U.S. Particle Accelerator School

Fundamentals of Particle Acceleration course

Sponsoring University:

University of California, Berkeley


Fundamentals of Particle Acceleration


Michael Syphers and Elvin Harms, Fermilab

Purpose and Audience
The purpose of this course is to introduce the students to the physics and technology of particle beam accelerators. This course is suitable for last year undergraduate students or students from other fields considering accelerator physics as a possible career. This course also can provide a broader background to engineers and technicians working in the field of accelerator technology.

Courses in College Physics and first year Calculus.

This introductory course tries to avoid heavy mathematical treatment and will focus on the fundamental principles of particle accelerators and beam dynamics. Fundamental physics and technologies of particle acceleration on earth and in the universe are explored, with emphasis on basic relationships, definitions, and applications found in the field of particle accelerators. On completion of this course, the students are expected to understand the basic workings of accelerators and its components. Furthermore, they will comprehend basic principles and definitions of beam dynamics and will be able to analyze experimental observations in terms of fundamental beam dynamics.

Instructional Method
This course includes a series of 18 lectures during morning sessions, followed by afternoon laboratory sessions, which will introduce students to computer simulations and provide hands-on exploration of magnets, radio-frequency cavities, particle beam instrumentation and measuring devices, as well as exercises in particle motion and stability. Problem sets will be assigned which will be expected to be completed outside of scheduled class sessions. Two instructors will be available at all times.

Course Content
Introductory material will include discussions of classical dynamics and relativity, synchrotron radiation, the historical development of accelerators, and current views on cosmological particle acceleration mechanisms. Basic components such as bending and focusing magnets, electrostatic deflectors, and radio frequency accelerating structures will be described. Comparisons between hadron and electron accelerators will be presented, and examples of modern accelerator facilities discussed as well as state-of-the-art accelerator R&D.

Reading Requirements
(to be provided by the USPAS) "An Introduction to the Physics of High Energy Accelerators," Wiley Publishers (1993) by D.A. Edwards and M.J. Syphers and "An Introduction to Particle Accelerators," Oxford University Press (2001) by E.J.N. Wilson.

Credit Requirements
Students will be evaluated based on performance: final exam (30 % of final grade), homework assignments (50 % of final grade) computer/lab sessions (20 % of final grade).