i , 0,7U0, =-2i
0, U0, =0 , ¥,/U0,=0 ,
v, U0, =0 , ¥,’U0, =0

A2x4x2 — 6 = 10 (8 scalars and 2 initial phases to

parameterize eigen-vectors)

— .geffé?son Lab s

Thomas Jefferson National Accelerator Facility
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Eigen-vectors and Particle Ellipsoid in 4D Space

STATE

“*Particle position/angle vector at the beginning of the lattice
% = Re(Ae™0, + Ae2,)
where, A; A, 1 and y» , are the betatron amplitudes and phases.
“*Let us introduce the following real matrix:
V = [vl' -, 9, ,—vz"}

¢ V is a symplectic matrix (a direct consequence of eigen-vector

orthogonality):

A VUV =U

E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Eigen-vectors and Particle Ellipsoid in 4D Space

STATE

VUV =U
¢ matrix V symplecticity yields a useful identity for the inverse of V:
A V'i=-UV'U
“*Multi-particle beam emittance - an ensemble of particles,
whose motion is confined to a 4D ellipsoid. A 3D surface of

this ellipsoid, determined by particles with extreme betatron

amplitudes can be described in terms of a bilinear form

T

[1l>

X 8x=1 .

E— .geffxgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Eigen-vectors and Particle Ellipsoid in 4D Space

STATE

+ Using matrix V one can express a position/angle vector as follows:

X =VAE§
where

A 0 0 0] [ cosy, cosy, |

—sin y, COSy

0 0 O — ! 3

A = A . COoSy/, Sin

O O A2 0 ’ l//Z W3

0 0 0 A | —sin y, sin v, |

» the third parameter y; is introduced, so that the vector &
would describe a 3D sphere with a unit radius

_1’\

ge=1 . z=(VAJ'%
s(A) T (ay'x=1 = ==UVA'AV'U'

E— .geffxgon Lab s Thomas Jefferson National Accelerator Facility
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Beam emittance 4-D

+ Matrix E can be diagonalized as follows
VIEV=A'A'=E
+ The symplectic transform Vv

» reduces matrix E to its diagonal form

»~ 4D volume of the ellipsoid remains unchanged, since
detV =1

¢+ In the new coordinates particle beam ellipsoid can be written as:

A1 12 A 12 A 2 A 12
Ep X+ By P HERY T +ELP, =1

E— .geffe?son Lab s Thomas Jefferson National Accelerator Facility ——————

Operated by JSA for the U.S. Department of Energy Lecture 7 - Coupled Betatron Moton USPAS, Knoxville, TN, Jan. 27 - Feb. 7, 2025 17



sl

Beam emittance 4-D

STATE

¢ 4D beam emittance (ellipsoid volume) can be expressed as follows:

1 1 1

E = ———— — — — ~ :(A1A2)2
UOVEEEE, @) |Jdet@)

1 2 2
€4p = 616 = ~ a=hA , =~A
\/ det(E)
E— .geffe?son Lab s Thomas Jefferson National Accelerator Facility ——————
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Beam emittance 4-D

STATE

+ Knowing beam emittances and the eigen-vectors (matrix V), the

beam ellipsoid can be described in the following compact form

'Ex =1
/e, 0 0 0
c_uy O Ve 00,
0 0 1leg O
0 0 0 1s)
— .geffgon Lab s Thomas Jefferson National Accelerator Facility e ————————————————
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Second order moments of the particle distribution

STATE

¢ Gaussian distribution for 2D coupled betatron motion

f(R) = 21 exp(—%ﬁ@t)

A ge,

¢ Second order moments of the distribution

A — 1 1 -~
— — 4 _ T oTe 4
X =% = [ %% F(R)dR* = PP [ %, exp( X _deﬁ
E— .geffé?son Lab s Thomas Jefferson National Accelerator Facility ——————
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Beam emittance 4-D

STATE

¢ Applying coordinate transformation, y = V&, (matrix £ is reduced to its

diagonal form) makes the above integration trivial. The final result is :

', 0 0 0
o o0 & 0 0,

0 0 ¢ O

0 0 0 ¢

X=g"
E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Beam emittance 4-D

STATE

**How to find the beam emittances and the eigen-vectors if

one knows X or = ?
¢ The following characteristic equation:
det(E—iaU)=0
has 4 roots: A4 =-4,=1/g and A =-4, =1/g,
» Proof:

det(E-irU)=

det(2' —iAU)= [é-ﬂ(%-ﬁ} -0

€ &

E— .geffe?son Lab s Thomas Jefferson National Accelerator Facility ——————
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Beam emittance 4-D

¢ Then, the eigen-vectors are determined by solving the following

equation:

» Proof:

_UVEN U as [EVU - UVE =0

[

e Rewrite equation,

o multiply both sides of the above equation by vectors u, , =1, 2
ok 0
—1 0
e I R
- - __ i_
E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Beam emittance 4-D
e and employing the following properties of the vectors u, , /=1, 2.
Vu,=¥,, Uu, =-iu, and E'u, :iu,.
&

e one obtains the desired equation: [é—i Ujv, =0,/=1,2
€

+ Similar equation holds for the second order moments
det(XU+ii1)=0 g=A4, ,/=1,2

and
(Xu+iglp, =0 , /=1,2

¢ That yields another useful way of expressing the 4D emittance

Eip = EE, = «/deti)A() : ‘

E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Twiss Functions for Coupled 2D Motion

STATE

“*Single-particle phase-space trajectory along the beam orbit

X(s) = M(O,S) RE(\/;lvle_iW1 + /&, \"/Ze—il//z)

_ Re(\/;lvl(s)e—i(wm(s» N /gzvz(s)e—i(!//z+ﬂz(5))) |
¢ vectors ¥,(s)and v,(s)are the eigen-vectors at coordinate s

¢ y1 and y» are the initial phases of betatron motion

+ The phase terms e “*®and e™2® are introduced to put the eigen-

vectors into the following standard form:

E— .geffxgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Twiss Functions for Coupled 2D Motion

STATE

\ By (8) VB (s)e"?
_ u, (s) + &, (s) _ U, (S) + ,, (S) aiv2 ()
U, (s) = \/ﬁgl)xe(ni) (s) IAAOE % :
- U, (s) +a, () e - Iu,(s) +a,,(s)
B0 | ] RO

~ v, and v, are selected out of two complex conjugate
pairs, so that u; ,u, >0

**Generalized Twiss functions (10 independent parameters):

¢ 11(S) and 1»(s) are the phase advances of betatron motion.
¢ Bix(S), Puy(S), Pox(S) and foy(s) are the beta-functions;

¢ aux(S), aay(S), ax(S) and ayy(s) are the alpha-functions

E— .geffe?son Lab s Thomas Jefferson National Accelerator Facility
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Twiss Functions for Coupled 2D Motion

STATE

“*Introduced six real functions u4(s), u»(s), us(s), ua(s), vi(s)
and v,(s) are determined from the symplecticity condition

¢ The first three conditions yield:
up=1-u,, u=1-u; and U = Ug
¢ Then, one obtains

ﬁlx ﬂerivz
Cil-u)+ay, iU+, o
v _ \ ﬁlx v _ \ ﬁZX)
. B, e ’ ’ \ By
iu+a,, o i(1-u)+a,,
\/ﬂly _ | ﬁZy |

¢ For the uncoupled motion:

u=0, ﬁly:ﬁZXZO and aly:a2X=O

E— .geffgon Lab s Thomas Jefferson National Accelerator Facility
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Twiss Functions for Coupled 2D Motion

STATE

¢ Time invariance (a positive displacement for a positive velocity)

Requires,u>0and (1-u)>0 = O<u<l.

¢ one can get explicit solutions for v, and v»:

v1:n7r+%(v+—v_) |

v, =Mrx + %(V+ +v. )

E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Twiss Functions for Coupled 2D Motion

STATE

Vl=n7z+%(v+ -v.)

v, =mzx +%(v+ +v. )

» v_and v, are determined modulo 2xr

» which yields that v, and 1, are determined modulo .

»~ The last feature is a consequence of the fact that the
mirror reflection does not affect f's and o's itself, but it
changes relative signs of x and y components of the
eigen-vectors (change of v, and v, by 7).

E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Twiss Functions for Coupled 2D Motion

“*Choice of eigen-vectors
¢+ Weak coupling
» ¥, —relates mostly to the horizontal motion
~ Vv, — relates mostly to the vertical motion.

¢ Strong coupling — the choice is arbitrary.

» If one swaps two eigen-vectors it causes the following re-
definitions:

e B P, B, b,

° Q> A, Q>

Vo>V, V,>—V and u—>1—u.
E— .geffe?son Lab s Thomas Jefferson National Accelerator Facility ——————
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Beam sizes

a'x - \/glﬂlx +8252x
ay :\/glﬂly +82ﬂ2y

**Ellipse equation

X° 2&2xy+ y?
a’ aa, a’

X

=1-a’

y

¢+ Ellipse rotation parameter

~

(xy) § X

BBy e COSVy+ By Bry €, COSV,

a

) e a

E— .geffe?son Lab s Thomas Jefferson National Accelerator Facility
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Derivatives of Tunes and Beta-Functions

STATE

A differential trajectory displacement related to the first
eigen-vector

X(s+ds) = x(s) + x'(s)ds = x(s) +( P, () +g yjds =

\ERe{[m+|:— (1 U(;))?;ZlX(S) zmelvl(s)}dsle '(/11(5)“//1)}

“»Alternatively, the particle position can be expressed through
the beta-functions at the new coordinate s + ds:

X(s+ds) = Re(\/&, 3, (s + ds)e (usle+et) )

\/lee((m‘F Ile _Imd'u} I(u1(8)+l//)J

2,/ B (s
E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Derivatives of Tunes and Beta-Functions

STATE

¢ For the first eigen-vector

dB,, dp A
dSl = _zalx +R ﬁlx ﬂly cosv, dsly = _zaly -R ﬂlx ﬁly cosv,
dlul zl_u_E @Sln Vl ' dﬂl_dv:[ - - +E ﬁlx Sln Vl !
ds ﬂlx 2 Vﬁlx ds ds ﬂly 2 ﬂly
¢ For the second eigen-vector
dg dg,,
dszy = —2a2y -R ﬂZxﬂZy cosv, d52 = _2a2x +R ﬁZxﬂZy cosv,
d,uzzl—u+5 Pa sin v du, _dv, _u R Pay sin v
ds S, 2\fy ds ds S 2\fBn

E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Transfer Matrix in terms of Twiss Functions

STATE

“*Using the definition of the eigen-vectors one can derive the
following identity

MV=VS ,

where the matrix S is defined as:

[ cosp, sin 0 0
5 —Sin g, COS 0 0
0 0 CoSu, Sin u,
0 0  —sinu, cosu,

“*That yields the expression for the transfer matrix in terms of
matrix , v

M =-VSUVTU

E— .geffe?son Lab s Thomas Jefferson National Accelerator Facility ——————
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Transfer Matrix in terms of Twiss Functions

STATE

M,, = (1—u)cos s, +a, Sin g, +UCOS 1, +ar,, SiN 41, |
My, = By sin u + By, sin p,

r ﬁlx

My = [aly sin (s, + v, )+ ucos (s +v, )|+ )] o

ﬂly ’Bzy
M, = ﬂlxﬂly Sin (:ul +V1)+\/ﬂ2x182y Sin (:uz _Vz) >

[a2y sin (Ile _V2)+<1_U)COS (luz —V, )] >

. 1-u)’ +a2 . u’+a?,

M, =-— Sln/ul_ﬂ—SinIHZ >

1x 2X

M,, = (1—u)cos t, +UCOS 1, —at,, SiN 11, —ax,, SN g1, |

E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Transfer Matrix in terms of Twiss Functions

STATE

|.(1_ u)aly N ualiCOS (lul + Vl)_ [alxaly + U(l— U)JSin (,Ul + Vl)
+
ﬂlxﬂly
[uazy —(1—u)a2x]cos (1, =, )~ [a2xa2y T u(l_u)]Sin (1, ~v,)

VIBZXIBZy

M., =

23

. p . p .
M, = i[(l—U)COS (Iul +‘/1)_051x Sin (:ul +V1)]+ ﬂ[u COS (,L12 _Vz)_azx Sin (:Uz _Vz)] >
1x 2X

M31 2\/%[061)( sin (,ul—l/l)+(1—U)COS (ﬂl_vl)]+\/%[a2x sin (ﬂ2+V2)+UCOS (:U2+V2)] )

I\7|32 = ﬁlxﬂly Sin (Il'll _Vl)+\/ﬂ2xﬂ2y Sin (luz +V2) 5

A

Mg, =ucos i, +(1-u)cos u, +a,, Sin w1, + oy, sin u;

E— .geffgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Transfer Matrix in terms of Twiss Functions

STATE
- ﬁly Sin 1u1 +ﬂ2y Sin IUZ p)
2 |.a1xu - (1_ u)alyJCOS (lul - Vl)_ I.alxaly + U(l— U)JSin (:ul - Vl)
M, = +
\lﬂlxﬂly
[(1_ Uty - Uayy ]COS (1, +v,)= [a2xa2y +u(l- U)]Sin (4, +v,)
\/ﬂZxﬂZy
M, = Py Pilucos (4, —v,) -, sin (g, - v,)|+ ’Bzx[l 1)c0s (11, +v,) -y, sin (1, +v,)]
ly
2 2 2 2
. u“+aj, . @-u) +al, .
M, =- Lsin pu, — Lsin g,
1y 2y
M,, =Uucos u, +(1—u)cos u, —a,, Sin u, —a,, sin u, .
E— .geff;?son Lab s Thomas Jefferson National Accelerator Facility ——————
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Beam ellipsoid in 4D space — bilinear form

. (M-u) +a,” +u2 +a,,

_411 I b
glﬂlx 82ﬂ2x

s Py P

:‘22 — 1x + 2X ;

3 &,
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Beam ellipsoid in 4D space — bilinear form

STATL
2, 2, o a
Bp =8p ="+,
& &,
2 2 0y
By, =H,=—+—"2
& &,
A A e, +ull-u)|cosy, +|a,, (1-u)-a,ulsin v,
=13 T =a T o T
‘91 ﬂlxﬂly
[azxazy + u(l—u)]cos Vv, + [azx(l—u)—azyu]sin v,
‘92 \/ﬁZxﬂZy
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Beam ellipsoid in 4D space — bilinear form

~ o [Py a,cosv,+(1-u)siny, |B, a, cosv,—usinv,
—1y T =g = + ,
ﬁlx 81 ﬁZX 82

PO B, oy, Cosv,—usinv, [B " a,, cosv,+(1-u)sinv,
= T =3 T +
ﬁZy

;Bly & &,

. \/ﬂlxﬂly COos Vl n \/ﬂZxﬂZy COos VZ
&

1 82
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Second order moments in terms of Twiss functions

5(11 = <X2> = &1, + &5

Xy, = <pr> =2, ==& — 0y, |

. 1-u)f +a,.° u> +a,.’
Xy, <px2>:51( ) = + &, =

D Doy ’

5(33 = <y2> =& Py + &5,

Xz <ypy> = Xy3 = —& 0y &,y

2

. , u+a,,”  (L-u) +a,,
K <py >:51—+‘92

181y IBZy ’
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Second order moments in terms of Twiss functions

STATE

5(13 = <Xy> = )A(sl = gl\/ﬂlxﬂly CoOSv, + &, ﬂzxﬁzy Cosv,

X =(xp,) =X, =4 P (usin v, —a,, cosv, )— e, Pas (@-u)sin v, +a,, cosv, )
b
1y 2y
G . ¢ ﬂly . ﬂZy .
Xo ={yp,) =X, =—&, (@—u)sin v, + e, cosv, )+ ¢, | —2(usinv, —a, cosv,)
1x 2X ’
“ - 5 e, (L~ u)= e u)sin v, + (U u)+ey,a, Jeosy,
20 =\PxPy ) =Ry =8 +
\/ ﬁlxﬂly
; (052)( (1— u)— azyu)sin v, + (u(l— u)+ Ay Uy, )COS Vv, ’
2
\/ ﬂZxﬁZy
E— .geffe?son Lab s Thomas Jefferson National Accelerator Facility ——————
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Axisymmetric Rotational Distribution

STATL

< Magnetized Gun

The electron beam distribution
Elec}rostatlc Solenoid is axially symmetric, and
accelerator uncoupled at the cathode:

/ 7o @ 0 0

(| g % A 00
/\ HB_g 0 0 vy «

1P, 0 0 « B,

Gaussian Rotational

7Y x |
distribution distribution &\p/“ where & =r . /mkT. /P, is the

thermal emittance of the beam

E— ..!effe?son Lab s Thomas Jefferson National Accelerator Facility
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Axisymmetric Rotational Distribution

STATE

¢ At the exit of the solenoid the electron beam distribution is still
axially symmetric

_7/0"'(1)2:80 a 0 _CD:BO_
= =@’ E, D= i %o B cD,Bo2 0
&1 0 OB, ¥, +D°f, a,
B _CDIBO 0 Qa, /Bo |
where
1 0 0 O]
1 & 0
P =
0 1 0
~0 0 0 1

~ ®=eB/2Pc Is the rotational focusing strength of the

solenoid edge
» B Is the solenoid magnetic field.

E— .geffxgon Lab s Thomas Jefferson National Accelerator Facility ——————
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Axisymmetric Rotational Distribution — Eigenvectors

STATE

¢ The eigen-vectors of the rotational distribution:

JB /g
_i+2a _.i+2a

oo HA| g ] 2P
1 i\/ﬁ 2 \/ﬁ
_ii+2a _i+2a
2B | 2Yp |

s It correspondstou=1/2, v,=v,=7/2

¢ Then, the matrix Vis

N
o_| VB 2B 25 B
VA
25 VB VB 2P

— .geffé?son Lab s

Operated by JSA for the U.S. Department of Energy
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Axisymmetric Rotational Distribution — Emittances

¢+ Comparing right sides of both equations:

— .geffgzon Lab s

Operated by JSA for the U.S. Department of Energy

1/ ¢

1

0 1/ ¢
0 0
0

7, + D,
1 a,

0
_(Dﬁo

0
0
1/¢g,
0

&,

P

D,
0

Thomas Jefferson National Accelerator Facility

Lecture 7 - Coupled Betatron Motion

0
0 "}TUT
0
1/¢,
0
@ p,
Vo + @ f,
aO
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Axisymmetric Rotational Distribution — Emittances

STATE

» One obtains the final beam distribution

3 B, e 4D-emmitance conservation:
o4
NS A
0
o= %o , & &, = 8T2
2,1+ @B,
£, o1 ¢ Rotational emittance estimate
g = — 208,
J1+@2B,7 —Dp,
£, = o1 o2t o Fr g =r0=r(r®)=r’® = (s, S, )D
J1+@2 B +Dp, 2045,
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Vertex-to-Plane Transformer Insert

STATL

_ Skew-quadrupole
SOIG”Old System

i
7

Uncoupled _ X Flat
axial-symmetric  Rotational K}* distribution

distribution distribution K
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- [Te] — o

g g

> >

] 5]

x, x

< <

= [

w w

om m

o o o o

0 BETA_1X BETA_2Y BETA_1Y BETA_2X 2.62647 0 BETA_1X BETA_2Y BETA_1Y BETA_2X 2.62647
| | | | ] | ] | | |

- - 0 1)

o o

e

Betatron size X&Y[cm]
AlphaXY[-1, +1]
PHASE/(2*PI)

0 AX Ay AlphaXy 2.62647 0 Q_1 Q_2 Tetal Teta2 2.62647
| ] ] | ] [ |

Ek|n = 10 Mev, TC: 0.2 eV, Rc = 0.5 Cm, Bso| = 1 kG,
= g =7.14-103 cm, £, = 3.24-10% cm
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Summary

“*Relationships between the eigen-vectors, beam emittances and the
beam ellipsoid in 4D phase space

¢+ From the beam ellipsoid to the eigen-vectors (equivalence of both
pictures)

“*New parametrization of eigen-vectors in terms of generalized Twiss
functions

¢+ Complete Weyl-like representation
» 10 independent parameters to fully describe the motion
» transport line ambiguities resolved

¢ Developed software based on this representation allows effective
analysis of coupled betatron motion for both circular accelerators
and transfer lines (OptiM).
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