Vanderbilt University
Injection and Extraction of Beams
Michael Plum, Oak Ridge National Lab and H.-Ulrich (Uli) Wienands, SLAC
Purpose and Audience
This course provides an introduction to the physics and design of ring injection and extraction systems. Proton, ion, and electron systems will be covered. The course is appropriate for anyone with some background in accelerator physics and technology and with an interest in injection and extraction of beams, including operational staff.
Prerequisites
The students should have basic knowledge of accelerator physics.
Objectives
The students are expected to learn the fundamental concepts for designing ring injection and extraction systems. Upon completion of this course, they will be able to apply this knowledge to real-life ring design and operation.
Instructional Method
The course includes four series of lectures in the morning. The afternoon will be spent solving real-life problems, in computer lab as provided & applicable and/or in lectures. Homework problem sets will be assigned every day and students are expected to work on them after scheduled class sessions and return them by the next day, when the homework solutions will be reviewed. There will be an open-book exam during the last day. The instructors will be available at all times.
Course Content
The principles of injection and extraction will be introduced first and the student will gain an appreciation for the wide variety of details concerning injection and extraction. Examples drawn from existing rings will be presented along with the particular strengths of those designs. The course will conclude with a discussion of advanced schemes like pulsed-quadrupole injection and extraction using bent crystals. In-depth coverage of specific topics will include:
* stripping injection of H– ion beams
* transverse and longitudinal painting
* management of H0 excited states
* magnetic stripping
* vacuum stripping
* extraction of hadron beams including resonant slow extraction
* injection of electron and positron beams in the presence of radiation damping
* issues of bunch-current equalization
* emittance preservation
* matching issues
* compensation of pulsed-magnet ringing
* practical tuning strategies for injection & extraction systems.
Reading Requirements
(to be provided by the USPAS) "Handbook of Accelerator Physics and Engineering" (Third Printing) by Alexander Chao and Maury Tigner, World Scientific (1999). Students are also encouraged to bring along their favorite accelerator physics and technology books.
Grading
Students will be evaluated based on performance as follows: final exam (30% of final grade), and homework assignments (70% of final grade).