Michigan State University (ONLINE)
RF Superconductivity for Particle Accelerators
Sergey Belomestnykh and Sam Posen, Fermilab; Irina Petrushina, Stony Brook University; Silvia Verdu Andres, Brookhaven National Lab
Purpose and Audience
This graduatelevel course covers the science fundamentals and practical engineering, manufacturing, processing, and operational aspects of the superconducting RF (SRF) cavities and systems – the stateoftheart technology used for both pulsed and continuous wave particle acceleration. The course is intended to give a comprehensive introduction to the field for students, engineers, and physicists interested in entering this field, as well as to deepen understanding of the technology for those already exposed to some aspects of SRF science and technology
Prerequisites
Basic knowledge of electromagnetism, microwave techniques, solid state/condensed matter physics, and mathematical methods for scientists and engineers at the senior undergraduate level.
It is the responsibility of the student to ensure that they meet the course prerequisites or have equivalent experience.
Objectives
Upon completion of the course students are expected to have a clear understanding of the advantages, basic underlying physics, open questions, and domain of applicability of SRF technology, as well as stateoftheart infrastructure and techniques required for successful implementation of SRFbased accelerators.
Instructional Method
The course will include lectures, review sessions, and simulation exercises. Homework problems will be regularly assigned during the course, and a final exam at the end of the course will be given. Instructors and/or teaching assistants will be available for help during evening homework sessions.
Course Content
The course lectures will start from an introduction to the principles of RF acceleration and a general mathematical description of microwave cavities. The phenomenon of superconductivity, and the advantages it brings for RF cavities will then be discussed in detail. Indepth coverage of principles of RF superconductivity and various types of SRF cavities used for different applications will follow. Extrinsic phenomena adversely affecting the performance will be discussed. Modern cavity manufacturing, processing, and basic measurement techniques will then be reviewed. Key steps and challenges in engineering and operating of complete SRF cryomodules (cryostats, cavities, input couplers, higher order mode couplers and loads, frequency tuners) will be fully discussed. Beamcavity interaction issues in operation will also be presented. Overview of the recent scientific progress and outlook with of remaining challenges and promising research directions will conclude the course.
Reading Requirements
The following textbook provided by USPAS will be extensively used during the course:
 RF Superconductivity for Accelerators by H. Padamsee, J. Knobloch, and T. Hays, John Wiley and Sons, 2nd edition (2008)
It is recommended that students refresh their knowledge of the fundamentals of electrodynamics at the level of one of the following (or other similar) textbooks:
 Fields and Waves in Communication Electronics (Chapters 1 through 11) by S. Ramo, J. R. Whinnery, and T. Van Duzer, John Wiley & Sons, 3rd edition (1994)
 Classical Electrodynamics (Chapters 1 through 8) by J. D. Jackson, John Wiley & Sons, 3rd edition (1999)
Foundations for Microwave Engineering (Chapters 1 through 8) by R. E. Collins, John Wiley & Sons (2001)
and their knowledge of condensed matter physics/superconductivity at the level of:
 Solid State Physics (Chapter 34Superconductivity) by N. W. Ashcroft and N. D. Mermin, Cengage Learning (1976)
 Introduction to superconductivity: second edition (Chapters 12) by M. Tinkham, Dover Books on Physics (2004)
Additional suggested reference books:
 Handbook of Accelerator Physics and Engineering edited by A. W. Chao, K. H. Mess, M. Tigner and F. Zimmermann, World Scientific, 2nd Edition (2013)
 RF Superconductivity: Science, Technology, and Applications by H. Padamsee, WileyVCH (2009).
 The Physics of Electron Storage Rings: An Introduction, by M. Sands

Microwave Theory and Applications, by S. F. Adam

High Energy Electron Linacs: Applications to Storage Ring RF Systems and Linear Colliders, by Perry B. Wilson
Credit Requirements
Students will be evaluated based on the following performances: final exam (50%), homework assignments, simulation exercises, and class participation (50%).
Michigan State University course number: PHY 963
Indiana University course number: Physics 571 Special Topics in Physics of Beams
MIT course number: 8.790 Accelerator Physics