

Accelerator Physics Practicum

Isurumali Neththikumara, Alex Bogacz, Geoff Krafft, Subashini De Silva, Jefferson Lab and Old Dominion University

TA: Cannon Coats, Texas A&M

Thomas Jefferson National Accelerator Facility

Accelerator Physics

USPAS, Knoxville, TN, Jan. 27 - Feb. 7, 2025

Operated by JSA for the U.S. Department of Energy

FODO Cell

• What is a FODO cell?

- The simple periodic system consisting focusing and defocusing quadrupole magnets and drift sections
- Uses Alternating Gradient Strong focusing phenomena, and provides net focusing of a beam
- These elements can be arranged in few other ways, however maintaining periodicity is essential.

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

FODO Cell

- Beta-functions are periodic.
- Horizontal beam size largest at centers of focusing quads
- Vertical beam size largest at centers of defocusing quads

Beam size =
$$\sqrt{\varepsilon \cdot \beta(s) + \left(D(s)\frac{\delta E}{E}\right)^2}$$

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

FODO Cell: Transfer matrix

• Beam transport matrices.

• Quadrupole :
$$M_{qF} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}, \qquad M_{qD} = \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix}$$

$$M_{qF} = \begin{pmatrix} 1 & \frac{L}{2} \\ 0 & 1 \end{pmatrix}$$

Drift

Thomas Jefferson National Accelerator Facility

FODO Cell: Transfer matrix

- Select periodicity between centers of **focusing** quads.
- Both quads have same focusing strength, hence same 'f'

$$M = \begin{pmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{L}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{pmatrix}$$
$$M = \begin{pmatrix} 1 - \frac{L^2}{8f^2} & \frac{L^2}{4f} + L \\ \frac{L^2}{16f^3} - \frac{L}{4f^2} & 1 - \frac{L^2}{8f^2} \end{pmatrix}$$

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

FODO Cell: Phase advance

6

Select periodicity between centers of focusing quads

$$M = \begin{pmatrix} 1 - \frac{L^2}{8f^2} & \frac{L^2}{4f} + L \\ \frac{L^2}{16f^3} - \frac{L}{4f^2} & 1 - \frac{L^2}{8f^2} \end{pmatrix}$$

Tr
$$M = 2\cos\mu = 2 - \frac{L^2}{4f^2}$$

$$1 - \frac{L^2}{8f^2} = \cos\mu = 1 - 2\sin^2\frac{\mu}{2} \implies \sin\frac{\mu}{2} = \pm\frac{L}{4f}$$

 $\mu\,$ only has real solutions (stability) if

Thomas Jefferson National Accelerator Facility

FODO Cell Beta Max/Min

7

Follow a similar strategy reversing F/D quadrupoles to find the minimum b(s) within a FODO cell (center of D quad)

Operated by JSA for the U.S. Department of Energy

$$\check{\beta} = \frac{L}{\sin\mu} \left(1 - \sin\frac{\mu}{2} \right) \$$

Thomas Jefferson National Accelerator Facility

Stability Diagrams

8

- Designers often want or need to change the focusing of the two transverse planes in a FODO structure
 - What happens if the focusing/defocusing strengths differ?

$$\mathbf{M} = \begin{pmatrix} 1 - \frac{L}{2} \left(\frac{1}{f_f} - \frac{1}{f_d} + \frac{L}{4f_f f_d} \right) & 2L + \frac{L^2}{4f_d} \\ \frac{1}{f_d} - \frac{1}{f_f} \left(1 - \frac{L}{4f_f} - \frac{L}{2f_d} - \frac{L^2}{16f_f f_d} \right) & 1 - \frac{L}{2} \left(\frac{1}{f_f} - \frac{1}{f_d} + \frac{L}{4f_f f_d} \right) \end{pmatrix}$$

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Stability Diagrams

9

Use recalculated M matrix and these dimensionless quantities

$$M = \begin{pmatrix} 1 - \frac{L}{2} \left(\frac{1}{f_f} - \frac{1}{f_d} + \frac{L}{4f_f f_d} \right) & 2L + \frac{L^2}{4f_d} \\ \frac{1}{f_d} - \frac{1}{f_f} \left(1 - \frac{L}{4f_f} - \frac{L}{2f_d} - \frac{L^2}{16f_f f_d} \right) & 1 - \frac{L}{2} \left(\frac{1}{f_f} - \frac{1}{f_d} + \frac{L}{4f_f f_d} \right) \end{pmatrix} \qquad F \equiv \frac{L}{2f_F} \qquad D \equiv \frac{L}{2f_D}$$

Then take the trace for stability conditions to find

$$\cos \mu = 1 + D - F - \frac{FD}{2} \quad \text{or} \quad \sin^2 \frac{\mu}{2} = \frac{FD}{4} + \frac{F - D}{2}$$
$$\cos \mu = 1 - 2\sin^2 \frac{\mu}{2}$$
Jefferson Lab — Thomas Jefferson National Accelerator Facility

Stability Diagrams

- For stability, we must have $-1 < \cos \mu < 1$
- Using $\cos \mu = 1 2 \sin^2 \frac{\mu}{2}$, stability limits are where,

These translate to an a "necktie" stability diagram for FODO

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

Accele

MAD-X (Methodical Accelerator Design)

MAD-X: Developed by CERN Accelerator Beam Physics Group

MAD - Methodical Accelerator Design CERN - BE/ABP Accelerator Beam Physics Group

- Uses for design, simulation and optimization of particle accelerator lattices
- Features: Lattice design, Beam tracking, Beam optics calculations, Beam matching, Errors and corrections
- Program help is in the following link:
 - https://madx.web.cern.ch/
- Hope everyone working MAD-X version in your computers!

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

MAD-X (Methodical Accelerator Design)

- Can use a single input file or more..
- Require:
 - Element definition
 - Line (lattice) definition
 - Initial parameters
 - Used more features for advanced lattice simulations (not covered here!)
- Input file needs to be saved in MAD-X format (i.e. file_name.madx)
- To run MAD-X use; ./madx file_name.madx
- Require PostScript reader to open the output plot files.

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Input file; A simple FODO lattice

Operated by JSA for the U.S. Department of Energy

MAD-X (Methodical Accelerator Design)

Output file; Ex1_twi.ps (Twiss plot as defined)

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

FODO Lattice I

- Create a new file with a name fodo_1.madx and define following beam line; (take x-plane as the focusing plane)
 - $\frac{1}{2}$ FQ : L= 0.25 m, k1 = 0.015
 - $\frac{1}{2}$ DQ: L= 0.25 m, k1 =- 0.015
 - Drift: L= 5.0 m

• Obtain periodic solution, in terms of Twiss output, and discuss the behavior of beta functions.

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

FODO Lattice II

- Create a new file with a name fodo_1.madx and define following beam line; (take x-plane as the focusing plane)
 - $\frac{1}{2}$ FQ : L= 0.50 m, k1 = 0.2
 - $\frac{1}{2}$ DQ: L= 0.50 m, k1 =- 0.2
 - Drift: L= 2.0 m

- Obtain periodic solution, in terms of Twiss output, and discuss the behavior of beta functions.
- Compare with previous plots

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

• Get Twiss table output

! Generate a Twiss Table:

select, flag = twiss, clear; select, flag = twiss, column = name, s, betx, bety; twiss, sequence = fodo, file = file_name.data;

You can use these files and create plots using any other plotting tool you prefer!

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

FODO Lattice III

- As before, create a new file with a name fodo_2.madx and define following beam line; (take x-plane as the focusing plane)
 - $\frac{1}{2}$ FQ : L= 0.50 m, k1 = 0.15
 - $\frac{1}{2}$ DQ: L= 0.50 m, k1 =- 0.15
 - Drift: L= 1.0 m

- Obtain periodic solution, in terms of Twiss output, and discuss the behavior of beta functions.
- Obtain the Phase advances in x & y planes. Calculate the phase advance of the cell and compare with the analytical value.

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Jefferson Lab

FODO Lattice IV

- As before, create a new file with a name fodo_3.madx and define following beam line; (take x-plane as the focusing plane)
 - $\frac{1}{2}$ FQ : L= 0.25 m, k1 = 1.0
 - $\frac{1}{2}$ DQ: L= 0.25 m, k1 = -1.0
 - Drift: L= 5.0 m

• Discuss the outcome you get with this lattice.

Thomas Jefferson National Accelerator Facility

FODO Lattice V

- Create create a new file with a name fodo_4.madx . Define dipoles with a 30⁰ bend angle
 - $\frac{1}{2}$ FQ : L= 1.0 m, k1 = 0.025
 - $\frac{1}{2}$ DQ: L= 1.0 m, k1 = -0.025
 - Drift: L= 1.0 m
 - Dipole: L = 2.0 m, θ = 50°

Line: (QF, 4*(D), B1, 4*(D), QD, QD, 4*(D), B1, 4*(D), QF)

- Obtain periodic solution, in terms of Twiss output, and discuss the behavior of beta functions.
- Obtain the dispersion plots, and discuss Twiss output.

Thomas Jefferson National Accelerator Facility

FODO Lattice VI

- Matching using MAD-X
- Create a now MAD-X file with following elements. Elements are arranged as in 1st example
 - $\frac{1}{2}$ FQ : L= 0.25 m, k1 = 0.15
 - $\frac{1}{2}$ DQ: L= 0.25 m, k1 = -0.15
 - Drift: L= 0.5 m

- Match the phase advance of the cell to be 90⁰
 - What is the notation MAD-X uses for phase advance?
 - What are the elements we can use as variables?

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

FODO Lattice VI

- Match the phase advance of the cell to be 90⁰.
- Define matching section as follow;

match, sequence=fodo;

constraint, sequence=fodo,range=#e, mux=**, muy=**;

vary, name = QF->k1, step = 1E-6;

vary, name = QD->k1, step = 1E-6;

```
simplex, calls = 100, tolerance = 1E-10;
```

endmatch;

value, qf->k1, qd->k1, tar;

Thomas Jefferson National Accelerator Facility

Achromat

- Create a new MAD-X file and name it as achromat.madx
- Define following elements;

Obtain the D(s) and β(s) plot and discuss how they vary. Suggest a way to control β(s)

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

DBA Lattice

Dispersion is suppressed by a single quad flanked by a pair of bends.
 Additional mirror-symmetric pair of doublets provides X/Y stability.

Operated by JSA for the U.S. Department of Energy

Thomas Jefferson National Accelerator Facility

DBA Lattice

Dispersion is suppressed by a single quad flaqnked by a pair of bends.
 Additional mirror-symmetric pair of doublets provides X/Y stability.

Explore how far the cell length can be expanded?

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy